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In recent years, compressed sensing (CS) has attracted considerable attention

in areas of applied mathematics, computer science, and electrical engineering

by suggesting that it may be possible to surpass the traditional limits of sam-

pling theory. CS builds upon the fundamental fact that we can represent many

signals using only a few non-zero coefficients in a suitable basis or dictionary.

Nonlinear optimization can then enable recovery of such signals from very few

measurements. In this chapter, we provide an up-to-date review of the basic

theory underlying CS. After a brief historical overview, we begin with a dis-

cussion of sparsity and other low-dimensional signal models. We then treat the

central question of how to accurately recover a high-dimensional signal from a

small set of measurements and provide performance guarantees for a variety of

sparse recovery algorithms. We conclude with a discussion of some extensions

of the sparse recovery framework. In subsequent chapters of the book, we will

see how the fundamentals presented in this chapter are extended in many excit-

ing directions, including new models for describing structure in both analog and

discrete-time signals, new sensing design techniques, more advanced recovery

results, and emerging applications.

1.1 Introduction

We are in the midst of a digital revolution that is driving the development and

deployment of new kinds of sensing systems with ever-increasing fidelity and

resolution. The theoretical foundation of this revolution is the pioneering work

of Kotelnikov, Nyquist, Shannon, and Whittaker on sampling continuous-time

band-limited signals [162, 195, 209, 247]. Their results demonstrate that signals,
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images, videos, and other data can be exactly recovered from a set of uniformly

spaced samples taken at the so-called Nyquist rate of twice the highest frequency

present in the signal of interest. Capitalizing on this discovery, much of signal

processing has moved from the analog to the digital domain and ridden the wave

of Moore’s law. Digitization has enabled the creation of sensing and processing

systems that are more robust, flexible, cheaper and, consequently, more widely

used than their analog counterparts.

As a result of this success, the amount of data generated by sensing systems

has grown from a trickle to a torrent. Unfortunately, in many important and

emerging applications, the resulting Nyquist rate is so high that we end up with

far too many samples. Alternatively, it may simply be too costly, or even physi-

cally impossible, to build devices capable of acquiring samples at the necessary

rate [146, 241]. Thus, despite extraordinary advances in computational power, the

acquisition and processing of signals in application areas such as imaging, video,

medical imaging, remote surveillance, spectroscopy, and genomic data analysis

continues to pose a tremendous challenge.

To address the logistical and computational challenges involved in dealing

with such high-dimensional data, we often depend on compression, which aims

at finding the most concise representation of a signal that is able to achieve

a target level of acceptable distortion. One of the most popular techniques for

signal compression is known as transform coding, and typically relies on finding

a basis or frame that provides sparse or compressible representations for signals

in a class of interest [31, 77, 106]. By a sparse representation, we mean that for

a signal of length n, we can represent it with k � n nonzero coefficients; by a

compressible representation, we mean that the signal is well-approximated by

a signal with only k nonzero coefficients. Both sparse and compressible signals

can be represented with high fidelity by preserving only the values and locations

of the largest coefficients of the signal. This process is called sparse approxima-

tion, and forms the foundation of transform coding schemes that exploit signal

sparsity and compressibility, including the JPEG, JPEG2000, MPEG, and MP3

standards.

Leveraging the concept of transform coding, compressed sensing (CS) has

emerged as a new framework for signal acquisition and sensor design. CS enables

a potentially large reduction in the sampling and computation costs for sensing

signals that have a sparse or compressible representation. While the Nyquist-

Shannon sampling theorem states that a certain minimum number of samples

is required in order to perfectly capture an arbitrary bandlimited signal, when

the signal is sparse in a known basis we can vastly reduce the number of mea-

surements that need to be stored. Consequently, when sensing sparse signals we

might be able to do better than suggested by classical results. This is the fun-

damental idea behind CS: rather than first sampling at a high rate and then

compressing the sampled data, we would like to find ways to directly sense the

data in a compressed form — i.e., at a lower sampling rate. The field of CS grew

out of the work of Candès, Romberg, and Tao and of Donoho, who showed that
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a finite-dimensional signal having a sparse or compressible representation can

be recovered from a small set of linear, nonadaptive measurements [3, 33, 40–

42, 44, 82]. The design of these measurement schemes and their extensions to

practical data models and acquisition systems are central challenges in the field

of CS.

While this idea has only recently gained significant attraction in the signal

processing community, there have been hints in this direction dating back as far

as the eighteenth century. In 1795, Prony proposed an algorithm for the estima-

tion of the parameters associated with a small number of complex exponentials

sampled in the presence of noise [201]. The next theoretical leap came in the early

1900’s, when Carathéodory showed that a positive linear combination of any k

sinusoids is uniquely determined by its value at t = 0 and at any other 2k points

in time [46, 47]. This represents far fewer samples than the number of Nyquist-

rate samples when k is small and the range of possible frequencies is large. In the

1990’s, this work was generalized by George, Gorodnitsky, and Rao, who studied

sparsity in biomagnetic imaging and other contexts [134–136, 202]. Simultane-

ously, Bresler, Feng, and Venkataramani proposed a sampling scheme for acquir-

ing certain classes of signals consisting of k components with nonzero bandwidth

(as opposed to pure sinusoids) under restrictions on the possible spectral sup-

ports, although exact recovery was not guaranteed in general [29, 117, 118, 237].

In the early 2000’s Blu, Marziliano, and Vetterli developed sampling methods

for certain classes of parametric signals that are governed by only k param-

eters, showing that these signals can be sampled and recovered from just 2k

samples [239].

A related problem focuses on recovery of a signal from partial observation of

its Fourier transform. Beurling proposed a method for extrapolating these obser-

vations to determine the entire Fourier transform [22]. One can show that if the

signal consists of a finite number of impulses, then Beurling’s approach will cor-

rectly recover the entire Fourier transform (of this non-bandlimited signal) from

any sufficiently large piece of its Fourier transform. His approach — to find the

signal with smallest `1 norm among all signals agreeing with the acquired Fourier

measurements — bears a remarkable resemblance to some of the algorithms used

in CS.

More recently, Candès, Romberg, Tao [33, 40–42, 44], and Donoho [82] showed

that a signal having a sparse representation can be recovered exactly from a

small set of linear, nonadaptive measurements. This result suggests that it may

be possible to sense sparse signals by taking far fewer measurements, hence the

name compressed sensing. Note, however, that CS differs from classical sampling

in three important respects. First, sampling theory typically considers infinite

length, continuous-time signals. In contrast, CS is a mathematical theory focused

on measuring finite-dimensional vectors in Rn. Second, rather than sampling the

signal at specific points in time, CS systems typically acquire measurements in

the form of inner products between the signal and more general test functions.

This is in fact in the spirit of modern sampling methods which similarly acquire
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signals by more general linear measurements [113, 230]. We will see throughout

this book that randomness often plays a key role in the design of these test

functions. Thirdly, the two frameworks differ in the manner in which they deal

with signal recovery, i.e., the problem of recovering the original signal from the

compressive measurements. In the Nyquist-Shannon framework, signal recovery

is achieved through sinc interpolation — a linear process that requires little

computation and has a simple interpretation. In CS, however, signal recovery is

typically achieved using highly nonlinear methods.1 See Section 1.6 as well as

the survey in [226] for an overview of these techniques.

CS has already had notable impact on several applications. One example is

medical imaging [178–180, 227], where it has enabled speedups by a factor of

seven in pediatric MRI while preserving diagnostic quality [236]. Moreover, the

broad applicability of this framework has inspired research that extends the

CS framework by proposing practical implementations for numerous applica-

tions, including sub-Nyquist sampling systems [125, 126, 186–188, 219, 224, 225,

228], compressive imaging architectures [99, 184, 205], and compressive sensor

networks [7, 72, 141].

The aim of this book is to provide an up-to-date review of some of the impor-

tant results in CS. Many of the results and ideas in the various chapters rely

on the fundamental concepts of CS. Since the focus of the remaining chapters

is on more recent advances, we concentrate here on many of the basic results in

CS that will serve as background material to the rest of the book. Our goal in

this chapter is to provide an overview of the field and highlight some of the key

technical results, which are then more fully explored in subsequent chapters. We

begin with a brief review of the relevant mathematical tools, and then survey

many of the low-dimensional models commonly used in CS, with an emphasis

on sparsity and the union of subspaces models. We next focus attention on the

theory and algorithms for sparse recovery in finite dimensions. To facilitate our

goal of providing both an elementary introduction as well as a comprehensive

overview of many of the results in CS, we provide proofs of some of the more

technical lemmas and theorems in the Appendix.

1.2 Review of Vector Spaces

For much of its history, signal processing has focused on signals produced by

physical systems. Many natural and man-made systems can be modeled as linear.

Thus, it is natural to consider signal models that complement this kind of linear

structure. This notion has been incorporated into modern signal processing by

modeling signals as vectors living in an appropriate vector space. This captures

1 It is also worth noting that it has recently been shown that nonlinear methods can be used in

the context of traditional sampling as well, when the sampling mechanism is nonlinear [105].
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Figure 1.1 Unit spheres in R2 for the `p norms with p = 1, 2,∞, and for the `p
quasinorm with p = 1
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the linear structure that we often desire, namely that if we add two signals

together then we obtain a new, physically meaningful signal. Moreover, vector

spaces allow us to apply intuitions and tools from geometry in R3, such as lengths,

distances, and angles, to describe and compare signals of interest. This is useful

even when our signals live in high-dimensional or infinite-dimensional spaces.

This book assumes that the reader is relatively comfortable with vector spaces.

We now provide only a brief review of some of the key concepts in vector spaces

that will be required in developing the CS theory.

1.2.1 Normed vector spaces

Throughout this book, we will treat signals as real-valued functions having

domains that are either continuous or discrete, and either infinite or finite. These

assumptions will be made clear as necessary in each chapter. We will typically be

concerned with normed vector spaces, i.e., vector spaces endowed with a norm.

In the case of a discrete, finite domain, we can view our signals as vectors in

an n-dimensional Euclidean space, denoted by Rn. When dealing with vectors in

Rn, we will make frequent use of the `p norms, which are defined for p ∈ [1,∞]

as

‖x‖p =

(
∑n
i=1 |xi|p)

1
p , p ∈ [1,∞);

max
i=1,2,...,n

|xi|, p =∞. (1.1)

In Euclidean space we can also consider the standard inner product in Rn, which

we denote

〈x, z〉 = zTx =

n∑
i=1

xizi.

This inner product leads to the `2 norm: ‖x‖2 =
√
〈x, x〉.

In some contexts it is useful to extend the notion of `p norms to the case

where p < 1. In this case, the “norm” defined in (1.1) fails to satisfy the triangle

inequality, so it is actually a quasinorm. We will also make frequent use of the

notation ‖x‖0 := |supp(x)|, where supp(x) = {i : xi 6= 0} denotes the support of
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Figure 1.2 Best approximation of a point in R2 by a one-dimensional subspace using
the `p norms for p = 1, 2,∞, and the `p quasinorm with p = 1
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x and |supp(x)| denotes the cardinality of supp(x). Note that ‖·‖0 is not even a

quasinorm, but one can easily show that

lim
p→0
‖x‖pp = |supp(x)|,

justifying this choice of notation. The `p (quasi-)norms have notably different

properties for different values of p. To illustrate this, in Fig. 1.1 we show the unit

sphere, i.e., {x : ‖x‖p = 1}, induced by each of these norms in R2.

We typically use norms as a measure of the strength of a signal, or the size

of an error. For example, suppose we are given a signal x ∈ R2 and wish to

approximate it using a point in a one-dimensional affine space A. If we measure

the approximation error using an `p norm, then our task is to find the x̂ ∈ A that

minimizes ‖x− x̂‖p. The choice of p will have a significant effect on the properties

of the resulting approximation error. An example is illustrated in Fig. 1.2. To

compute the closest point in A to x using each `p norm, we can imagine growing

an `p sphere centered on x until it intersects with A. This will be the point x̂ ∈ A
that is closest to x in the corresponding `p norm. We observe that larger p tends

to spread out the error more evenly among the two coefficients, while smaller p

leads to an error that is more unevenly distributed and tends to be sparse. This

intuition generalizes to higher dimensions, and plays an important role in the

development of CS theory.

1.2.2 Bases and frames

A set {φi}ni=1 is called a basis for Rn if the vectors in the set span Rn and are

linearly independent.2 This implies that each vector in the space has a unique

representation as a linear combination of these basis vectors. Specifically, for any

x ∈ Rn, there exist (unique) coefficients {ci}ni=1 such that

x =

n∑
i=1

ciφi.

2 In any n-dimensional vector space, a basis will always consist of exactly n vectors. Fewer

vectors are not sufficient to span the space, while additional vectors are guaranteed to be
linearly dependent.
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Note that if we let Φ denote the n× n matrix with columns given by φi and let

c denote the length-n vector with entries ci, then we can represent this relation

more compactly as

x = Φc.

An important special case of a basis is an orthonormal basis, defined as a set

of vectors {φi}ni=1 satisfying

〈φi, φj〉 =

{
1, i = j;

0, i 6= j.

An orthonormal basis has the advantage that the coefficients c can be easily

calculated as

ci = 〈x, φi〉,

or

c = ΦTx

in matrix notation. This can easily be verified since the orthonormality of the

columns of Φ means that ΦTΦ = I, where I denotes the n× n identity matrix.

It is often useful to generalize the concept of a basis to allow for sets of possibly

linearly dependent vectors, resulting in what is known as a frame [48, 55, 65,

163, 164, 182]. More formally, a frame is a set of vectors {φi}ni=1 in Rd, d < n

corresponding to a matrix Φ ∈ Rd×n, such that for all vectors x ∈ Rd,

A ‖x‖22 ≤
∥∥ΦTx

∥∥2

2
≤ B ‖x‖22

with 0 < A ≤ B <∞. Note that the condition A > 0 implies that the rows of Φ

must be linearly independent. When A is chosen as the largest possible value and

B as the smallest for these inequalities to hold, then we call them the (optimal)

frame bounds. If A and B can be chosen as A = B, then the frame is called

A-tight, and if A = B = 1, then Φ is a Parseval frame. A frame is called equal-

norm, if there exists some λ > 0 such that ‖φi‖2 = λ for all i = 1, . . . , n, and it

is unit-norm if λ = 1. Note also that while the concept of a frame is very general

and can be defined in infinite-dimensional spaces, in the case where Φ is a d× n
matrix A and B simply correspond to the smallest and largest eigenvalues of

ΦΦT , respectively.

Frames can provide richer representations of data due to their redundancy [26]:

for a given signal x, there exist infinitely many coefficient vectors c such that

x = Φc. In order to obtain a set of feasible coefficients we exploit the dual frame

Φ̃. Specifically, any frame satisfying

ΦΦ̃T = Φ̃ΦT = I

is called an (alternate) dual frame. The particular choice Φ̃ = (ΦΦT )−1Φ is

referred to as the canonical dual frame. It is also known as the Moore-Penrose
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pseudoinverse. Note that since A > 0 requires Φ to have linearly independent

rows, this also ensures that ΦΦT is invertible, so that Φ̃ is well-defined. Thus,

one way to obtain a set of feasible coefficients is via

cd = (ΦΦT )−1Φx.

One can show that this sequence is the smallest coefficient sequence in `2 norm,

i.e., ‖cd‖2 ≤ ‖c‖2 for all c such that x = Φc.

Finally, note that in the sparse approximation literature, it is also common

for a basis or frame to be referred to as a dictionary or overcomplete dictionary

respectively, with the dictionary elements being called atoms.

1.3 Low-Dimensional Signal Models

At its core, signal processing is concerned with efficient algorithms for acquiring,

processing, and extracting information from different types of signals or data.

In order to design such algorithms for a particular problem, we must have accu-

rate models for the signals of interest. These can take the form of generative

models, deterministic classes, or probabilistic Bayesian models. In general, mod-

els are useful for incorporating a priori knowledge to help distinguish classes of

interesting or probable signals from uninteresting or improbable signals. This

can help in efficiently and accurately acquiring, processing, compressing, and

communicating data and information.

As noted in the introduction, much of classical signal processing is based on

the notion that signals can be modeled as vectors living in an appropriate vector

space (or subspace). To a large extent, the notion that any possible vector is a

valid signal has driven the explosion in the dimensionality of the data we must

sample and process. However, such simple linear models often fail to capture

much of the structure present in many common classes of signals — while it may

be reasonable to model signals as vectors, in many cases not all possible vectors

in the space represent valid signals. In response to these challenges, there has

been a surge of interest in recent years, across many fields, in a variety of low-

dimensional signal models that quantify the notion that the number of degrees

of freedom in high-dimensional signals is often quite small compared to their

ambient dimensionality.

In this section we provide a brief overview of the most common low-dimensional

structures encountered in the field of CS. We will begin by considering the tradi-

tional sparse models for finite-dimensional signals, and then discuss methods for

generalizing these classes to infinite-dimensional (continuous-time) signals. We

will also briefly discuss low-rank matrix and manifold models and describe some

interesting connections between CS and some other emerging problem areas.
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(a) (b)

Figure 1.3 Sparse representation of an image via a multiscale wavelet transform.
(a) Original image. (b) Wavelet representation. Large coefficients are represented by
light pixels, while small coefficients are represented by dark pixels. Observe that most
of the wavelet coefficients are close to zero.

1.3.1 Sparse models

Signals can often be well-approximated as a linear combination of just a few

elements from a known basis or dictionary. When this representation is exact

we say that the signal is sparse. Sparse signal models provide a mathematical

framework for capturing the fact that in many cases these high-dimensional

signals contain relatively little information compared to their ambient dimension.

Sparsity can be thought of as one incarnation of Occam’s razor — when faced

with many possible ways to represent a signal, the simplest choice is the best

one.

Sparsity and nonlinear approximation
Mathematically, we say that a signal x is k-sparse when it has at most k nonzeros,

i.e., ‖x‖0 ≤ k. We let

Σk = {x : ‖x‖0 ≤ k}

denote the set of all k-sparse signals. Typically, we will be dealing with signals

that are not themselves sparse, but which admit a sparse representation in some

basis Φ. In this case we will still refer to x as being k-sparse, with the under-

standing that we can express x as x = Φc where ‖c‖0 ≤ k.

Sparsity has long been exploited in signal processing and approximation the-

ory for tasks such as compression [77, 199, 215] and denoising [80], and in statis-

tics and learning theory as a method for avoiding overfitting [234]. Sparsity

also figures prominently in the theory of statistical estimation and model selec-

tion [139, 218], in the study of the human visual system [196], and has been

exploited heavily in image processing tasks, since the multiscale wavelet trans-
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(a) (b)

Figure 1.4 Sparse approximation of a natural image. (a) Original image.
(b) Approximation of image obtained by keeping only the largest 10% of the wavelet
coefficients.

form [182] provides nearly sparse representations for natural images. An example

is shown in Fig. 1.3.

As a traditional application of sparse models, we consider the problems of

image compression and image denoising. Most natural images are characterized

by large smooth or textured regions and relatively few sharp edges. Signals with

this structure are known to be very nearly sparse when represented using a mul-

tiscale wavelet transform [182]. The wavelet transform consists of recursively

dividing the image into its low- and high-frequency components. The lowest fre-

quency components provide a coarse scale approximation of the image, while the

higher frequency components fill in the detail and resolve edges. What we see

when we compute a wavelet transform of a typical natural image, as shown in

Fig. 1.3, is that most coefficients are very small. Hence, we can obtain a good

approximation of the signal by setting the small coefficients to zero, or thresh-

olding the coefficients, to obtain a k-sparse representation. When measuring the

approximation error using an `p norm, this procedure yields the best k-term

approximation of the original signal, i.e., the best approximation of the signal

using only k basis elements.3

Figure 1.4 shows an example of such an image and its best k-term approxima-

tion. This is the heart of nonlinear approximation [77] — nonlinear because the

choice of which coefficients to keep in the approximation depends on the signal

itself. Similarly, given the knowledge that natural images have approximately

sparse wavelet transforms, this same thresholding operation serves as an effec-

3 Thresholding yields the best k-term approximation of a signal with respect to an orthonormal
basis. When redundant frames are used, we must rely on sparse approximation algorithms

like those described in Section 1.6 [106, 182].
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Figure 1.5 Union of subspaces defined by Σ2 ⊂ R3, i.e., the set of all 2-sparse signals in
R3.

tive method for rejecting certain common types of noise, which typically do not

have sparse wavelet transforms [80].

Geometry of sparse signals
Sparsity is a highly nonlinear model, since the choice of which dictionary elements

are used can change from signal to signal [77]. This can be seen by observing

that given a pair of k-sparse signals, a linear combination of the two signals will

in general no longer be k sparse, since their supports may not coincide. That is,

for any x, z ∈ Σk, we do not necessarily have that x+ z ∈ Σk (although we do

have that x+ z ∈ Σ2k). This is illustrated in Fig. 1.5, which shows Σ2 embedded

in R3, i.e., the set of all 2-sparse signals in R3.

The set of sparse signals Σk does not form a linear space. Instead it consists

of the union of all possible
(
n
k

)
canonical subspaces.4 In Fig. 1.5 we have only(

3
2

)
= 3 possible subspaces, but for larger values of n and k we must consider

a potentially huge number of subspaces. This will have significant algorithmic

consequences in the development of the algorithms for sparse approximation and

sparse recovery described in Sections 1.5 and 1.6.

Compressible signals
An important point in practice is that few real-world signals are truly sparse;

rather they are compressible, meaning that they can be well-approximated by a

sparse signal. Such signals have been termed compressible, approximately sparse,

or relatively sparse in various contexts. Compressible signals are well approxi-

mated by sparse signals in the same way that signals living close to a subspace

4 Union of subspaces
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are well approximated by the first few principal components [139]. In fact, we can

quantify the compressibility by calculating the error incurred by approximating

a signal x by some x̂ ∈ Σk:

σk(x)p = min
x̂∈Σk

‖x− x̂‖p . (1.2)

If x ∈ Σk, then clearly σk(x)p = 0 for any p. Moreover, one can easily show that

the thresholding strategy described above (keeping only the k largest coefficients)

results in the optimal approximation as measured by (1.2) for all `p norms [77].

Another way to think about compressible signals is to consider the rate of

decay of their coefficients. For many important classes of signals there exist bases

such that the coefficients obey a power law decay, in which case the signals are

highly compressible. Specifically, if x = Φc and we sort the coefficients ci such

that |c1| ≥ |c2| ≥ · · · ≥ |cn|, then we say that the coefficients obey a power law

decay if there exist constants C1, q > 0 such that

|ci| ≤ C1i
−q.

The larger q is, the faster the magnitudes decay, and the more compressible a

signal is. Because the magnitudes of their coefficients decay so rapidly, compress-

ible signals can be represented accurately by k � n coefficients. Specifically, for

such signals there exist constants C2, r > 0 depending only on C1 and q such

that

σk(x)2 ≤ C2k
−r.

In fact, one can show that σk(x)2 will decay as k−r if and only if the sorted

coefficients ci decay as i−r+1/2 [77].

1.3.2 Finite unions of subspaces

In certain applications, the signal has a structure that cannot be completely

expressed using sparsity alone. For instance, when only certain sparse support

patterns are allowable in the signal, it is possible to leverage such constraints

to formulate more concise signal models. We give a few representative examples

below; see Chapters 2 and 8 for more detail on structured sparsity.r For piecewise-smooth signals and images, the dominant coefficients in the

wavelet transform tend to cluster into a connected rooted subtree inside the

wavelet parent-child binary tree [79, 103, 104, 167, 168].r In applications such as surveillance or neuronal recording, the coefficients

might appear clustered together, or spaced apart from each other [49, 50, 147].

See Chapter 11 for more details.r When multiple sparse signals are recorded simultaneously, their supports

might be correlated according to the properties of the sensing environment [7,

63, 76, 114, 121, 185]. One possible structure leads to the multiple measurement

vector problem; see Section 1.7 for more details.
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r In certain cases the small number of components of a sparse signal correspond

not to vectors (columns of a matrix Φ), but rather to points known to lie in

particular subspaces. If we construct a frame by concatenating bases for such

subspaces, the nonzero coefficients of the signal representations form block

structures at known locations [27, 112, 114]. See Chapters 3, 11, and 12 for

further description and potential applications of this model.

Such examples of additional structure can be captured in terms of restricting the

feasible signal supports to a small subset of the possible
(
n
k

)
selections of nonzero

coefficients for a k-sparse signal. These models are often referred to as structured

sparsity models [4, 25, 102, 114, 177]. In cases where nonzero coefficients appear

in clusters, the structure can be expressed in terms of a sparse union of sub-

spaces [102, 114]. Structured sparse and union of subspace models extend the

notion of sparsity to a much broader class of signals that can incorporate both

finite-dimensional and infinite-dimensional representations.

In order to define these models, recall that for canonically sparse signals, the

union Σk is composed of canonical subspaces Ui that are aligned with k out of

the n coordinate axes of Rn. See, for example, Fig. 1.5, which illustrates this for

the case where n = 3 and k = 2. Allowing for more general choices of Ui leads

to powerful representations that accommodate many interesting signal priors.

Specifically, given the knowledge that x resides in one of M possible subspaces

U1,U2, . . . ,UM , we have that x lies in the union of M subspaces! [114, 177]:

x ∈ U =

M⋃
i=1

Ui.

It is important to note that, as in the generic sparse setting, union models

are nonlinear: the sum of two signals from a union U is generally no longer in

U . This nonlinear behavior of the signal set renders any processing that exploits

these models more intricate. Therefore, instead of attempting to treat all unions

in a unified way, we focus our attention on some specific classes of union models,

in order of complexity.

The simplest class of unions arises when the number of subspaces comprising

the union is finite, and each subspace has finite dimensions. We call this setup

a finite union of subspaces model. Under the finite-dimensional framework, we

revisit the two types of models described above:r Structured sparse supports: This class consists of sparse vectors that meet

additional restrictions on the support (i.e., the set of indices for the vector’s

nonzero entries). This corresponds to only certain subspaces Ui out of the
(
n
k

)
subspaces present in Σk being allowed [4].
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r Sparse union of subspaces where each subspace Ui comprising the union is a

direct sum of k low-dimensional subspaces [114].

Ui =

k⊕
j=1

Aij . (1.3)

Here {Ai} are a given set of subspaces with dimensions dim(Ai) = di, and

i1, i2, . . . , ik select k of these subspaces. Thus, each subspace Ui corresponds

to a different choice of k out of M subspaces Ai that comprise the sum. This

framework can model standard sparsity by letting Aj be the one-dimensional

subspace spanned by the jth canonical vector. It can be shown that this model

leads to block sparsity in which certain blocks in a vector are zero, and others

are not [112].

These two cases can be combined to allow for only certain sums of k subspaces to

be part of the union U . Both models can be leveraged to further reduce sampling

rate and allow for CS of a broader class of signals.

1.3.3 Unions of subspaces for analog signal models

One of the primary motivations for CS is to design new sensing systems for

acquiring continuous-time, analog signals or images. In contrast, the finite-

dimensional sparse model described above inherently assumes that the signal x

is discrete. It is sometimes possible to extend this model to continuous-time sig-

nals using an intermediate discrete representation. For example, a band-limited,

periodic signal can be perfectly represented by a finite-length vector consist-

ing of its Nyquist-rate samples. However, it will often be more useful to extend

the concept of sparsity to provide union of subspaces models for analog sig-

nals [97, 109, 114, 125, 186–188, 239]. Two of the broader frameworks that treat

sub-Nyquist sampling of analog signals are Xampling and finite-rate of innova-

tion, which are discussed in Chapters 3 and 4, respectively.

In general, when treating unions of subspaces for analog signals there are three

main cases to consider, as elaborated further in Chapter 3 [102]:r finite unions of infinite dimensional spaces;r infinite unions of finite dimensional spaces;r infinite unions of infinite dimensional spaces.

In each of the three settings above there is an element that can take on infinite

values, which is a result of the fact that we are considering analog signals: either

the underlying subspaces are infinite-dimensional, or the number of subspaces is

infinite.

There are many well-known examples of analog signals that can be expressed

as a union of subspaces. For example, an important signal class corresponding

to a finite union of infinite dimensional spaces is the multiband model [109].

In this model, the analog signal consists of a finite sum of bandlimited signals,
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where typically the signal components have a relatively small bandwidth but are

distributed across a comparatively large frequency range [117, 118, 186, 237, 238].

Sub-Nyquist recovery techniques for this class of signals can be found in [186–

188].

Another example of a signal class that can often be expressed as a union

of subspaces is the class of signals having a finite rate of innovation [97, 239].

Depending on the specific structure, this model corresponds to an infinite or

finite union of finite dimensional subspaces [19, 125, 126], and describes many

common signals having a small number of degrees of freedom. In this case, each

subspace corresponds to a certain choice of parameter values, with the set of

possible values being infinite dimensional, and thus the number of subspaces

spanned by the model being infinite as well. The eventual goal is to exploit the

available structure in order to reduce the sampling rate; see Chapters 3 and 4

for more details. As we will see in Chapter 3, by relying on the analog union of

subspace model we can design efficient hardware that samples analog signals at

sub-Nyquist rates, thus moving the analog CS framework from theory to practice.

1.3.4 Low-rank matrix models

Another model closely related to sparsity is the set of low-rank matrices:

L = {M ∈ Rn1×n2 : rank(M) ≤ r}.

The set L consists of matrices M such that M =
∑r
k=1 σkukv

∗
k where

σ1, σ2, . . . , σr ≥ 0 are the nonzero singular values, and u1, u2, . . . , ur ∈ Rn1 ,

v1, v2, . . . , vr ∈ Rn2 are the corresponding singular vectors. Rather than con-

straining the number of elements used to construct the signal, we are constrain-

ing the number of nonzero singular values. One can easily observe that the set L
has r(n1 + n2 − r) degrees of freedom by counting the number of free parameters

in the singular value decomposition. For small r this is significantly less than the

number of entries in the matrix — n1n2. Low-rank matrices arise in a variety of

practical settings. For example, low-rank (Hankel) matrices correspond to low-

order linear, time-invariant systems [198]. In many data-embedding problems,

such as sensor geolocation, the matrix of pairwise distances will typically have

rank 2 or 3 [172, 212]. Finally, approximately low-rank matrices arise naturally in

the context of collaborative filtering systems such as the now-famous Netflix rec-

ommendation system [132] and the related problem of matrix completion, where

a low-rank matrix is recovered from a small sample of its entries [39, 151, 204].

While we do not focus in-depth on matrix completion or the more general prob-

lem of low-rank matrix recovery, we note that many of the concepts and tools

treated in this book are highly relevant to this emerging field, both from a the-

oretical and algorithmic perspective [36, 38, 161, 203].
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1.3.5 Manifold and parametric models

Parametric or manifold models form another, more general class of low-

dimensional signal models. These models arise in cases where (i) a k-dimensional

continuously-valued parameter θ can be identified that carries the relevant infor-

mation about a signal and (ii) the signal f(θ) ∈ Rn changes as a continuous

(typically nonlinear) function of these parameters. Typical examples include a

one-dimensional (1-D) signal shifted by an unknown time delay (parameterized

by the translation variable), a recording of a speech signal (parameterized by

the underlying phonemes being spoken), and an image of a 3-D object at an

unknown location captured from an unknown viewing angle (parameterized by

the 3-D coordinates of the object and its roll, pitch, and yaw) [90, 176, 240]. In

these and many other cases, the signal class forms a nonlinear k-dimensional

manifold in Rn, i.e.,

M = {f(θ) : θ ∈ Θ},

where Θ is the k-dimensional parameter space. Manifold-based methods for

image processing have attracted considerable attention, particularly in the

machine learning community. They can be applied to diverse applications includ-

ing data visualization, signal classification and detection, parameter estimation,

systems control, clustering, and machine learning [14, 15, 58, 61, 89, 193, 217, 240,

244]. Low-dimensional manifolds have also been proposed as approximate mod-

els for a number of nonparametric signal classes such as images of human faces

and handwritten digits [30, 150, 229].

Manifold models are closely related to all of the models described above.

For example, the set of signals x such that ‖x‖0 = k forms a k-dimensional

Riemannian manifold. Similarly, the set of n1 × n2 matrices of rank r forms

an r(n1 + n2 − r)-dimensional Riemannian manifold [233].5 Furthermore, many

manifolds can be equivalently described as an infinite union of subspaces.

A number of the signal models used in this book are closely related to manifold

models. For example, the union of subspace models in Chapter 3, the finite

rate of innovation models considered in Chapter 4, and the continuum models

in Chapter 11 can all be viewed from a manifold perspective. For the most

part we will not explicitly exploit this structure in the book. However, low-

dimensional manifolds have a close connection to many of the key results in CS.

In particular, many of the randomized sensing matrices used in CS can also be

shown to preserve the structure in low-dimensional manifolds [6]. For details and

further applications see [6, 71, 72, 101].

5 Note that in the case where we allow signals with sparsity less than or equal to k, or matrices

of rank less than or equal to r, these sets fail to satisfy certain technical requirements of a
topological manifold (due to the behavior where the sparsity/rank changes). However, the

manifold viewpoint can still be useful in this context [68].
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1.4 Sensing Matrices

In order to make the discussion more concrete, for the remainder of this chapter

we will restrict our attention to the standard finite-dimensional CS model. Specif-

ically, given a signal x ∈ Rn, we consider measurement systems that acquire m

linear measurements. We can represent this process mathematically as

y = Ax, (1.4)

where A is an m× n matrix and y ∈ Rm. The matrix A represents a dimen-

sionality reduction, i.e., it maps Rn, where n is generally large, into Rm, where

m is typically much smaller than n. Note that in the standard CS framework

we assume that the measurements are non-adaptive, meaning that the rows of

A are fixed in advance and do not depend on the previously acquired measure-

ments. In certain settings adaptive measurement schemes can lead to significant

performance gains. See Chapter 6 for further details.

As noted earlier, although the standard CS framework assumes that x is a

finite-length vector with a discrete-valued index (such as time or space), in prac-

tice we will often be interested in designing measurement systems for acquir-

ing continuously-indexed signals such as continuous-time signals or images. It is

sometimes possible to extend this model to continuously-indexed signals using

an intermediate discrete representation. For a more flexible approach, we refer

the reader to Chapters 3 and 4. For now we will simply think of x as a finite-

length window of Nyquist-rate samples, and we temporarily ignore the issue of

how to directly acquire compressive measurements without first sampling at the

Nyquist rate.

There are two main theoretical questions in CS. First, how should we design

the sensing matrix A to ensure that it preserves the information in the signal

x? Second, how can we recover the original signal x from measurements y? In

the case where our data is sparse or compressible, we will see that we can design

matrices A with m� n that ensure that we will be able to recover the original

signal accurately and efficiently using a variety of practical algorithms.

We begin in this section by first addressing the question of how to design

the sensing matrix A. Rather than directly proposing a design procedure, we

instead consider a number of desirable properties that we might wish A to have.

We then provide some important examples of matrix constructions that satisfy

these properties.

1.4.1 Null space conditions

A natural place to begin is by considering the null space of A, denoted

N (A) = {z : Az = 0}.

If we wish to be able to recover all sparse signals x from the measurements

Ax, then it is immediately clear that for any pair of distinct vectors x, x′ ∈ Σk,



18 Chapter 1. Introduction to Compressed Sensing

we must have Ax 6= Ax′, since otherwise it would be impossible to distinguish

x from x′ based solely on the measurements y. More formally, by observing

that if Ax = Ax′ then A(x− x′) = 0 with x− x′ ∈ Σ2k, we see that A uniquely

represents all x ∈ Σk if and only if N (A) contains no vectors in Σ2k. While

there are many equivalent ways of characterizing this property, one of the most

common is known as the spark [86].

Definition 1.1. The spark of a given matrix A is the smallest number of columns

of A that are linearly dependent.

This definition allows us to pose the following straightforward guarantee.

Theorem 1.1 (Corollary 1 of [86]). For any vector y ∈ Rm, there exists at most

one signal x ∈ Σk such that y = Ax if and only if spark(A) > 2k.

Proof. We first assume that, for any y ∈ Rm, there exists at most one signal

x ∈ Σk such that y = Ax. Now suppose for the sake of a contradiction that

spark(A) ≤ 2k. This means that there exists some set of at most 2k columns

that are linearly independent, which in turn implies that there exists an h ∈
N (A) such that h ∈ Σ2k. In this case, since h ∈ Σ2k we can write h = x− x′,
where x, x′ ∈ Σk. Thus, since h ∈ N (A) we have that A(x− x′) = 0 and hence

Ax = Ax′. But this contradicts our assumption that there exists at most one

signal x ∈ Σk such that y = Ax. Therefore, we must have that spark(A) > 2k.

Now suppose that spark(A) > 2k. Assume that for some y there exist x, x′ ∈
Σk such that y = Ax = Ax′. We therefore have that A(x− x′) = 0. Letting h =

x− x′, we can write this as Ah = 0. Since spark(A) > 2k, all sets of up to 2k

columns of A are linearly independent, and therefore h = 0. This in turn implies

x = x′, proving the theorem.

It is easy to see that spark(A) ∈ [2,m+ 1]. Therefore, Theorem 1.1 yields the

requirement m ≥ 2k.

When dealing with exactly sparse vectors, the spark provides a complete char-

acterization of when sparse recovery is possible. However, when dealing with

approximately sparse signals we must consider somewhat more restrictive condi-

tions on the null space of A [57]. Roughly speaking, we must also ensure that

N (A) does not contain any vectors that are too compressible in addition to vec-

tors that are sparse. In order to state the formal definition we define the following

notation that will prove to be useful throughout much of this book. Suppose that

Λ ⊂ {1, 2, . . . , n} is a subset of indices and let Λc = {1, 2, . . . , n}\Λ. By xΛ we

typically mean the length n vector obtained by setting the entries of x indexed
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by Λc to zero. Similarly, by AΛ we typically mean the m× n matrix obtained by

setting the columns of A indexed by Λc to zero.6

Definition 1.2. A matrix A satisfies the null space property (NSP) of order k

if there exists a constant C > 0 such that,

‖hΛ‖2 ≤ C
‖hΛc‖1√

k
(1.5)

holds for all h ∈ N (A) and for all Λ such that |Λ| ≤ k.

The NSP quantifies the notion that vectors in the null space of A should not

be too concentrated on a small subset of indices. For example, if a vector h is

exactly k-sparse, then there exists a Λ such that ‖hΛc‖1 = 0 and hence (1.5)

implies that hΛ = 0 as well. Thus, if a matrix A satisfies the NSP then the only

k-sparse vector in N (A) is h = 0.

To fully illustrate the implications of the NSP in the context of sparse recovery,

we now briefly discuss how we will measure the performance of sparse recovery

algorithms when dealing with general non-sparse x. Towards this end, let ∆ :

Rm → Rn represent our specific recovery method. We will focus primarily on

guarantees of the form

‖∆(Ax)− x‖2 ≤ C
σk(x)1√

k
(1.6)

for all x, where σk(x)1 is as defined in (1.2). This guarantees exact recovery of all

possible k-sparse signals, but also ensures a degree of robustness to non-sparse

signals that directly depends on how well the signals are approximated by k-

sparse vectors. Such guarantees are called instance-optimal since they guarantee

optimal performance for each instance of x [57]. This distinguishes them from

guarantees that only hold for some subset of possible signals, such as sparse or

compressible signals — the quality of the guarantee adapts to the particular

choice of x. These are also commonly referred to as uniform guarantees since

they hold uniformly for all x.

Our choice of norms in (1.6) is somewhat arbitrary. We could easily measure

the reconstruction error using other `p norms. The choice of p, however, will

limit what kinds of guarantees are possible, and will also potentially lead to

alternative formulations of the NSP. See, for instance, [57]. Moreover, the form

of the right-hand-side of (1.6) might seem somewhat unusual in that we measure

the approximation error as σk(x)1/
√
k rather than simply something like σk(x)2.

However, we will see in Section 1.5.3 that such a guarantee is actually not possible

6 We note that this notation will occasionally be abused to refer to the length |Λ| vector

obtained by keeping only the entries corresponding to Λ or the m× |Λ| matrix obtained by
only keeping the columns corresponding to Λ respectively. The usage should be clear from

the context, but in most cases there is no substantive difference between the two.
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without taking a prohibitively large number of measurements, and that (1.6)

represents the best possible guarantee we can hope to obtain.

We will see in Section 1.5 (Theorem 1.8) that the NSP of order 2k is sufficient

to establish a guarantee of the form (1.6) for a practical recovery algorithm (`1
minimization). Moreover, the following adaptation of a theorem in [57] demon-

strates that if there exists any recovery algorithm satisfying (1.6), then A must

necessarily satisfy the NSP of order 2k.

Theorem 1.2 (Theorem 3.2 of [57]). Let A : Rn → Rm denote a sensing matrix

and ∆ : Rm → Rn denote an arbitrary recovery algorithm. If the pair (A,∆)

satisfies (1.6) then A satisfies the NSP of order 2k.

Proof. Suppose h ∈ N (A) and let Λ be the indices corresponding to the 2k largest

entries of h. We next split Λ into Λ0 and Λ1, where |Λ0| = |Λ1| = k. Set x =

hΛ1
+ hΛc and x′ = −hΛ0

, so that h = x− x′. Since by construction x′ ∈ Σk, we

can apply (1.6) to obtain x′ = ∆(Ax′). Moreover, since h ∈ N (A), we have

Ah = A (x− x′) = 0

so that Ax′ = Ax. Thus, x′ = ∆(Ax). Finally, we have that

‖hΛ‖2 ≤ ‖h‖2 = ‖x− x′‖2 = ‖x−∆(Ax)‖2 ≤ C
σk(x)1√

k
=
√

2C
‖hΛc‖1√

2k
,

where the last inequality follows from (1.6).

1.4.2 The restricted isometry property

While the NSP is both necessary and sufficient for establishing guarantees of

the form (1.6), these guarantees do not account for noise. When the measure-

ments are contaminated with noise or have been corrupted by some error such as

quantization, it will be useful to consider somewhat stronger conditions. In [43],

Candès and Tao introduced the following isometry condition on matrices A and

established its important role in CS.

Definition 1.3. A matrix A satisfies the restricted isometry property (RIP) of

order k if there exists a δk ∈ (0, 1) such that

(1− δk) ‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1 + δk) ‖x‖22 , (1.7)

holds for all x ∈ Σk.

If a matrix A satisfies the RIP of order 2k, then we can interpret (1.7) as

saying that A approximately preserves the distance between any pair of k-sparse

vectors. This will clearly have fundamental implications concerning robustness

to noise. Moreover, the potential applications of such stable embeddings range
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far beyond acquisition for the sole purpose of signal recovery. See Chapter 10 for

examples of additional applications.

It is important to note that while in our definition of the RIP we assume

bounds that are symmetric about 1, this is merely for notational convenience.

In practice, one could instead consider arbitrary bounds

α ‖x‖22 ≤ ‖Ax‖
2
2 ≤ β ‖x‖

2
2

where 0 < α ≤ β <∞. Given any such bounds, one can always scale A so that

it satisfies the symmetric bound about 1 in (1.7). Specifically, multiplying A

by
√

2/(β + α) will result in an Ã that satisfies (1.7) with constant δk = (β −
α)/(β + α). While we will not explicitly show this, one can check that all of

the theorems in this chapter based on the assumption that A satisfies the RIP

actually hold as long as there exists some scaling of A that satisfies the RIP.

Thus, since we can always scale A to satisfy (1.7), we lose nothing by restricting

our attention to this simpler bound.

Note also that if A satisfies the RIP of order k with constant δk, then for any

k′ < k we automatically have that A satisfies the RIP of order k′ with constant

δk′ ≤ δk. Moreover, in [190] it is shown that if A satisfies the RIP of order k with

a sufficiently small constant, then it will also automatically satisfy the RIP of

order γk for certain γ, albeit with a somewhat worse constant.

Lemma 1.1 (Corollary 3.4 of [190]). Suppose that A satisfies the RIP of order

k with constant δk. Let γ be a positive integer. Then A satisfies the RIP of order

k′ = γ
⌊
k
2

⌋
with constant δk′ < γ · δk, where b·c denotes the floor operator.

This lemma is trivial for γ = 1, 2, but for γ ≥ 3 (and k ≥ 4) this allows us to

extend from RIP of order k to higher orders. Note however, that δk must be

sufficiently small in order for the resulting bound to be useful.

The RIP and stability
We will see in Sections 1.5 and 1.6 that if a matrix A satisfies the RIP, then this

is sufficient for a variety of algorithms to be able to successfully recover a sparse

signal from noisy measurements. First, however, we will take a closer look at

whether the RIP is actually necessary. It should be clear that the lower bound in

the RIP is a necessary condition if we wish to be able to recover all sparse signals

x from the measurements Ax for the same reasons that the NSP is necessary. We

can say even more about the necessity of the RIP by considering the following

notion of stability [67].

Definition 1.4. Let A : Rn → Rm denote a sensing matrix and ∆ : Rm → Rn
denote a recovery algorithm. We say that the pair (A,∆) is C-stable if for any

x ∈ Σk and any e ∈ Rm we have that

‖∆ (Ax+ e)− x‖2 ≤ C ‖e‖2 .
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This definition simply says that if we add a small amount of noise to the

measurements, then the impact of this on the recovered signal should not be

arbitrarily large. Theorem 1.3 below demonstrates that the existence of any

decoding algorithm (potentially impractical) that can stably recover from noisy

measurements requires that A satisfy the lower bound of (1.7) with a constant

determined by C.

Theorem 1.3 (Theorem 3.1 of [67]). If the pair (A,∆) is C-stable, then

1

C
‖x‖2 ≤ ‖Ax‖2 (1.8)

for all x ∈ Σ2k.

Proof. Pick any x, z ∈ Σk. Define

ex =
A(z − x)

2
and ez =

A(x− z)
2

,

and note that

Ax+ ex = Az + ez =
A(x+ z)

2
.

Let x̂ = ∆(Ax+ ex) = ∆(Az + ez). From the triangle inequality and the defini-

tion of C-stability, we have that

‖x− z‖2 = ‖x− x̂+ x̂− z‖2
≤ ‖x− x̂‖2 + ‖x̂− z‖2
≤ C ‖ex‖2 + C ‖ez‖2
= C ‖Ax−Az‖2 .

Since this holds for any x, z ∈ Σk, the result follows.

Note that as C → 1, we have that A must satisfy the lower bound of (1.7)

with δk = 1− 1/C2 → 0. Thus, if we desire to reduce the impact of noise in our

recovered signal then we must adjust A so that it satisfies the lower bound of

(1.7) with a tighter constant.

One might respond to this result by arguing that since the upper bound is not

necessary, we can avoid redesigning A simply by rescaling A so that as long as A

satisfies the RIP with δ2k < 1, the rescaled version αA will satisfy (1.8) for any

constant C. In settings where the size of the noise is independent of our choice

of A, this is a valid point — by scaling A we are essentially adjusting the gain

on the “signal” part of our measurements, and if increasing this gain does not

impact the noise, then we can achieve arbitrarily high signal-to-noise ratios, so

that eventually the noise is negligible compared to the signal.

However, in practice we will typically not be able to rescale A to be arbitrarily

large. Moreover, in many practical settings the noise is not independent of A.

For example, consider the case where the noise vector e represents quantization

noise produced by a finite dynamic range quantizer with B bits. Suppose the
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measurements lie in the interval [−T, T ], and we have adjusted the quantizer

to capture this range. If we rescale A by α, then the measurements now lie

between [−αT, αT ], and we must scale the dynamic range of our quantizer by α.

In this case the resulting quantization error is simply αe, and we have achieved

no reduction in the reconstruction error.

Measurement bounds
We can also consider how many measurements are necessary to achieve the RIP.

If we ignore the impact of δ and focus only on the dimensions of the problem

(n, m, and k) then we can establish a simple lower bound, which is proven in

Section A.1.

Theorem 1.4 (Theorem 3.5 of [67]). Let A be an m× n matrix that satisfies

the RIP of order 2k with constant δ ∈ (0, 1
2 ]. Then

m ≥ Ck log
(n
k

)
where C = 1/2 log(

√
24 + 1) ≈ 0.28.

Note that the restriction to δ ≤ 1
2 is arbitrary and is made merely for con-

venience — minor modifications to the argument establish bounds for δ ≤ δmax

for any δmax < 1. Moreover, although we have made no effort to optimize the

constants, it is worth noting that they are already quite reasonable.

While the proof is somewhat less direct, one can establish a similar result

(in terms of its dependence on n and k) by examining the Gelfand width of

the `1 ball [124]. However, both this result and Theorem 1.4 fail to capture the

precise dependence of m on the desired RIP constant δ. In order to quantify this

dependence, we can exploit recent results concerning the Johnson-Lindenstrauss

lemma, which relates to embeddings of finite sets of points in low-dimensional

spaces [158]. Specifically, it is shown in [156] that if we are given a point cloud

with p points and wish to embed these points in Rm such that the squared `2
distance between any pair of points is preserved up to a factor of 1± ε, then we

must have that

m ≥ c0 log(p)

ε2
,

where c0 > 0 is a constant.

The Johnson-Lindenstrauss lemma is closely related to the RIP. In [5] it is

shown that any procedure that can be used for generating a linear, distance-

preserving embedding for a point cloud can also be used to construct a matrix

that satisfies the RIP. Moreover, in [165] it is shown that if a matrix A satisfies

the RIP of order k = c1 log(p) with constant δ, then A can be used to construct

a distance-preserving embedding for p points with ε = δ/4. Combining these we
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obtain

m ≥ c0 log(p)

ε2
=

16c0k

c1δ2
.

Thus, for very small δ the number of measurements required to ensure that A sat-

isfies the RIP of order k will be proportional to k/δ2, which may be significantly

higher than k log(n/k). See [165] for further details.

The relationship between the RIP and the NSP
Finally, we will now show that if a matrix satisfies the RIP, then it also satisfies

the NSP. Thus, the RIP is strictly stronger than the NSP.

Theorem 1.5. Suppose that A satisfies the RIP of order 2k with δ2k <
√

2− 1.

Then A satisfies the NSP of order 2k with constant

C =

√
2δ2k

1− (1 +
√

2)δ2k
.

The proof of this theorem involves two useful lemmas. The first of these follows

directly from standard norm inequality by relating a k-sparse vector to a vector

in Rk. We include a simple proof for the sake of completeness.

Lemma 1.2. Suppose u ∈ Σk. Then

‖u‖1√
k
≤ ‖u‖2 ≤

√
k ‖u‖∞ .

Proof. For any u, ‖u‖1 = |〈u, sgn(u)〉|. By applying the Cauchy-Schwarz inequal-

ity we obtain ‖u‖1 ≤ ‖u‖2 ‖sgn(u)‖2. The lower bound follows since sgn(u) has

exactly k nonzero entries all equal to±1 (since u ∈ Σk) and thus ‖sgn(u)‖2 =
√
k.

The upper bound is obtained by observing that each of the k nonzero entries of

u can be upper bounded by ‖u‖∞.

Below we state the second key lemma that we will need in order to prove

Theorem 1.5. This result is a general result which holds for arbitrary h, not

just vectors h ∈ N (A). It should be clear that when we do have h ∈ N (A),

the argument could be simplified considerably. However, this lemma will prove

immensely useful when we turn to the problem of sparse recovery from noisy

measurements in Section 1.5, and thus we establish it now in its full generality.

The intuition behind this bound will become more clear after reading Section 1.5.

We state the lemma here, which is proven in Section A.2.

Lemma 1.3. Suppose that A satisfies the RIP of order 2k, and let h ∈ Rn, h 6= 0

be arbitrary. Let Λ0 be any subset of {1, 2, . . . , n} such that |Λ0| ≤ k. Define Λ1

as the index set corresponding to the k entries of hΛc
0

with largest magnitude,
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and set Λ = Λ0 ∪ Λ1. Then

‖hΛ‖2 ≤ α
∥∥hΛc

0

∥∥
1√

k
+ β
|〈AhΛ, Ah〉|
‖hΛ‖2

,

where

α =

√
2δ2k

1− δ2k
, β =

1

1− δ2k
.

Again, note that Lemma 1.3 holds for arbitrary h. In order to prove Theo-

rem 1.5, we merely need to apply Lemma 1.3 to the case where h ∈ N (A).

Proof of Theorem 1.5. Suppose that h ∈ N (A). It is sufficient to show that

‖hΛ‖2 ≤ C
‖hΛc‖1√

k
(1.9)

holds for the case where Λ is the index set corresponding to the 2k largest entries

of h. Thus, we can take Λ0 to be the index set corresponding to the k largest

entries of h and apply Lemma 1.3.

The second term in Lemma 1.3 vanishes since Ah = 0, and thus we have

‖hΛ‖2 ≤ α
∥∥hΛc

0

∥∥
1√

k
.

Using Lemma 1.2,∥∥hΛc
0

∥∥
1

= ‖hΛ1
‖1 + ‖hΛc‖1 ≤

√
k ‖hΛ1

‖2 + ‖hΛc‖1
resulting in

‖hΛ‖2 ≤ α
(
‖hΛ1

‖2 +
‖hΛc‖1√

k

)
.

Since ‖hΛ1
‖2 ≤ ‖hΛ‖2, we have that

(1− α) ‖hΛ‖2 ≤ α
‖hΛc‖1√

k
.

The assumption δ2k <
√

2− 1 ensures that α < 1, and thus we may divide by

1− α without changing the direction of the inequality to establish (1.9) with

constant

C =
α

1− α
=

√
2δ2k

1− (1 +
√

2)δ2k
,

as desired.

1.4.3 Coherence

While the spark, NSP, and RIP all provide guarantees for the recovery of k-sparse

signals, verifying that a general matrix A satisfies any of these properties has a

combinatorial computational complexity, since in each case one must essentially
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consider
(
n
k

)
submatrices. In many cases it is preferable to use properties of A

that are easily computable to provide more concrete recovery guarantees. The

coherence of a matrix is one such property [86, 222].

Definition 1.5. The coherence of a matrix A, µ(A), is the largest absolute inner

product between any two columns ai, aj of A:

µ(A) = max
1≤i<j≤n

|〈ai, aj〉|
‖ai‖2‖aj‖2

.

It is possible to show that the coherence of a matrix is always in the range

µ(A) ∈
[√

n−m
m(n−1) , 1

]
; the lower bound is known as the Welch bound [207, 214,

245]. Note that when n� m, the lower bound is approximately µ(A) ≥ 1/
√
m.

The concept of coherence can also be extended to certain structured sparsity

models and specific classes of analog signals [27, 111, 112].

One can sometimes relate coherence to the spark, NSP, and RIP. For example,

the coherence and spark properties of a matrix can be related by employing the

Gershgorin circle theorem [127, 235].

Theorem 1.6 (Theorem 2 of [127]). The eigenvalues of an n× n matrix M with

entries mij, 1 ≤ i, j ≤ n, lie in the union of n discs di = di(ci, ri), 1 ≤ i ≤ n,

centered at ci = mii and with radius ri =
∑
j 6=i |mij |.

Applying this theorem on the Gram matrix G = ATΛAΛ leads to the following

straightforward result.

Lemma 1.4. For any matrix A,

spark(A) ≥ 1 +
1

µ(A)
.

Proof. Since spark(A) does not depend on the scaling of the columns, we

can assume without loss of generality that A has unit-norm columns. Let

Λ ⊆ {1, . . . , n} with |Λ| = p determine a set of indices. We consider the restricted

Gram matrix G = ATΛAΛ, which satisfies the following properties:r gii = 1, 1 ≤ i ≤ p;r |gij | ≤ µ(A), 1 ≤ i, j ≤ p, i 6= j.

From Theorem 1.6, if
∑
j 6=i |gij | < |gii| then the matrix G is positive definite,

so that the columns of AΛ are linearly independent. Thus, the spark condition

implies (p− 1)µ(A) < 1 or, equivalently, p < 1 + 1/µ(A) for all p < spark(A),

yielding spark(A) ≥ 1 + 1/µ(A).

By merging Theorem 1.1 with Lemma 1.4, we can pose the following condition

on A that guarantees uniqueness.
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Theorem 1.7 (Theorem 12 of [86]). If

k <
1

2

(
1 +

1

µ(A)

)
,

then for each measurement vector y ∈ Rm there exists at most one signal x ∈ Σk
such that y = Ax.

Theorem 1.7, together with the Welch bound, provides an upper bound on

the level of sparsity k that guarantees uniqueness using coherence: k = O(
√
m).

Another straightforward application of the Gershgorin circle theorem (Theo-

rem 1.6) connects the RIP to the coherence property.

Lemma 1.5. If A has unit-norm columns and coherence µ = µ(A), then A sat-

isfies the RIP of order k with δ = kµ for all k < 1/µ.

The proof of this lemma is similar to that of Lemma 1.4.

1.4.4 Sensing matrix constructions

Now that we have defined the relevant properties of a matrix A in the context

of CS, we turn to the question of how to construct matrices that satisfy these

properties. To begin, it is straightforward to show that an m× n Vandermonde

matrix V constructed from m distinct scalars has spark(V ) = m+ 1 [57]. Unfor-

tunately, these matrices are poorly conditioned for large values of n, rendering the

recovery problem numerically unstable. Similarly, there are known matrices A of

size m×m2 that achieve the coherence lower bound µ(A) = 1/
√
m, such as the

Gabor frame generated from the Alltop sequence [148] and more general equian-

gular tight frames [214]. These constructions restrict the number of measure-

ments needed to recover a k-sparse signal to bem = O(k2 log n). It is also possible

to deterministically construct matrices of size m× n that satisfy the RIP of order

k, but such constructions also require m to be relatively large [28, 78, 140, 152].

For example, the construction in [78] requires m = O(k2 log n) while the con-

struction in [152] requires m = O(knα) for some constant α. In many real-world

settings, these results would lead to an unacceptably large requirement on m.

Fortunately, these limitations can be overcome by randomizing the matrix con-

struction. For example, random matrices A of size m× n whose entries are inde-

pendent and identically distributed (i.i.d.) with continuous distributions have

spark(A) = m+ 1 with probability one. More significantly, it can also be shown

that random matrices will satisfy the RIP with high probability if the entries are

chosen according to a Gaussian, Bernoulli, or more generally any sub-gaussian

distribution. See Chapter 5 for details, and in particular, Theorem 5.65. This

theorem states that if a matrix A is chosen according to a sub-gaussian distri-

bution with m = O
(
k log(n/k)/δ2

2k

)
, then A will satisfy the RIP of order 2k

with probability at least 1− 2 exp(−c1δ2m). Note that in light of the measure-
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ment bounds in Section 1.4.2 we see that this achieves the optimal number of

measurements up to a constant. It also follows from Theorem 1.5 that these

random constructions provide matrices satisfying the NSP. Furthermore, it can

be shown that when the distribution used has zero mean and finite variance,

then in the asymptotic regime (as m and n grow) the coherence converges to

µ(A) =
√

(2 log n)/m [32, 37, 83].

Using random matrices to construct A has a number of additional benefits. To

illustrate these, we will focus on the RIP. First, one can show that for random

constructions the measurements are democratic, meaning that it is possible to

recover a signal using any sufficiently large subset of the measurements [73, 169].

Thus, by using random A one can be robust to the loss or corruption of a

small fraction of the measurements. Second, and perhaps more significantly, in

practice we are often more interested in the setting where x is sparse with respect

to some basis Φ. In this case what we actually require is that the product AΦ

satisfies the RIP. If we were to use a deterministic construction then we would

need to explicitly take Φ into account in our construction of A, but when A is

chosen randomly we can avoid this consideration. For example, if A is chosen

according to a Gaussian distribution and Φ is an orthonormal basis then one

can easily show that AΦ will also have a Gaussian distribution, and so provided

that m is sufficiently high AΦ will satisfy the RIP with high probability, just as

before. Although less obvious, similar results hold for sub-gaussian distributions

as well [5]. This property, sometimes referred to as universality, constitutes a

significant advantage of using random matrices to construct A. See Chapter 5

for further details on random matrices and their role in CS.

Finally, we note that since the fully random matrix approach is sometimes

impractical to build in hardware, several hardware architectures have been imple-

mented and/or proposed that enable random measurements to be acquired in

practical settings. Examples include the random demodulator [224], random fil-

tering [225], the modulated wideband converter [187], random convolution [1,

206], and the compressive multiplexer [211]. These architectures typically use

a reduced amount of randomness and are modeled via matrices A that have

significantly more structure than a fully random matrix. Perhaps somewhat sur-

prisingly, while it is typically not quite as easy as in the fully random case, one

can prove that many of these constructions also satisfy the RIP and/or have low

coherence. Furthermore, one can analyze the effect of inaccuracies in the matrix

A implemented by the system [54, 149]; in the simplest cases, such sensing matrix

errors can be addressed through system calibration.

1.5 Signal Recovery via `1 Minimization

While there now exist a wide variety of approaches to recover a sparse signal x

from a small number of linear measurements, as we will see in Section 1.6, we

begin by considering a natural first approach to the problem of sparse recovery.
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Given measurements y and the knowledge that our original signal x is sparse

or compressible, it is natural to attempt to recover x by solving an optimization

problem of the form

x̂ = arg min
z

‖z‖0 subject to z ∈ B(y), (1.10)

where B(y) ensures that x̂ is consistent with the measurements y. For example, in

the case where our measurements are exact and noise-free, we can set B(y) = {z :

Az = y}. When the measurements have been contaminated with a small amount

of bounded noise, we could instead consider B(y) = {z : ‖Az − y‖2 ≤ ε}. In both

cases, (1.10) finds the sparsest x that is consistent with the measurements y.

Note that in (1.10) we are inherently assuming that x itself is sparse. In the

more common setting where x = Φc, we can easily modify the approach and

instead consider

ĉ = arg min
z

‖z‖0 subject to z ∈ B(y) (1.11)

where B(y) = {z : AΦz = y} or B(y) = {z : ‖AΦz − y‖2 ≤ ε}. By considering

Ã = AΦ we see that (1.10) and (1.11) are essentially identical. Moreover, as

noted in Section 1.4.4, in many cases the introduction of Φ does not significantly

complicate the construction of matrices A such that Ã will satisfy the desired

properties. Thus, for the remainder of this chapter we will restrict our attention to

the case where Φ = I. It is important to note, however, that this restriction does

impose certain limits in our analysis when Φ is a general dictionary and not an

orthonormal basis. For example, in this case ‖x̂− x‖2 = ‖Φĉ− Φc‖2 6= ‖ĉ− c‖2,

and thus a bound on ‖ĉ− c‖2 cannot directly be translated into a bound on

‖x̂− x‖2, which is often the metric of interest. For further discussion of these

and related issues see [35].

While it is possible to analyze the performance of (1.10) under the appropriate

assumptions on A (see [56, 144] for details), we do not pursue this strategy since

the objective function ‖·‖0 is nonconvex, and hence (1.10) is potentially very

difficult to solve. In fact, one can show that for a general matrix A, even finding

a solution that approximates the true minimum is NP-hard [189].

One avenue for translating this problem into something more tractable is to

replace ‖·‖0 with its convex approximation ‖·‖1. Specifically, we consider

x̂ = arg min
z

‖z‖1 subject to z ∈ B(y). (1.12)

Provided that B(y) is convex, (1.12) is computationally feasible. In fact, when

B(y) = {z : Az = y}, the resulting problem can be posed as a linear program [53].

While it is clear that replacing (1.10) with (1.12) transforms a computationally

intractable problem into a tractable one, it may not be immediately obvious that

the solution to (1.12) will be at all similar to the solution to (1.10). However,

there are certainly intuitive reasons to expect that the use of `1 minimization

will indeed promote sparsity. As an example, recall that in Fig. 1.2, the solutions

to the `1 minimization problem coincided exactly with the solution to the `p
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minimization problem for any p < 1, and notably, was sparse. Moreover, the use

of `1 minimization to promote or exploit sparsity has a long history, dating back

at least to the work of Beurling on Fourier transform extrapolation from partial

observations [22].

Additionally, in a somewhat different context, in 1965 Logan [91, 174] showed

that a bandlimited signal can be perfectly recovered in the presence of arbitrary

corruptions on a small interval (see also extensions of these conditions in [91]).

Again, the recovery method consists of searching for the bandlimited signal that

is closest to the observed signal in the `1 norm. This can be viewed as further

validation of the intuition gained from Fig. 1.2 — the `1 norm is well-suited to

sparse errors.

Historically, the use of `1 minimization on large problems finally became prac-

tical with the explosion of computing power in the late 1970’s and early 1980’s. In

one of its first applications, it was demonstrated that geophysical signals consist-

ing of spike trains could be recovered from only the high-frequency components of

these signals by exploiting `1 minimization [171, 216, 242]. Finally, in the 1990’s

there was renewed interest in these approaches within the signal processing com-

munity for the purpose of finding sparse approximations to signals and images

when represented in overcomplete dictionaries or unions of bases [53, 182]. Sep-

arately, `1 minimization received significant attention in the statistics literature

as a method for variable selection in regression, known as the Lasso [218].

Thus, there are a variety of reasons to suspect that `1 minimization will pro-

vide an accurate method for sparse signal recovery. More importantly, this also

constitutes a computationally tractable approach to sparse signal recovery. In

this section we provide an overview of `1 minimization from a theoretical per-

spective. We discuss algorithms for `1 minimization in Section 1.6.

1.5.1 Noise-free signal recovery

In order to analyze `1 minimization algorithms for various specific choices of

B(y), we require the following general result which builds on Lemma 1.3 and is

proven in Section A.3.

Lemma 1.6. Suppose that A satisfies the RIP of order 2k with δ2k <
√

2−
1. Let x, x̂ ∈ Rn be given, and define h = x̂− x. Let Λ0 denote the index set

corresponding to the k entries of x with largest magnitude and Λ1 the index set

corresponding to the k entries of hΛc
0

with largest magnitude. Set Λ = Λ0 ∪ Λ1.

If ‖x̂‖1 ≤ ‖x‖1, then

‖h‖2 ≤ C0
σk(x)1√

k
+ C1

|〈AhΛ, Ah〉|
‖hΛ‖2

.

where

C0 = 2
1− (1−

√
2)δ2k

1− (1 +
√

2)δ2k
, C1 =

2

1− (1 +
√

2)δ2k
.
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Lemma 1.6 establishes an error bound for the class of `1 minimization algo-

rithms described by (1.12) when combined with a measurement matrix A satis-

fying the RIP. In order to obtain specific bounds for concrete examples of B(y),

we must examine how requiring x̂ ∈ B(y) affects |〈AhΛ, Ah〉|. As an example, in

the case of noise-free measurements we obtain the following theorem.

Theorem 1.8 (Theorem 1.1 of [34]). Suppose that A satisfies the RIP of order

2k with δ2k <
√

2− 1 and we obtain measurements of the form y = Ax. Then

when B(y) = {z : Az = y}, the solution x̂ to (1.12) obeys

‖x̂− x‖2 ≤ C0
σk(x)1√

k
.

Proof. Since x ∈ B(y) we can apply Lemma 1.6 to obtain that for h = x̂− x,

‖h‖2 ≤ C0
σk(x)1√

k
+ C1

|〈AhΛ, Ah〉|
‖hΛ‖2

.

Furthermore, since x, x̂ ∈ B(y) we also have that y = Ax = Ax̂ and hence Ah =

0. Therefore the second term vanishes, and we obtain the desired result.

Theorem 1.8 is rather remarkable. By considering the case where x ∈ Σk we

can see that provided A satisfies the RIP — which as shown in Section 1.4.4

allows for as few as O(k log(n/k)) measurements — we can recover any k-sparse

x exactly. This result seems improbable on its own, and so one might expect

that the procedure would be highly sensitive to noise, but we will see below that

Lemma 1.6 can also be used to demonstrate that this approach is actually stable.

Note that Theorem 1.8 assumes that A satisfies the RIP. One could easily

modify the argument to replace this with the assumption that A satisfies the

NSP instead. Specifically, if we are only interested in the noiseless setting, in

which case h lies in the nullspace of A, then Lemma 1.6 simplifies and its proof

could essentially be broken into two steps: (i) show that if A satisfies the RIP

then it satisfies the NSP (as shown in Theorem 1.5), and (ii) the NSP implies the

simplified version of Lemma 1.6. This proof directly mirrors that of Lemma 1.6.

Thus, by the same argument as in the proof of Theorem 1.8, it is straightforward

to show that if A satisfies the NSP then it will obey the same error bound.

1.5.2 Signal recovery in noise

The ability to perfectly reconstruct a sparse signal from noise-free measurements

represents a very promising result. However, in most real-world systems the mea-

surements are likely to be contaminated by some form of noise. For instance, in

order to process data in a computer we must be able to represent it using a

finite number of bits, and hence the measurements will typically be subject to

quantization error. Moreover, systems which are implemented in physical hard-

ware will be subject to a variety of different types of noise depending on the



32 Chapter 1. Introduction to Compressed Sensing

setting. Another important noise source is on the signal itself. In many settings

the signal x to be estimated is contaminated by some form of random noise.

The implications of this type of noise on the achievable sampling rates has been

recently analyzed in [19, 67, 219]. Here we focus on measurement noise, which

has received much more attention in the literature.

Perhaps somewhat surprisingly, one can show that it is possible to stably

recover sparse signals under a variety of common noise models [18, 42, 87, 88,

144, 169, 170]. As might be expected, both the RIP and coherence are useful in

establishing performance guarantees in noise. We begin our discussion below with

robustness guarantees for matrices satisfying the RIP. We then turn to results

for matrices with low coherence.

Bounded noise
We first provide a bound on the worst-case performance for uniformly bounded

noise, as first investigated in [42].

Theorem 1.9 (Theorem 1.2 of [34]). Suppose that A satisfies the RIP of order

2k with δ2k <
√

2− 1 and let y = Ax+ e where ‖e‖2 ≤ ε. Then when B(y) = {z :

‖Az − y‖2 ≤ ε}, the solution x̂ to (1.12) obeys

‖x̂− x‖2 ≤ C0
σk(x)1√

k
+ C2ε,

where

C0 = 2
1− (1−

√
2)δ2k

1− (1 +
√

2)δ2k
, C2 = 4

√
1 + δ2k

1− (1 +
√

2)δ2k
.

Proof. We are interested in bounding ‖h‖2 = ‖x̂− x‖2. Since ‖e‖2 ≤ ε, x ∈ B(y),

and therefore we know that ‖x̂‖1 ≤ ‖x‖1. Thus we may apply Lemma 1.6, and

it remains to bound |〈AhΛ, Ah〉|. To do this, we observe that

‖Ah‖2 = ‖A(x̂− x)‖2 = ‖Ax̂− y + y −Ax‖2 ≤ ‖Ax̂− y‖2 + ‖y −Ax‖2 ≤ 2ε

where the last inequality follows since x, x̂ ∈ B(y). Combining this with the RIP

and the Cauchy-Schwarz inequality we obtain

|〈AhΛ, Ah〉| ≤ ‖AhΛ‖2 ‖Ah‖2 ≤ 2ε
√

1 + δ2k ‖hΛ‖2 .

Thus,

‖h‖2 ≤ C0
σk(x)1√

k
+ C12ε

√
1 + δ2k = C0

σk(x)1√
k

+ C2ε,

completing the proof.

In order to place this result in context, consider how we would recover a sparse

vector x if we happened to already know the k locations of the nonzero coef-

ficients, which we denote by Λ0. This is referred to as the oracle estimator. In
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this case a natural approach is to reconstruct the signal using a simple pseudoin-

verse:7

x̂Λ0
= A†Λ0

y = (ATΛ0
AΛ0

)−1ATΛ0
y

x̂Λc
0

= 0.
(1.13)

The implicit assumption in (1.13) is that AΛ0
has full column-rank (and hence we

are considering the case where AΛ0
is the m× k matrix with the columns indexed

by Λc0 removed) so that there is a unique solution to the equation y = AΛ0
xΛ0

.

With this choice, the recovery error is given by

‖x̂− x‖2 =
∥∥(ATΛ0

AΛ0
)−1ATΛ0

(Ax+ e)− x
∥∥

2
=
∥∥(ATΛ0

AΛ0
)−1ATΛ0

e
∥∥

2
.

We now consider the worst-case bound for this error. Using standard properties of

the singular value decomposition, it is straightforward to show that if A satisfies

the RIP of order 2k (with constant δ2k), then the largest singular value of A†Λ0

lies in the range [1/
√

1 + δ2k, 1/
√

1− δ2k]. Thus, if we consider the worst-case

recovery error over all e such that ‖e‖2 ≤ ε, then the recovery error can be

bounded by

ε√
1 + δ2k

≤ ‖x̂− x‖2 ≤
ε√

1− δ2k
.

Therefore, in the case where x is exactly k-sparse, the guarantee for the pseu-

doinverse recovery method, which is given perfect knowledge of the true support

of x, cannot improve upon the bound in Theorem 1.9 by more than a constant

value.

We now consider a slightly different noise model. Whereas Theorem 1.9

assumed that the noise norm ‖e‖2 was small, the theorem below analyzes a

different recovery algorithm known as the Dantzig selector in the case where∥∥AT e∥∥∞ is small [45]. We will see below that this will lead to a simple analysis

of the performance of this algorithm in Gaussian noise.

Theorem 1.10. Suppose that A satisfies the RIP of order 2k with δ2k <
√

2− 1

and we obtain measurements of the form y = Ax+ e where
∥∥AT e∥∥∞ ≤ λ. Then

when B(y) = {z :
∥∥AT (Az − y)

∥∥
∞ ≤ λ}, the solution x̂ to (1.12) obeys

‖x̂− x‖2 ≤ C0
σk(x)1√

k
+ C3

√
kλ,

where

C0 = 2
1− (1−

√
2)δ2k

1− (1 +
√

2)δ2k
, C3 =

4
√

2

1− (1 +
√

2)δ2k
.

7 Note that while the pseudoinverse approach can be improved upon (in terms of `2 error)
by instead considering alternative biased estimators [16, 108, 155, 159, 213], this does not

fundamentally change the above conclusions.
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Proof. The proof mirrors that of Theorem 1.9. Since
∥∥AT e∥∥∞ ≤ λ, we again have

that x ∈ B(y), so ‖x̂‖1 ≤ ‖x‖1 and thus Lemma 1.6 applies. We follow a similar

approach as in Theorem 1.9 to bound |〈AhΛ, Ah〉|. We first note that∥∥ATAh∥∥∞ ≤ ∥∥AT (Ax̂− y)
∥∥
∞ +

∥∥AT (y −Ax)
∥∥
∞ ≤ 2λ

where the last inequality again follows since x, x̂ ∈ B(y). Next, note that AhΛ =

AΛhΛ. Using this we can apply the Cauchy-Schwarz inequality to obtain

|〈AhΛ, Ah〉| =
∣∣〈hΛ, A

T
ΛAh

〉∣∣ ≤ ‖hΛ‖2
∥∥ATΛAh∥∥2

.

Finally, since
∥∥ATAh∥∥∞ ≤ 2λ, we have that every coefficient of ATAh is at most

2λ, and thus
∥∥ATΛAh∥∥2

≤
√

2k(2λ). Thus,

‖h‖2 ≤ C0
σk(x)1√

k
+ C12

√
2kλ = C0

σk(x)1√
k

+ C3

√
kλ,

as desired.

Gaussian noise
Finally, we also consider the performance of these approaches in the presence of

Gaussian noise. The case of Gaussian noise was first considered in [144], which

examined the performance of `0 minimization with noisy measurements. We now

see that Theorems 1.9 and 1.10 can be leveraged to provide similar guarantees

for `1 minimization. To simplify our discussion we will restrict our attention to

the case where x ∈ Σk, so that σk(x)1 = 0 and the error bounds in Theorems 1.9

and 1.10 depend only on the noise e.

To begin, suppose that the coefficients of e ∈ Rm are i.i.d. according to a Gaus-

sian distribution with mean zero and variance σ2. By using standard properties

of the Gaussian distribution, one can show (see, for example, Corollary 5.17 of

Chapter 5) that there exists a constant c0 > 0 such that for any ε > 0,

P
(
‖e‖2 ≥ (1 + ε)

√
mσ
)
≤ exp

(
−c0ε2m

)
, (1.14)

where P(E) denotes the probability that the event E occurs. Applying this result

to Theorem 1.9 with ε = 1, we obtain the following result for the special case of

Gaussian noise.

Corollary 1.1. Suppose that A satisfies the RIP of order 2k with δ2k <
√

2− 1.

Furthermore, suppose that x ∈ Σk and that we obtain measurements of the form

y = Ax+ e where the entries of e are i.i.d. N (0, σ2). Then when B(y) = {z :

‖Az − y‖2 ≤ 2
√
mσ}, the solution x̂ to (1.12) obeys

‖x̂− x‖2 ≤ 8

√
1 + δ2k

1− (1 +
√

2)δ2k

√
mσ

with probability at least 1− exp(−c0m).
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We can similarly consider Theorem 1.10 in the context of Gaussian noise. If

we assume that the columns of A have unit norm, then each coefficient of AT e

is a Gaussian random variable with mean zero and variance σ2. Using standard

tail bounds for the Gaussian distribution (see, for example, (5.5) of Chapter 5),

we have that

P
(∣∣[AT e]

i

∣∣ ≥ tσ) ≤ exp
(
−t2/2

)
for i = 1, 2, . . . , n. Thus, using the union bound over the bounds for different i,

we obtain

P
(∥∥AT e∥∥∞ ≥ 2

√
log nσ

)
≤ n exp (−2 log n) =

1

n
.

Applying this to Theorem 1.10, we obtain the following result, which is a sim-

plified version of Theorem 1.1 of [45].

Corollary 1.2. Suppose that A has unit-norm columns and satisfies the RIP

of order 2k with δ2k <
√

2− 1. Furthermore, suppose that x ∈ Σk and that we

obtain measurements of the form y = Ax+ e where the entries of e are i.i.d.

N (0, σ2). Then when B(y) = {z :
∥∥AT (Az − y)

∥∥
∞ ≤ 2

√
log nσ}, the solution x̂

to (1.12) obeys

‖x̂− x‖2 ≤ 4
√

2

√
1 + δ2k

1− (1 +
√

2)δ2k

√
k log nσ

with probability at least 1− 1
n .

Ignoring the precise constants and the probabilities with which the stated

bounds hold (which we have made no effort to optimize), we observe that in

the case when m = O(k log n) these results appear to be essentially the same.

However, there is a subtle difference. Specifically, if m and n are fixed and we

consider the effect of varying k, we can see that Corollary 1.2 yields a bound

that is adaptive to this change, providing a stronger guarantee when k is small,

whereas the bound in Corollary 1.1 does not improve as k is reduced. Thus, while

they provide very similar guarantees, there are certain circumstances where the

Dantzig selector is preferable. See [45] for further discussion of the comparative

advantages of these approaches.

It can also be seen that results such as Corollary 1.2 guarantee that the

Dantzig selector achieves an error ‖x̂− x‖22 which is bounded by a constant times

kσ2 log n, with high probability. Note that since we typically require m > k log n,

this can be substantially lower than the expected noise power E‖e‖22 = mσ2, illus-

trating the fact that sparsity-based techniques are highly successful in reducing

the noise level.

The value kσ2 log n is nearly optimal in several respects. First, an “oracle”

estimator which knows the locations of the nonzero components and uses a least-

squares technique to estimate their values achieves an estimation error on the

order of kσ2. For this reason, guarantees such as Corollary 1.2 are referred to as
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near-oracle results. The Cramer-Rao bound (CRB) for estimating x is also on the

order of kσ2 [17]. This is of practical interest since the CRB is achieved by the

maximum likelihood estimator at high SNR, implying that for low-noise settings,

an error of kσ2 is achievable. However, the maximum likelihood estimator is NP-

hard to compute, so that near-oracle results are still of interest. Interestingly, the

log n factor is an unavoidable result of the fact that the locations of the nonzero

elements are unknown.

Coherence guarantees
Thus far, we have examined performance guarantees based on the RIP. As noted

in Section 1.4.3, in practice it is typically impossible to verify that a matrix A

satisfies the RIP or calculate the corresponding RIP constant δ. In this respect,

results based on coherence are appealing, since they can be used with arbitrary

dictionaries.

One quick route to coherence-based performance guarantees is to combine

RIP-based results such as Corollaries 1.1 and 1.2 with coherence bounds such

as Lemma 1.5. This technique yields guarantees based only on the coherence,

but the results are often overly pessimistic. It is typically more enlightening

to instead establish guarantees by directly exploiting coherence [18, 37, 87, 88].

In order to illustrate the types of guarantees that this approach can yield, we

provide the following representative examples.

Theorem 1.11 (Theorem 3.1 of [88]). Suppose that A has coherence µ and that

x ∈ Σk with k < (1/µ+ 1)/4. Furthermore, suppose that we obtain measurements

of the form y = Ax+ e. Then when B(y) = {z : ‖Az − y‖2 ≤ ε}, the solution x̂

to (1.12) obeys

‖x− x̂‖2 ≤
‖e‖2 + ε√

1− µ(4k − 1)
.

Note that this theorem holds for the case where ε = 0 as well as where ‖e‖2 = 0.

Thus, it also applies to the noise-free setting as in Theorem 1.8. Furthermore,

there is no requirement that ‖e‖2 ≤ ε. In fact, this theorem is valid even when

ε = 0 but ‖e‖2 6= 0. This constitutes a significant difference between this result

and Theorem 1.9, and might cause us to question whether we actually need to

pose alternative algorithms to handle the noisy setting. However, as noted in [88],

Theorem 1.11 is the result of a worst-case analysis and will typically overestimate

the actual error. In practice, the performance of (1.12) where B(y) is modified

to account for the noise can lead to significant improvements.

In order to describe an additional type of coherence-based guarantee, we must

consider an alternative, but equivalent, formulation of (1.12). Specifically, con-

sider the optimization problem

x̂ = arg min
z

1

2
‖Az − y‖22 + λ ‖z‖1 .
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This formulation is exploited in the following result, which provides guarantees

for (1.5.2) that go beyond what we have seen so far by providing explicit results

concerning the recovery of the original support of x.

Theorem 1.12 (Corollary 1 of [18]). Suppose that A has coherence µ and that

x ∈ Σk with k ≤ 1/(3µ). Furthermore, suppose that we obtain measurements of

the form y = Ax+ e where the entries of e are i.i.d. N (0, σ2). Set

λ =
√

8σ2(1 + α) log(n− k)

for some fairly small value α > 0. Then with probability exceeding(
1− 1

(n− k)α

)
(1− exp(−k/7)) ,

the solution x̂ to (1.5.2) is unique, supp(x̂) ⊂ supp(x), and

‖x̂− x‖22 ≤
(√

3 + 3
√

2(1 + α) log(n− k)
)2

kσ2.

In this case we see that we are guaranteed that any nonzero of x̂ corresponds to

a true nonzero of x. Note that this analysis allows for the worst-case signal x. It

is possible to improve upon this result by instead assuming that the signal x has

a limited amount of randomness. Specifically, in [37] it is shown that if supp(x)

is chosen uniformly at random and that the signs of the nonzero entries of x

are independent and equally likely to be ±1, then it is possible to significantly

relax the assumption on µ. Moreover, by requiring the nonzeros of x to exceed

some minimum magnitude one can also guarantee perfect recovery of the true

support.

1.5.3 Instance-optimal guarantees revisited

We now briefly return to the noise-free setting to take a closer look at instance-

optimal guarantees for recovering non-sparse signals. To begin, recall that in

Theorem 1.8 we bounded the `2-norm of the reconstruction error ‖x̂− x‖2 by

a constant C0 times σk(x)1/
√
k. One can generalize this result to measure the

reconstruction error using the `p-norm for any p ∈ [1, 2]. For example, by a slight

modification of these arguments, one can also show that ‖x̂− x‖1 ≤ C0σk(x)1

(see [34]). This leads us to ask whether we might replace the bound for the `2 error

with a result of the form ‖x̂− x‖2 ≤ Cσk(x)2. Unfortunately, obtaining such a

result requires an unreasonably large number of measurements, as quantified by

the following theorem of [57], proven in Section A.4.

Theorem 1.13 (Theorem 5.1 of [57]). Suppose that A is an m× n matrix and

that ∆ : Rm → Rn is a recovery algorithm that satisfies

‖x−∆(Ax)‖2 ≤ Cσk(x)2 (1.15)
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for some k ≥ 1, then m >
(

1−
√

1− 1/C2
)
n.

Thus, if we want a bound of the form (1.15) that holds for all signals x with a

constant C ≈ 1, then regardless of what recovery algorithm we use we will need

to take m ≈ n measurements. However, in a sense this result is overly pessimistic,

and we will now see that the results from Section 1.5.2 can actually allow us to

overcome this limitation by essentially treating the approximation error as noise.

Towards this end, notice that all the results concerning `1 minimization stated

thus far are deterministic instance-optimal guarantees that apply simultaneously

to all x given any matrix that satisfies the RIP. This is an important theoretical

property, but as noted in Section 1.4.4, in practice it is very difficult to obtain

a deterministic guarantee that the matrix A satisfies the RIP. In particular,

constructions that rely on randomness are only known to satisfy the RIP with

high probability. As an example, recall that Theorem 5.65 of Chapter 5 states

that if a matrix A is chosen according to a sub-gaussian distribution with m =

O
(
k log(n/k)/δ2

2k

)
, then A will satisfy the RIP of order 2k with probability at

least 1− 2 exp(−c1δ2m). Results of this kind open the door to slightly weaker

results that hold only with high probability.

Even within the class of probabilistic results, there are two distinct flavors. The

typical approach is to combine a probabilistic construction of a matrix that will

satisfy the RIP with high probability with the previous results in this chapter.

This yields a procedure that, with high probability, will satisfy a deterministic

guarantee applying to all possible signals x. A weaker kind of result is one that

states that given a signal x, we can draw a random matrix A and with high

probability expect certain performance for that signal x. This type of guarantee

is sometimes called instance-optimal in probability. The distinction is essentially

whether or not we need to draw a new random A for each signal x. This may be

an important distinction in practice, but if we assume for the moment that it is

permissible to draw a new matrix A for each x, then we can see that Theorem 1.13

may be somewhat pessimistic, exhibited by the following result.

Theorem 1.14. Let x ∈ Rn be fixed. Set δ2k <
√

2− 1 Suppose that A is an

m× n sub-gaussian random matrix with m = O
(
k log(n/k)/δ2

2k

)
. Suppose we

obtain measurements of the form y = Ax. Set ε = 2σk(x)2. Then with proba-

bility exceeding 1− 2 exp(−c1δ2m)− exp(−c0m), when B(y) = {z : ‖Az − y‖2 ≤
ε}, the solution x̂ to (1.12) obeys

‖x̂− x‖2 ≤
8
√

1 + δ2k − (1 +
√

2)δ2k

1− (1 +
√

2)δ2k
σk(x)2.

Proof. First we recall that, as noted above, from Theorem 5.65 of Chapter 5

we have that A will satisfy the RIP of order 2k with probability at least 1−
2 exp(−c1δ2m). Next, let Λ denote the index set corresponding to the k entries

of x with largest magnitude and write x = xΛ + xΛc . Since xΛ ∈ Σk, we can
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write Ax = AxΛ +AxΛc = AxΛ + e. If A is sub-gaussian then AxΛc is also sub-

gaussian (see Chapter 5 for details), and one can apply a similar result to (1.14)

to obtain that with probability at least 1− exp(−c0m), ‖AxΛc‖2 ≤ 2 ‖xΛc‖2 =

2σk(x)2. Thus, applying the union bound we have that with probability exceeding

1− 2 exp(−c1δ2m)− exp(−c0m), we satisfy the necessary conditions to apply

Theorem 1.9 to xΛ, in which case σk(xΛ)1 = 0 and hence

‖x̂− xΛ‖2 ≤ 2C2σk(x)2.

From the triangle inequality we thus obtain

‖x̂− x‖2 = ‖x̂− xΛ + xΛ − x‖2 ≤ ‖x̂− xΛ‖2 + ‖xΛ − x‖2 ≤ (2C2 + 1)σk(x)2

which establishes the theorem.

Thus, while it is not possible to achieve a deterministic guarantee of the form

in (1.15) without taking a prohibitively large number of measurements, it is

possible to show that such performance guarantees can hold with high probability

while simultaneously taking far fewer measurements than would be suggested

by Theorem 1.13. Note that the above result applies only to the case where

the parameter is selected correctly, which requires some limited knowledge of

x, namely σk(x)2. In practice this limitation can easily be overcome through a

parameter selection technique such as cross-validation [243], but there also exist

more intricate analyses of `1 minimization that show it is possible to obtain

similar performance without requiring an oracle for parameter selection [248].

Note that Theorem 1.14 can also be generalized to handle other measurement

matrices and to the case where x is compressible rather than sparse. Moreover,

this proof technique is applicable to a variety of the greedy algorithms described

in Chapter 8 that do not require knowledge of the noise level to establish similar

results [56, 190].

1.5.4 The cross-polytope and phase transitions

While the RIP-based analysis of `1 minimization allows us to establish a variety

of guarantees under different noise settings, one drawback is that the analysis

of how many measurements are actually required for a matrix to satisfy the

RIP is relatively loose. An alternative approach to analyzing `1 minimization

algorithms is to examine them from a more geometric perspective. Towards this

end, we define the closed `1 ball, also known as the cross-polytope:

Cn = {x ∈ Rn : ‖x‖1 ≤ 1} .

Note that Cn is the convex hull of 2n points {pi}2ni=1. Let ACn ⊆ Rm denote the

convex polytope defined as either the convex hull of {Api}2ni=1 or equivalently as

ACn = {y ∈ Rm : y = Ax, x ∈ Cn} .
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For any x ∈ Σk, we can associate a k-face of Cn with the support and sign

pattern of x. One can show that the number of k-faces of ACn is precisely

the number of index sets of size k for which signals supported on them can be

recovered by (1.12) with B(y) = {z : Az = y}. Thus, `1 minimization yields the

same solution as `0 minimization for all x ∈ Σk if and only if the number of k-

faces of ACn is identical to the number of k-faces of Cn. Moreover, by counting

the number of k-faces of ACn, we can quantify exactly what fraction of sparse

vectors can be recovered using `1 minimization with A as our sensing matrix.

See [81, 84, 92–94] for more details and [95] for an overview of the implications

of this body of work. Note also that by replacing the cross-polytope with certain

other polytopes (the simplex and the hypercube), one can apply the same tech-

nique to obtain results concerning the recovery of more limited signal classes,

such as sparse signals with nonnegative or bounded entries [95].

Given this result, one can then study random matrix constructions from this

perspective to obtain probabilistic bounds on the number of k-faces of ACn

with A is generated at random, such as from a Gaussian distribution. Under

the assumption that k = ρm and m = γn, one can obtain asymptotic results

as n→∞. This analysis leads to the phase transition phenomenon, where for

very large problem sizes there are sharp thresholds dictating that the fraction

of k-faces preserved will tend to either one or zero with very high probability,

depending on ρ and γ [95]. For the precise values of ρ and γ which will enable

successful recovery and for further discussion of similar results, see Chapters 7

and 9.

These results provide sharp bounds on the minimum number of measurements

required in the noiseless case. In general, these bounds are significantly stronger

than the corresponding measurement bounds obtained within the RIP-based

framework, which tend to be extremely loose in terms of the constants involved.

However, these sharper bounds also require somewhat more intricate analysis

and typically more restrictive assumptions on A (such as it being Gaussian).

Thus, one of the main strengths of the RIP-based analysis presented in this

chapter is that it gives results for a very broad class of matrices that can also be

extended to noisy settings.

1.6 Signal Recovery Algorithms

We now discuss a number of algorithmic approaches to the problem of signal

recovery from CS measurements. While this problem has received significant

attention in recent years in the context of CS, many of these techniques pre-

date the field of CS. There are a variety of algorithms that have been used in

applications such as sparse approximation, statistics, geophysics, and theoretical

computer science that were developed to exploit sparsity in other contexts and

can be brought to bear on the CS recovery problem. We briefly review some of
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these, and refer the reader to later chapters as well as the overview in [226] for

further details.

Note that we restrict our attention here to algorithms that actually reconstruct

the original signal x. In some settings the end goal is to solve some kind of

inference problem such as detection, classification, or parameter estimation, in

which case a full reconstruction may not be necessary [69–71, 74, 100, 101, 143,

145].

`1 minimization algorithms
The `1 minimization approach analyzed in Section 1.5 provides a powerful frame-

work for recovering sparse signals. The power of `1 minimization is that not only

will it lead to a provably accurate recovery, but the formulations described in Sec-

tion 1.5 are also convex optimization problems for which there exist efficient and

accurate numerical solvers [194]. For example, (1.12) with B(y) = {z : Az = y}
can be posed as a linear program. In the cases where B(y) = {z : ‖Az − y‖2 ≤ ε}
or B(y) = {z :

∥∥AT (Az − y)
∥∥
∞ ≤ λ}, the minimization problem (1.12) becomes

a convex program with a conic constraint.

While these optimization problems could all be solved using general-purpose

convex optimization software, there now also exist a tremendous variety of algo-

rithms designed to explicitly solve these problems in the context of CS. This body

of literature has primarily focussed on the case where B(y) = {z : ‖Az − y‖2 ≤
ε}. However, there exist multiple equivalent formulations of this program. For

instance, the majority of `1 minimization algorithms in the literature have actu-

ally considered the unconstrained version of this problem, i.e.,

x̂ = arg min
z

1

2
‖Az − y‖22 + λ ‖z‖1 .

See, for example, [11, 120, 122, 138, 175, 197, 246, 249–251]. Note that for some

choice of the parameter λ this optimization problem will yield the same result

as the constrained version of the problem given by

x̂ = arg min
z
‖z‖1 subject to ‖Az − y‖2 ≤ ε.

However, in general the value of λ which makes these problems equivalent is

unknown a priori. Several approaches for choosing λ are discussed in [110, 123,

133]. Since in many settings ε is a more natural parameterization (being deter-

mined by the noise or quantization level), it is also useful to have algorithms that

directly solve the latter formulation. While there are fewer efforts in this direc-

tion, there also exist some excellent solvers for this problem [12, 13, 231]. Note

that [13] also provides solvers for a variety of other `1 minimization problems,

such as for the Dantzig selector.

Greedy algorithms
While convex optimization techniques are powerful methods for computing

sparse representations, there are also a variety of greedy/iterative methods for
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Algorithm 1.1 Orthogonal Matching Pursuit

Inputs: CS matrix/dictionary A, measurement vector y

Initialize: x̂0 = 0, r0 = y, Λ0 = ∅.
for i = 1; i := i+ 1 until stopping criterion is met do

gi ← AT ri−1 {form signal estimate from residual}
Λi ← Λi−1 ∪ supp(H1(gi)) {add largest residual entry to support}
x̂i|Λi

← A†Λi
y, x̂i|Λc

i
← 0 {update signal estimate}

ri ← y −Ax̂i {update measurement residual}
end for

Output: Sparse representation x̂

solving such problems [21, 23, 24, 56, 64, 66, 75, 85, 96, 153, 182, 183, 190–192, 220,

222, 223]. Greedy algorithms rely on iterative approximation of the signal coef-

ficients and support, either by iteratively identifying the support of the signal

until a convergence criterion is met, or alternatively by obtaining an improved

estimate of the sparse signal at each iteration that attempts to account for the

mismatch to the measured data. Some greedy methods can actually be shown

to have performance guarantees that match those obtained for convex optimiza-

tion approaches. In fact, some of the more sophisticated greedy algorithms are

remarkably similar to those used for `1 minimization described above. However,

the techniques required to prove performance guarantees are substantially dif-

ferent.

We refer the reader to Chapter 8 for a more detailed overview of greedy algo-

rithms and their performance. Here we briefly highlight some of the most common

methods and their theoretical guarantees. Two of the oldest and simplest greedy

approaches are Orthogonal Matching Pursuit (OMP) and iterative thresholding.

We first consider OMP [183], which begins by finding the column of A most

correlated with the measurements. The algorithm then repeats this step by cor-

relating the columns with the signal residual, which is obtained by subtracting

the contribution of a partial estimate of the signal from the original measurement

vector. The algorithm is formally defined as Algorithm 1.1, where Hk(x) denotes

the hard thresholding operator on x that sets all entries to zero except for the k

entries of x with largest magnitude. The stopping criterion can consist of either

a limit on the number of iterations, which also limits the number of nonzeros

in x̂, or a requirement that y ≈ Ax̂ in some sense. Note that in either case, if

OMP runs for m iterations then it will always produce an estimate x̂ such that

y = Ax̂. Iterative thresholding algorithms are often even more straightforward.

For an overview see [107]. As an example, we consider iterative hard thresholding

(IHT) [24], which is described in Algorithm 1.2. Starting from an initial signal

estimate x̂0 = 0, the algorithm iterates a gradient descent step followed by hard

thresholding until a convergence criterion is met.

OMP and IHT both satisfy many of the same guarantees as `1 minimization.

For example, under a slightly stronger assumption on the RIP constant, iterative
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Algorithm 1.2 Iterative Hard Thresholding

Inputs: CS matrix/dictionary A, measurement vector y, sparsity level k

Initialize: x̂0 = 0.

for i = 1; i := i+ 1 until stopping criterion is met do

x̂i = Hk

(
x̂i−1 +AT (y −Ax̂i−1)

)
end for

Output: Sparse representation x̂

hard thresholding satisfies a very similar guarantee to that of Theorem 1.9. We

refer the reader to Chapter 8 for further details on the theoretical properties of

thresholding algorithms, and focus here on OMP.

The simplest guarantees for OMP state that for exactly k-sparse x with noise-

free measurements y = Ax, OMP will recover x exactly in k iterations. This anal-

ysis has been performed for both matrices satisfying the RIP [75] and matrices

with bounded coherence [220]. In both results, however, the required constants

are relatively small, so that the results only apply when m = O(k2 log(n)).

There have been many efforts to improve upon these basic results. As one

example, in [173] the required number of measurements is reduced to m =

O(k1.6 log(n)) by allowing OMP to run for more than k iterations. More recently,

it has been shown that this can be even further relaxed to the more familiar

m = O(k log(n)) and that OMP is stable with respect to bounded noise, yield-

ing a guarantee along the lines of Theorem 1.9 but only for exactly sparse sig-

nals [254]. Both of these analyses have exploited the RIP. There has also been

recent progress in using the RIP to analyze the performance of OMP on non-

sparse signals [10]. At present, however, RIP-based analysis of OMP remains a

topic of ongoing work.

Note that all of the above efforts have aimed at establishing uniform guarantees

(although often restricted to exactly sparse signals). In light of our discussion

of probabilistic guarantees in Section 1.5.3, one might expect to see improve-

ments by considering less restrictive guarantees. As an example, it has been

shown that by considering random matrices for A OMP can recover k-sparse

signals in k iterations with high probability using only m = O(k log(n)) mea-

surements [222]. Similar improvements are also possible by placing restrictions

on the smallest nonzero value of the signal, as in [88]. Furthermore, such restric-

tions also enable near-optimal recovery guarantees when the measurements are

corrupted by Gaussian noise [18].

Combinatorial algorithms
In addition to `1 minimization and greedy algorithms, there is another important

class of sparse recovery algorithms that we will refer to as combinatorial algo-

rithms. These algorithms, mostly developed by the theoretical computer science

community, in many cases pre-date the compressive sensing literature but are

highly relevant to the sparse signal recovery problem.
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The historically oldest of these algorithms were developed in the context of

combinatorial group testing [98, 116, 160, 210]. In this problem we suppose that

there are n total items and k anomalous elements that we wish to find. For

example, we might wish to identify defective products in an industrial setting,

or identify a subset of diseased tissue samples in a medical context. In both

of these cases the vector x indicates which elements are anomalous, i.e., xi 6= 0

for the k anomalous elements and xi = 0 otherwise. Our goal is to design a

collection of tests that allow us to identify the support (and possibly the values

of the nonzeros) of x while also minimizing the number of tests performed. In

the simplest practical setting these tests are represented by a binary matrix A

whose entries aij are equal to 1 if and only if the jth item is used in the ith test.

If the output of the test is linear with respect to the inputs, then the problem of

recovering the vector x is essentially the same as the standard sparse recovery

problem in CS.

Another application area in which combinatorial algorithms have proven use-

ful is computation on data streams [59, 189]. As an example of a typical data

streaming problem, suppose that xi represents the number of packets passing

through a network router with destination i. Simply storing the vector x is typ-

ically infeasible since the total number of possible destinations (represented by

a 32-bit IP address) is n = 232. Thus, instead of attempting to store x directly,

one can store y = Ax where A is an m× n matrix with m� n. In this context

the vector y is often called a sketch. Note that in this problem y is computed in

a different manner than in the compressive sensing context. Specifically, in the

network traffic example we do not ever observe xi directly, rather we observe

increments to xi (when a packet with destination i passes through the router).

Thus we construct y iteratively by adding the ith column to y each time we

observe an increment to xi, which we can do since y = Ax is linear. When the

network traffic is dominated by traffic to a small number of destinations, the

vector x is compressible, and thus the problem of recovering x from the sketch

Ax is again essentially the same as the sparse recovery problem in CS.

Despite the fact that in both of these settings we ultimately wish to recover a

sparse signal from a small number of linear measurements, there are also some

important differences between these settings and CS. First, in these settings it

is natural to assume that the designer of the reconstruction algorithm also has

full control over A, and is thus free to choose A in a manner that reduces the

amount of computation required to perform recovery. For example, it is often

useful to design A so that it has very few nonzeros, i.e., the sensing matrix itself

is also sparse [8, 128, 154]. In general, most methods involve careful construction

of the sampling matrix A (although some schemes do involve “generic” sparse

matrices, for example, see [20]). This is in contrast with the optimization and

greedy methods that work with any matrix satisfying the conditions described in

Section 1.4. Of course, this additional optimization can often lead to significantly

faster algorithms [51, 60, 129, 130].
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Second, note that the computational complexity of all the convex methods and

greedy algorithms described above is always at least linear in terms of n, since in

order to recover x we must at least incur the computational cost of reading out

all n entries of x. While this may be acceptable in most typical CS applications,

this becomes impractical when n is extremely large, as in the network monitoring

example. In this context, one may seek to develop algorithms whose complexity

is linear only in the length of the representation of the signal, i.e., its sparsity k.

In this case the algorithm does not return a complete reconstruction of x but

instead returns only its k largest elements (and their indices). As surprising as it

may seem, such algorithms are indeed possible. See [60, 129, 130] for examples.

1.7 Multiple Measurement Vectors

Many applications that match the properties of CS involve distributed acquisi-

tion of multiple correlated signals. The multiple signal case where all l signals

involved are sparse and exhibit the same indices for their nonzero coefficients

is well known in sparse approximation literature, where it has been termed the

multiple measurement vector (MMV) problem [52, 63, 134, 185, 221, 223, 232]. In

the MMV setting, rather than trying to recover each single sparse vector xi inde-

pendently, 1 ≤ i ≤ l, the goal is to jointly recover the set of vectors by exploiting

their common sparse support. Stacking these vectors into the columns of a matrix

X, there will be at most k non-zero rows in X. That is, not only is each vector

k-sparse, but the non-zero values occur on a common location set. We therefore

say that X is row-sparse and use the notation Λ = supp(X) to denote the index

set corresponding to non-zero rows.8

MMV problems appear quite naturally in many different application areas.

Early work on MMV algorithms focused on magnetoencephalography, which is a

modality for imaging the brain [134, 135, 200]. Similar ideas were also developed

in the context of array processing [135, 157, 181], equalization of sparse communi-

cation channels [2, 62, 119, 142], and more recently cognitive radio and multiband

communications [9, 114, 186–188, 252].

Conditions on measurement matrices
As in standard CS, we assume that we are given measurements {yi}li=1 where

each vector is of length m < n. Letting Y be the m× l matrix with columns

yi, our problem is to recover X assuming a known measurement matrix A so

that Y = AX. Clearly, we can apply any CS method to recover xi from yi as

before. However, since the vectors {xi} all have a common support, we expect

intuitively to improve the recovery ability by exploiting this joint information. In

8 The MMV problem can be converted into a block-sparse recovery problem through appropri-

ate rasterizing of the matrix X and the construction of a single matrix A′ ∈ Rlm×ln dependent
on the matrix A ∈ Rm×n used for each of the signals.
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other words, we should in general be able to reduce the number of measurements

ml needed to represent X below sl, where s is the number of measurements

required to recover one vector xi for a given matrix A.

Since |Λ| = k, the rank of X satisfies rank(X) ≤ k. When rank(X) = 1, all

the sparse vectors xi are multiples of each other, so that there is no advantage

to their joint processing. However, when rank(X) is large, we expect to be able

to exploit the diversity in its columns in order to benefit from joint recovery.

This essential result is captured nicely by the following necessary and sufficient

uniqueness condition:

Theorem 1.15 (Theorem 2 of [76]). A necessary and sufficient condition for

the measurements Y = AX to uniquely determine the row sparse matrix X is

that

|supp(X)| < spark(A)− 1 + rank(X)

2
. (1.16)

As shown in [76], we can replace rank(X) by rank(Y ) in (1.16). The sufficient

direction of this condition was shown in [185] to hold even in the case where

there are infinitely many vectors xi. A direct consequence of Theorem 1.15 is

that matrices X with larger rank can be recovered from fewer measurements.

Alternatively, matrices X with larger support can be recovered from the same

number of measurements. When rank(X) = k and spark(A) takes on its largest

possible value equal to m+ 1, condition (1.16) becomes m ≥ k + 1. Therefore, in

this best-case scenario, only k + 1 measurements per signal are needed to ensure

uniqueness. This is much lower than the value of 2k obtained in standard CS via

the spark (cf. Theorem 1.7), which we refer to here as the single measurement

vector (SMV) setting. Furthermore, when X is full rank, it can be recovered by

a simple algorithm, in contrast to the combinatorial complexity needed to solve

the SMV problem from 2k measurements for general matrices A. See Chapter 8

for more details.

Recovery Algorithms
A variety of algorithms have been proposed that exploit the joint sparsity in dif-

ferent ways when X is not full rank. As in the SMV setting, two main approaches

to solving MMV problems are based on convex optimization and greedy methods.

The analogue of (1.10) in the MMV case is

X̂ = arg min
X∈Rn×l

‖X‖p,0 subject to Y = AX, (1.17)

where we define the `p,q norms for matrices as

‖X‖p,q =

(∑
i

‖xi‖qp

)1/q
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with xi denoting the ith row of X. With a slight abuse of notation, we also

consider the q = 0 case where ‖X‖p,0 = |supp(X)| for any p. Optimization based

algorithms relax the `0 norm in (1.17) and attempt to recover X by mixed norm

minimization:

X̂ = arg min
X∈Rn×l

‖X‖p,q subject to Y = AX

for some p, q ≥ 1; values for p and q of 1, 2, and ∞ have been advocated [52,

63, 114, 121, 221, 223]. The standard greedy approaches in the SMV setting have

also been extended to the MMV case; see Chapter 8 for more details. Further-

more, one can also reduce the MMV problem into an SMV problem and solve

using standard CS recovery algorithms [185]. This reduction can be particularly

beneficial in large scale problems, such as those resulting from analog sampling.

MMV models can also be used to perform blind CS, in which the sparsifying

basis is learned together with the representation coefficients [131]. While all

standard CS algorithms assume that the sparsity basis is known in the recovery

process, blind CS does not require this knowledge. When multiple measurements

are available it can be shown that under certain conditions on the sparsity basis,

blind CS is possible thus avoiding the need to know the sparsity basis in both

the sampling and the recovery process.

In terms of theoretical guarantees, it can be shown that MMV extensions of

SMV algorithms will recover X under similar conditions to the SMV setting in

the worst-case scenario [4, 52, 114, 115] so that theoretical equivalence results for

arbitrary values of X do not predict any performance gain with joint sparsity. In

practice, however, multichannel reconstruction techniques perform much better

than recovering each channel individually. The reason for this discrepancy is

that these results apply to all possible input signals, and are therefore worst-

case measures. Clearly, if we input the same signal to each channel, namely

when rank(X) = 1, no additional information on the joint support is provided

from multiple measurements. However, as we have seen in Theorem 1.15, higher

ranks of the input X improve the recovery ability.

Another way to improve performance guarantees is by considering random

values of X and developing conditions under which X is recovered with high

probability [7, 115, 137, 208]. Average case analysis can be used to show that fewer

measurements are needed in order to recover X exactly [115]. In addition, under

a mild condition on the sparsity and on the matrix A, the failure probability

decays exponentially in the number of channels l [115].

Finally, we note that algorithms similar to those used for MMV recovery can

also be adapted to block-sparse reconstruction [112, 114, 253].
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1.8 Summary

CS is an exciting, rapidly growing, field that has attracted considerable attention

in signal processing, statistics, and computer science, as well as the broader sci-

entific community. Since its initial development, only a few years ago, thousands

of papers have appeared in this area, and hundreds of conferences, workshops,

and special sessions have been dedicated to this growing research field. In this

chapter, we have reviewed some of the basics of the theory underlying CS. We

have also aimed, throughout our summary, to highlight new directions and appli-

cation areas that are at the frontier of CS research. This chapter should serve as

a review to practitioners wanting to join this emerging field, and as a reference

for researchers. Our hope is that this presentation will attract the interest of

both mathematicians and engineers in the desire to encourage further research

into this new frontier as well as promote the use of CS in practical applications.

In subsequent chapters of the book, we will see how the fundamentals presented

in this chapter are expanded and extended in many exciting directions, includ-

ing new models for describing structure in both analog and discrete-time signals,

new sensing design techniques, more advanced recovery results and powerful

new recovery algorithms, and emerging applications of the basic theory and its

extensions.
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A Appendix: Proofs for Chapter 1

A.1 Proof of Theorem 1.4

To prove Theorem 1.4 we first provide a preliminary lemma. The proof of this

result is based on techniques from [166].

Lemma A.1. Let k and n satisfying k < n/2 be given. There exists a set X ⊂ Σk
such that for any x ∈ X we have ‖x‖2 ≤

√
k and for any x, z ∈ X with x 6= z

‖x− z‖2 ≥
√
k/2 (A.1)

and

log |X| ≥ k

2
log
(n
k

)
.

Proof. We will begin by considering the set

U = {x ∈ {0,+1,−1}n : ‖x‖0 = k} .

By construction, ‖x‖22 = k for all x ∈ U . Thus if we construct X by picking

elements from U then we automatically have ‖x‖2 ≤
√
k.

Next, observe that |U | =
(
n
k

)
2k. Note also that ‖x− z‖0 ≤ ‖x− z‖

2
2, and thus

if ‖x− z‖22 ≤ k/2 then ‖x− z‖0 ≤ k/2. From this we observe that for any fixed

x ∈ U ,∣∣∣{z ∈ U : ‖x− z‖22 ≤ k/2
}∣∣∣ ≤ |{z ∈ U : ‖x− z‖0 ≤ k/2}| ≤

(
n

k/2

)
3k/2.

Thus, suppose we construct the set X by iteratively choosing points that satisfy

(A.1). After adding j points to the set, there are at least(
n

k

)
2k − j

(
n

k/2

)
3k/2

points left to pick from. Thus, we can construct a set of size |X| provided that

|X|
(
n

k/2

)
3k/2 ≤

(
n

k

)
2k (A.2)

49
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Next, observe that(
n
k

)(
n
k/2

) =
(k/2)!(n− k/2)!

k!(n− k)!
=

k/2∏
i=1

n− k + i

k/2 + i
≥
(
n

k
− 1

2

)k/2
,

where the inequality follows from the fact that (n− k + i)/(k/2 + i) is decreasing

as a function of i. Thus, if we set |X| = (n/k)k/2 then we have

|X|
(

3

4

)k/2
=

(
3n

4k

)k/2
=
(n
k
− n

4k

)k/2
≤
(
n

k
− 1

2

)k/2
≤
(
n
k

)(
n
k/2

) .
Hence, (A.2) holds for |X| = (n/k)k/2, which establishes the lemma.

Using this lemma, we can establish Theorem 1.4.

Theorem 1.4 (Theorem 3.5 of [67]). Let A be an m× n matrix that satisfies

the RIP of order 2k with constant δ ∈ (0, 1
2 ]. Then

m ≥ Ck log
(n
k

)
where C = 1/2 log(

√
24 + 1) ≈ 0.28.

Proof. We first note that since A satisfies the RIP, then for the set of points X

in Lemma A.1 we have,

‖Ax−Az‖2 ≥
√

1− δ ‖x− z‖2 ≥
√
k/4

for all x, z ∈ X, since x− z ∈ Σ2k and δ ≤ 1
2 . Similarly, we also have

‖Ax‖2 ≤
√

1 + δ ‖x‖2 ≤
√

3k/2

for all x ∈ X.

From the lower bound we can say that for any pair of points x, z ∈ X, if we

center balls of radius
√
k/4/2 =

√
k/16 at Ax and Az, then these balls will

be disjoint. In turn, the upper bound tells us that the entire set of balls is itself

contained within a larger ball of radius
√

3k/2 +
√
k/16. If we let Bm(r) = {x ∈

Rm : ‖x‖2 ≤ r}, then this implies that

Vol
(
Bm

(√
3k/2 +

√
k/16

))
≥ |X| ·Vol

(
Bm

(√
k/16

))
,

⇔
(√

3k/2 +
√
k/16

)m
≥ |X| ·

(√
k/16

)m
,

⇔
(√

24 + 1
)m
≥ |X|,

⇔ m ≥ log |X|
log
(√

24 + 1
) .

The theorem follows by applying the bound for |X| from Lemma A.1.
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A.2 Proof of Lemma 1.3

To begin, we establish the following preliminary lemmas.

Lemma A.2. Suppose u, v are orthogonal vectors. Then

‖u‖2 + ‖v‖2 ≤
√

2 ‖u+ v‖2 .

Proof. We begin by defining the 2× 1 vector w = [‖u‖2 , ‖v‖2]T . By applying

Lemma 1.2 with k = 2, we have ‖w‖1 ≤
√

2 ‖w‖2. From this we obtain

‖u‖2 + ‖v‖2 ≤
√

2

√
‖u‖22 + ‖v‖22.

Since u and v are orthogonal, ‖u‖22 + ‖v‖22 = ‖u+ v‖22, which yields the desired

result.

Lemma A.3. If A satisfies the RIP of order 2k, then for any pair of vectors

u, v ∈ Σk with disjoint support,

|〈Au,Av〉| ≤ δ2k ‖u‖2 ‖v‖2 .

Proof. Suppose u, v ∈ Σk with disjoint support and that ‖u‖2 = ‖v‖2 = 1. Then,

u± v ∈ Σ2k and ‖u± v‖22 = 2. Using the RIP we have

2(1− δ2k) ≤ ‖Au±Av‖22 ≤ 2(1 + δ2k).

Finally, applying the parallelogram identity

|〈Au,Av〉| ≤ 1

4

∣∣∣‖Au+Av‖22 − ‖Au−Av‖
2
2

∣∣∣ ≤ δ2k
establishes the lemma.

Lemma A.4. Let Λ0 be an arbitrary subset of {1, 2, . . . , n} such that |Λ0| ≤ k.

For any vector u ∈ Rn, define Λ1 as the index set corresponding to the k largest

entries of uΛc
0

(in absolute value), Λ2 as the index set corresponding to the next

k largest entries, and so on. Then∑
j≥2

∥∥uΛj

∥∥
2
≤
∥∥uΛc

0

∥∥
1√

k
.

Proof. We begin by observing that for j ≥ 2,∥∥uΛj

∥∥
∞ ≤

∥∥uΛj−1

∥∥
1

k

since the Λj sort u to have decreasing magnitude. Applying Lemma 1.2 we have∑
j≥2

∥∥uΛj

∥∥
2
≤
√
k
∑
j≥2

∥∥uΛj

∥∥
∞ ≤

1√
k

∑
j≥1

∥∥uΛj

∥∥
1

=

∥∥uΛc
0

∥∥
1√

k
,
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proving the lemma.

We are now in a position to prove Lemma 1.3. The key ideas in this proof

follow from [34].

Lemma 1.3. Suppose that A satisfies the RIP of order 2k. Let Λ0 be an arbitrary

subset of {1, 2, . . . , n} such that |Λ0| ≤ k, and let h ∈ Rn be given. Define Λ1 as

the index set corresponding to the k entries of hΛc
0

with largest magnitude, and

set Λ = Λ0 ∪ Λ1. Then

‖hΛ‖2 ≤ α
∥∥hΛc

0

∥∥
1√

k
+ β
|〈AhΛ, Ah〉|
‖hΛ‖2

,

where

α =

√
2δ2k

1− δ2k
, β =

1

1− δ2k
.

Proof. Since hΛ ∈ Σ2k, the lower bound on the RIP immediately yields

(1− δ2k) ‖hΛ‖22 ≤ ‖AhΛ‖22 . (A.3)

Define Λj as in Lemma A.4, then since AhΛ = Ah−
∑
j≥2AhΛj

, we can rewrite

(A.3) as

(1− δ2k) ‖hΛ‖22 ≤ 〈AhΛ, Ah〉 −

〈
AhΛ,

∑
j≥2

AhΛj

〉
. (A.4)

In order to bound the second term of (A.4), we use Lemma A.3, which implies

that ∣∣〈AhΛi
, AhΛj

〉∣∣ ≤ δ2k ‖hΛi
‖2
∥∥hΛj

∥∥
2
, (A.5)

for any i, j. Furthermore, Lemma A.2 yields ‖hΛ0
‖2 + ‖hΛ1

‖2 ≤
√

2 ‖hΛ‖2. Sub-

stituting into (A.5) we obtain∣∣∣∣∣∣
〈
AhΛ,

∑
j≥2

AhΛj

〉∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j≥2

〈
AhΛ0

, AhΛj

〉
+
∑
j≥2

〈
AhΛ1

, AhΛj

〉∣∣∣∣∣∣
≤
∑
j≥2

∣∣〈AhΛ0
, AhΛj

〉∣∣+
∑
j≥2

∣∣〈AhΛ1
, AhΛj

〉∣∣
≤ δ2k ‖hΛ0

‖2
∑
j≥2

∥∥hΛj

∥∥
2

+ δ2k ‖hΛ1
‖2
∑
j≥2

∥∥hΛj

∥∥
2

≤
√

2δ2k ‖hΛ‖2
∑
j≥2

∥∥hΛj

∥∥
2
.

From Lemma A.4, this reduces to∣∣∣∣∣∣
〈
AhΛ,

∑
j≥2

AhΛj

〉∣∣∣∣∣∣ ≤ √2δ2k ‖hΛ‖2

∥∥hΛc
0

∥∥
1√

k
. (A.6)
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Combining (A.6) with (A.4) we obtain

(1− δ2k) ‖hΛ‖22 ≤

∣∣∣∣∣∣〈AhΛ, Ah〉 −

〈
AhΛ,

∑
j≥2

AhΛj

〉∣∣∣∣∣∣
≤ |〈AhΛ, Ah〉|+

∣∣∣∣∣∣
〈
AhΛ,

∑
j≥2

AhΛj

〉∣∣∣∣∣∣
≤ |〈AhΛ, Ah〉|+

√
2δ2k ‖hΛ‖2

∥∥hΛc
0

∥∥
1√

k
,

which yields the desired result upon rearranging.

A.3 Proof of Lemma 1.6

We now return to the proof of Lemma 1.6. The key ideas in this proof follow

from [34].

Lemma 1.6. Suppose that A satisfies the RIP of order 2k with δ2k <
√

2−
1. Let x, x̂ ∈ Rn be given, and define h = x̂− x. Let Λ0 denote the index set

corresponding to the k entries of x with largest magnitude and Λ1 the index set

corresponding to the k entries of hΛc
0

with largest magnitude. Set Λ = Λ0 ∪ Λ1.

If ‖x̂‖1 ≤ ‖x‖1, then

‖h‖2 ≤ C0
σk(x)1√

k
+ C1

|〈AhΛ, Ah〉|
‖hΛ‖2

.

where

C0 = 2
1− (1−

√
2)δ2k

1− (1 +
√

2)δ2k
, C1 =

2

1− (1 +
√

2)δ2k
.

Proof. We begin by observing that h = hΛ + hΛc , so that from the triangle

inequality

‖h‖2 ≤ ‖hΛ‖2 + ‖hΛc‖2 . (A.7)

We first aim to bound ‖hΛc‖2. From Lemma A.4 we have

‖hΛc‖2 =

∥∥∥∥∥∥
∑
j≥2

hΛj

∥∥∥∥∥∥
2

≤
∑
j≥2

∥∥hΛj

∥∥
2
≤
∥∥hΛc

0

∥∥
1√

k
, (A.8)

where the Λj are defined as in Lemma A.4, i.e., Λ1 is the index set corresponding

to the k largest entries of hΛc
0

(in absolute value), Λ2 as the index set correspond-

ing to the next k largest entries, and so on.
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We now wish to bound
∥∥hΛc

0

∥∥
1
. Since ‖x‖1 ≥ ‖x̂‖1, by applying the triangle

inequality we obtain

‖x‖1 ≥ ‖x+ h‖1 = ‖xΛ0
+ hΛ0

‖1 +
∥∥xΛc

0
+ hΛc

0

∥∥
1

≥ ‖xΛ0
‖1 − ‖hΛ0

‖1 +
∥∥hΛc

0

∥∥
1
−
∥∥xΛc

0

∥∥
1
.

Rearranging and again applying the triangle inequality,∥∥hΛc
0

∥∥
1
≤ ‖x‖1 − ‖xΛ0

‖1 + ‖hΛ0
‖1 +

∥∥xΛc
0

∥∥
1

≤ ‖x− xΛ0
‖1 + ‖hΛ0

‖1 +
∥∥xΛc

0

∥∥
1
.

Recalling that σk(x)1 =
∥∥xΛc

0

∥∥
1

= ‖x− xΛ0
‖1,∥∥hΛc

0

∥∥
1
≤ ‖hΛ0

‖1 + 2σk(x)1. (A.9)

Combining this with (A.8) we obtain

‖hΛc‖2 ≤
‖hΛ0

‖1 + 2σk(x)1√
k

≤ ‖hΛ0
‖2 + 2

σk(x)1√
k

where the last inequality follows from Lemma 1.2. By observing that ‖hΛ0
‖2 ≤

‖hΛ‖2 this combines with (A.7) to yield

‖h‖2 ≤ 2 ‖hΛ‖2 + 2
σk(x)1√

k
. (A.10)

We now turn to establishing a bound for ‖hΛ‖2. Combining Lemma 1.3 with

(A.9) and applying Lemma 1.2 we obtain

‖hΛ‖2 ≤ α
∥∥hΛc

0

∥∥
1√

k
+ β
|〈AhΛ, Ah〉|
‖hΛ‖2

≤ α‖hΛ0
‖1 + 2σk(x)1√

k
+ β
|〈AhΛ, Ah〉|
‖hΛ‖2

≤ α ‖hΛ0
‖2 + 2α

σk(x)1√
k

+ β
|〈AhΛ, Ah〉|
‖hΛ‖2

.

Since ‖hΛ0
‖2 ≤ ‖hΛ‖2,

(1− α) ‖hΛ‖2 ≤ 2α
σk(x)1√

k
+ β
|〈AhΛ, Ah〉|
‖hΛ‖2

.

The assumption that δ2k <
√

2− 1 ensures that α < 1. Dividing by (1− α) and

combining with (A.10) results in

‖h‖2 ≤
(

4α

1− α
+ 2

)
σk(x)1√

k
+

2β

1− α
|〈AhΛ, Ah〉|
‖hΛ‖2

.

Plugging in for α and β yields the desired constants.
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A.4 Proof of Theorem 1.13

Theorem 1.13 (Theorem 5.1 of [57]). Suppose that A is an m× n matrix and

that ∆ : Rm → Rn is a recovery algorithm that satisfies

‖x−∆(Ax)‖2 ≤ Cσk(x)2 (A.11)

for some k ≥ 1, then m >
(

1−
√

1− 1/C2
)
n.

Proof. We begin by letting h ∈ Rn denote any vector in N (A). We write h =

hΛ + hΛc where Λ is an arbitrary set of indices satisfying |Λ| ≤ k. Set x = hΛc ,

and note that Ax = AhΛc = Ah−AhΛ = −AhΛ since h ∈ N (A). Since hΛ ∈
Σk, (A.11) implies that ∆(Ax) = ∆(−AhΛ) = −hΛ. Hence, ‖x−∆(Ax)‖2 =

‖hΛc − (−hΛ)‖2 = ‖h‖2. Furthermore, we observe that σk(x)2 ≤ ‖x‖2, since

by definition σk(x)2 ≤ ‖x− x̃‖2 for all x̃ ∈ Σk, including x̃ = 0. Thus ‖h‖2 ≤
C ‖hΛc‖2. Since ‖h‖22 = ‖hΛ‖22 + ‖hΛc‖22, this yields

‖hΛ‖22 = ‖h‖22 − ‖hΛc‖22 ≤ ‖h‖
2
2 −

1

C2
‖h‖22 =

(
1− 1

C2

)
‖h‖22 .

This must hold for any vector h ∈ N (A) and for any set of indices Λ such that

|Λ| ≤ k. In particular, let {vi}n−mi=1 be an orthonormal basis for N (A), and define

the vectors {hi}ni=1 as follows:

hj =

n−m∑
i=1

vi(j)vi. (A.12)

We note that hj =
∑n−m
i=1 〈ej , vi〉vi where ej denotes the vector of all zeros except

for a 1 in the j-th entry. Thus we see that hj = PN ej where PN denotes an

orthogonal projection onto N (A). Since ‖PN ej‖22 + ‖PN⊥ej‖
2
2 = ‖ej‖22 = 1, we

have that ‖hj‖2 ≤ 1. Thus, by setting Λ = {j} for hj we observe that∣∣∣∣∣
n−m∑
i=1

|vi(j)|2
∣∣∣∣∣
2

= |hj(j)|2 ≤
(

1− 1

C2

)
‖hj‖22 ≤ 1− 1

C2
.

Summing over j = 1, 2, . . . , n, we obtain

n
√

1− 1/C2 ≥
n∑
j=1

n−m∑
i=1

|vi(j)|2 =

n−m∑
i=1

n∑
j=1

|vi(j)|2 =

n−m∑
i=1

‖vi‖22 = n−m,

and thus m ≥
(

1−
√

1− 1/C2
)
n as desired.
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pages 318–323. Springer, Berlin, Germany, 1996.

[208] K. Schnass and P. Vandergheynst. Average performance analysis for thresholding. IEEE

Signal Processing Lett., 14(11):828–831, 2007.

[209] C. Shannon. Communication in the presence of noise. Proc. Institute of Radio Engi-

neers, 37(1):10–21, 1949.

[210] N. Shental, A. Amir, and O. Zuk. Identification of rare alleles and their carriers using

compressed se(que)nsing. Nucleic Acids Research, 38(19):e179, 2009.

[211] J. P. Slavinsky, J. Laska, M. Davenport, and R. Baraniuk. The compressive mutliplexer

for multi-channel compressive sensing. In Proc. IEEE Int. Conf. Acoust., Speech, and

Signal Processing (ICASSP), Prague, Czech Republic, May 2011.

[212] A. So and Y. Ye. Theory of semidefinite programming for sensor network localization.

Math. Programming, Series A and B, 109(2):367–384, 2007.

[213] C. Stein. Inadmissibility of the usual estimator for the mean of a multivariate normal

distribution. In Proc. Third Berkeley Symp. Math. Statist. Prob., volume 1, pages 197–

206. University of California Press, Berkeley, 1956.

[214] T. Strohmer and R. Heath. Grassmanian frames with applications to coding and com-

munication. Appl. Comput. Harmon. Anal., 14(3):257–275, Nov. 2003.

[215] D. Taubman and M. Marcellin. JPEG 2000: Image Compression Fundamentals, Stan-

dards and Practice. Kluwer, 2001.

[216] H. Taylor, S. Banks, and J. McCoy. Deconvolution with the `1 norm. Geophysics,

44(1):39–52, 1979.

[217] J. Tenenbaum, V.de Silva, and J. Landford. A global geometric framework for nonlinear

dimensionality reduction. Science, 290:2319–2323, 2000.

[218] R. Tibshirani. Regression shrinkage and selection via the Lasso. J. Royal Statist. Soc

B, 58(1):267–288, 1996.

[219] J. Treichler, M. Davenport, and R. Baraniuk. Application of compressive sensing to the

design of wideband signal acquisition receivers. In Proc. U.S./Australia Joint Work.

Defense Apps. of Signal Processing (DASP), Lihue, Hawaii, Sept. 2009.

[220] J. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Trans.

Inform. Theory, 50(10):2231–2242, 2004.

[221] J. Tropp. Algorithms for simultaneous sparse approximation. Part II: Convex relax-

ation. Signal Processing, 86(3):589–602, 2006.

[222] J. Tropp and A. Gilbert. Signal recovery from partial information via orthogonal match-

ing pursuit. IEEE Trans. Inform. Theory, 53(12):4655–4666, 2007.

[223] J. Tropp, A. Gilbert, and M. Strauss. Algorithms for simultaneous sparse approxima-

tion. Part I: Greedy pursuit. Signal Processing, 86(3):572–588, 2006.



REFERENCES 67

[224] J. Tropp, J. Laska, M. Duarte, J. Romberg, and R. Baraniuk. Beyond Nyquist: Efficient

sampling of sparse, bandlimited signals. IEEE Trans. Inform. Theory, 56(1):520–544,

2010.

[225] J. Tropp, M. Wakin, M. Duarte, D. Baron, and R. Baraniuk. Random filters for com-

pressive sampling and reconstruction. In Proc. IEEE Int. Conf. Acoust., Speech, and

Signal Processing (ICASSP), Toulouse, France, May 2006.

[226] J. Tropp and S. Wright. Computational methods for sparse solution of linear inverse

problems. Proc. IEEE, 98(6):948–958, 2010.

[227] J. Trzasko and A. Manduca. Highly undersampled magnetic resonance image recon-

struction via homotopic `0-minimization. IEEE Trans. Med. Imaging, 28(1):106–121,

2009.

[228] R. Tur, Y. C. Eldar, and Z. Friedman. Innovation rate sampling of pulse streams with

application to ultrasound imaging. To appear in IEEE Trans. Signal Processing, 2011.

[229] M. Turk and A. Pentland. Eigenfaces for recognition. J. Cognitive Neuroscience,

3(1):71–86, 1991.

[230] M. Unser. Sampling—50 years after Shannon. Proc. IEEE, 88(4):569–587, 2000.

[231] E. van den Berg and M. Friedlander. Probing the Pareto frontier for basis pursuit

solutions. SIAM J. on Sci. Comp., 31(2):890–912, 2008.

[232] E. van den Berg and M. Friedlander. Theoretical and empirical results for recovery

from multiple measurements. IEEE Trans. Inform. Theory, 56(5):2516–2527, 2010.

[233] B. Vandereycken and S. Vandewalle. Riemannian optimization approach for comput-

ing low-rank solutions of Lyapunov equations. In Proc. SIAM Conf. on Optimization,

Boston, MA, May 2008.

[234] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, NY,

1999.
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