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1 Why Frames?

The Fourier transform has been a major tool in analysis for over 100 years. How-
ever, it solely provides frequency information, and hides (in its phases) information
concerning the moment of emission and duration of a signal. D. Gabor resolved
this problem in 1946 [93] by introducing a fundamental new approach to signal
decomposition. Gabor’s approach quickly became the paradigm for this area, be-
cause it provided resilience to additive noise, resilienceto quantization, resilience
to transmission losses as well as an ability to capture important signal character-
istics. Unbeknownst to Gabor, he had discovered the fundamental properties of a
frame without any of the formalism. In 1952, Duffin and Schaeffer [80] were work-
ing on some deep problems in non-harmonic Fourier series forwhich they required
a formal structure for working with highly over-complete families of exponential
functions inL2[0,1]. For this, they introduced the notion of aHilbert space frame,
for which Gabor’s approach is now a special case, falling into the area oftime-
frequency analysis[98]. Much later – in the late 1980’s – the fundamental concept
of frames was revived by Daubechies, Grossman and Mayer [77](see also [76]),
who showed its importance for data processing.

Traditionally, frames were used in signal and image processing, non-harmonic
Fourier series, data compression, and sampling theory. Buttoday, frame theory has
ever increasing applications to problems in both pure and applied mathematics,
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physics, engineering, computer science, to name a few. Several of these applications
will be investigated in this book. Since applications mainly require frames in finite-
dimensional spaces, this will be our focus. In this situation, a frame is a spanning
set of vectors – which are generallyredundant(over-complete) requiring control of
its condition numbers. Thus a typical frame possesses more frame vectors than the
dimension of the space, and each vector in the space will haveinfinitely many repre-
sentations with respect to the frame. But it will also have one natural representation
given by a special class of scalars called theframe coefficientsof the vector. It is this
redundancy of frameswhich is key to their significance for applications.

The role of redundancy varies depending on the requirementsof the applications
at hand. First, redundancy gives greater designflexibility which allows frames to be
constructed to fit a particular problem in a manner not possible by a set of linearly
independent vectors. For instance, in areas such as quantumtomography, classes of
orthonormal bases with the property that the modulus of the inner products of vec-
tors from different bases are a constant are required. A second example comes from
speech recognition, when a vector needs to be determined by the absolute value of
the frame coefficients (up to a phase factor). A second major advantage of redun-
dancy isrobustness. By spreading the information over a wider range of vectors,
resilience against losses (erasures) can be achieved, which are, for instance, a se-
vere problem in wireless sensor networks for transmission losses or when sensors
are intermittently fading out, modeling the brain where memory cells are dying out.
A further advantage of spreading information over a wider range of vectors is to
mitigate the effects of noise in the signal.

This represents a tiny fraction of the theory and applications of frame theory that
you will encounter in this book. New theoretical insights and novel applications are
continually arising due to the fact that the underlying principles of frame theory are
basic ideas which are fundamental to a wide canon of areas of research. In this sense,
frame theory might be regarded as partly belonging to applied harmonic analysis,
functional analysis, operator theory as well as numerical linear algebra and matrix
theory.

1.1 The Role of Decompositions and Expansions

Focussing on the finite-dimensional situation, letx be given data which we assume
to belong to some real or complexN-dimensional Hilbert spaceH N. Further, let
(ϕi)

M
i=1 be a representation system (i.e. a spanning set) inH N, which might be

chosen from an existing catalogue, designed depending on the type of data we are
facing, or learned from sample sets of the data.

One common approach to data processing consists in thedecompositionof the
datax according to the system(ϕi)

M
i=1 by considering the map

x 7→ (〈x,ϕi〉)M
i=1.
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As we will see, the generated sequence(〈x,ϕi〉)M
i=1 belonging toℓ2({1, . . . ,M}) can

then be used, for instance, for transmission ofx. Also, careful choice of the rep-
resentation system enables us to solve a variety of analysistasks. As an example,
under certain conditions the positions and orientations ofedges of an imagex are
determined by those indicesi ∈ {1, . . . ,M} belonging to the largest coefficients in
magnitude|〈x,ϕi〉|, i.e., by hard thresholding, in the case that(ϕi)

M
i=1 is a shear-

let system (see [116]). Finally, the sequence(〈x,ϕi〉)M
i=1 allows compression ofx,

which is in fact the heart of the new JPEG2000 compression standard when choos-
ing (ϕi)

M
i=1 to be a wavelet system [141].

An accompanying approach is theexpansionof the datax by considering se-
quences(ci)

M
i=1 satisfying

x=
M

∑
i=1

ciϕi .

It is well known that suitably chosen representation systems allow sparse sequences
(ci)

M
i=1 in the sense that‖c‖0 = #{i : ci 6= 0} is small. For example, certain wavelet

systems typically sparsify natural images in this sense (see for example [78, 123,
134] and the references therein). This observation is key toallowing the application
of the abundance of existing sparsity methodologies such asCompressed Sensing
[87] to x. In contrast to this viewpoint which assumesx as explicitly given, the
approach of expanding the data is also highly beneficial in the case wherex is only
implicitly given, which is, for instance, the problem all PDE solvers face. Hence,
using(ϕi)

M
i=1 as a generating system for the trial space, the PDE solvers task reduces

to computing(ci)
M
i=1 which is advantageous for deriving efficient solvers provided

that – as before – a sparse sequence does exist (see, e.g., [107, 74]).

1.2 Beyond Orthonormal Bases

To choose the representation system(ϕi)
N
i=1 to form an orthonormal basis forH N

is the standard choice. However, the linear independence ofsuch a system causes a
variety of problems for the aforementioned applications.

Starting with thedecompositionviewpoint, using(〈x,ϕi〉)N
i=1 for transmission

is far from being robust to erasures, since the erasure of only a single coefficient
causes a true information loss. Also, for analysis tasks orthonormal bases are far
from being advantageous, since they do not allow any flexibility in design, which is
for instance needed for the design of directional representation systems. In fact, it is
conceivable that no orthonormal basis with paralleling properties such as curvelets
or shearlets does exist. A task benefitting from linear independence is compression,
which naturally requires a minimal number of coefficients.

Also, from anexpansionpoint of view, the utilization of orthonormal bases is
not advisable. A particular problem affecting sparsity methodologies as well as the
utilization for PDE solvers is the uniqueness of the sequence (ci)

M
i=1. This non-

flexibility prohibits the search for a sparse coefficient sequence.
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It is evident that those problems can be tackled by allowing the system(ϕi)
M
i=1 to

be redundant. Certainly, numerical stability issues in thetypical processing of data

x 7→ (〈x,ϕi〉)M
i=1 7→

M

∑
i=1

〈x,ϕi〉ϕ̃i ≈ x

with an adapted system(ϕ̃i)
M
i=1 have to be taken into account. This leads naturally

to the notion of a (Hilbert space) frame. The main idea is to have a controlled norm
equivalence between the datax and the sequence of coefficients(〈x,ϕi〉)M

i=1.
The area of frame theory has very close relations to other research fields in both

pure and applied mathematics. General (Hilbert space) frame theory – in particu-
lar, including the infinite-dimensional situation – intersects functional analysis and
operator theory. It also bears close relations to the novel area of applied harmonic
analysis, in which the design of representation systems – typically by a careful parti-
tioning of the Fourier domain – is one major objective. Some researchers even con-
sider frame theory as belonging to this area. Restricting tothe finite-dimensional
situation – in which customarily the termfinite frame theoryis used – the classi-
cal areas of matrix theory and numerical linear algebra haveclose intersections, but
also, for instance, the novel area of Compressed Sensing as already pointed out.

Nowadays, frames have established themselves as a standardnotion in applied
mathematics, computer science, and engineering. Finite frame theory deserves spe-
cial attention due to its importance for applications, and might be even considered a
research area of its own. This is also the reason why this bookspecifically focusses
on finite frame theory. The subsequent chapters will show thediversity of this rich
and vivid research area to date ranging from the developmentof frameworks to ana-
lyze specific properties of frames, the design of different classes of frames to various
applications of frames and also extensions of the notion of aframe.

1.3 Outline

In the sequel, in Section 2 we first provide some background information on Hilbert
space theory and operator theory to make this book self-contained. Frames are then
subsequently introduced in Section 3, followed by a discussion of the four main
operators associated with a frame, namely the analysis, synthesis, frame, and Gram-
mian operator (see Section 4). Reconstruction results and algorithms naturally in-
cluding the notion of a dual frame is the focus of Section 5. This is followed by the
presentation of different constructions of tight as well asnon-tight frames (Section
6), and a discussion of some crucial properties of frames, inparticular, their span-
ning properties, the redundancy of a frame, and equivalencerelations among frames
in Section 7. This chapter is concluded by brief introductions to diverse applications
and extensions of frames (Sections 8 and 9).
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2 Background Material

Let us start by recalling some basic definitions and results from Hilbert space theory
and operator theory, which will be required for all subsequent chapters. We do not
include the proofs of the presented results, and refer to thestandard literature such
as, for instance, [153] for Hilbert space theory and [71, 105, 130] for operator theory.
We would like to emphasize that all following results are solely stated in the finite
dimensional setting, which is the focus of this book.

2.1 Review of Basics from Hilbert Space Theory

LettingN be a positive integer, we denote byH
N a real or complexN-dimensional

Hilbert space. This will be the space considered throughoutthis book. Sometimes,
if it is convenient, we identifyH N with RN orCN. By 〈·, ·〉 and‖ · ‖ we denote the
inner product onH N and its corresponding norm, respectively.

Let us now start with the origin of frame theory, which is the notion of an or-
thonormal basis. Alongside, we recall the basic definitionswe will also require in
the sequel.

Definition 1. A vectorx∈ H N is callednormalizedif ‖x‖ = 1. Two vectorsx,y∈
H N are calledorthogonalif 〈x,y〉= 0. A system(ei)

k
i=1 of vectors inH N is called

(a) complete(or aspanning set) if span{ei}k
i=1 = H N.

(b) orthogonalif for all i 6= j, the vectorsei andej are orthogonal.
(c) orthonormalif it is orthogonal and eachei is normalized.
(e) orthonormal basisfor H

N if it is complete and orthonormal.

A fundamental result in Hilbert space theory isParseval’s Identity.

Proposition 1 (Parseval’s Identity). If (ei)
N
i=1 is an orthonormal basis forH N,

then, for every x∈ H N, we have

‖x‖2 =
N

∑
i=1

|〈x,ei〉|2.

Interpreting this identity from a signal processing point of view, it implies that the
energy of the signal is preserved under the mapx 7→ (〈x,ei〉)N

i=1 which we will later
refer to as the analysis map. We would also like to mention at this point, that this
identity is not only satisfied by orthonormal bases. In fact,redundant systems (“non-
bases”) such as(e1,

1√
2
e2,

1√
2
e2,

1√
3
e3,

1√
3
e3,

1√
3
e3, . . . ,

1√
N

eN, . . . ,
1√
N

eN) also sat-
isfy this inequality, and will later be coinedParseval frames.

Parseval’s identity has the following implication, which shows that a vectorx can
be recovered from the coefficients(〈x,ei〉)N

i=1 by a simple procedure. Thus, from
an application point of view, this result can also be interpreted as a reconstruction
formula.
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Corollary 1. If (ei)
N
i=1 is an orthonormal basis forH N, then, for every x∈ H N,

we have

x=
N

∑
i=1

〈x,ei〉ei .

Next, we present a series of identities and inequalities, which are basics exploited
in various proofs.

Proposition 2. Let x, x̃∈ H N.

(i) Cauchy-Schwartz Inequality. We have

|〈x, x̃〉| ≤ ‖x‖‖x̃‖,

with equality if and only if x= cx̃ for some constant c.
(ii) Triangle Inequality. We have

‖x+ x̃‖ ≤ ‖x‖+ ‖x̃‖.

(iii) Polarization Identity (Real Form). If H N is real, then

〈x, x̃〉= 1
4

[

‖x+ x̃‖2−‖x− x̃‖2] .

(iv) Polarization Identity (Complex Form). If H N is complex, then

〈x, x̃〉= 1
4

[

‖x+ x̃‖2−‖x− x̃‖2]+
i
4

[

‖x+ ix̃‖2−‖x− ix̃‖2] .

(v) Pythagorean Theorem. Given pairwise orthogonal vectors(xi)
M
i=1 ∈ H N, we

have
∥

∥

∥

∥

∥

M

∑
i=1

xi

∥

∥

∥

∥

∥

2

=
M

∑
i=1

‖xi‖2.

We next turn to considering subspaces inH N, again starting with the basic no-
tations and definitions.

Definition 2. Let W ,V be subspaces ofH N.

(a) A vectorx∈ H N is calledorthogonal toW (denoted byx⊥ W ), if

〈x, x̃〉= 0 for all x̃∈ W .

Theorthogonal complementof W is then defined by

W
⊥ = {x∈ H

N : x⊥ W }.

(b) The subspacesW andV are calledorthogonal subspaces(denoted byW ⊥ V ),
if W ⊂ V

⊥ (or, equivalently,V ⊂ W
⊥).
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The notion oforthogonal direct sums, which will play an essential role in Chapter
[166], can be regarded as a generalization of Parseval’s identity (Proposition 1).

Definition 3. Let (Wi)
M
i=1 be a family of subspaces ofH N. Then theirorthogonal

direct sumis defined as the space
(

M

∑
i=1

⊕Wi

)

ℓ2

:= W1× . . .×WM

with inner product defined by

〈x, x̃〉=
M

∑
i=1

〈xi , x̃i〉 for all x= (xi)
M
i=1, x̃= (x̃i)

M
i=1 ∈

(

M

∑
i=1

⊕Wi

)

ℓ2

.

The extension of Parseval’s identity can be seen when choosing x̃ = x yielding
‖x‖2 = ∑M

i=1‖xi‖2.

2.2 Review of Basics from Operator Theory

We next introduce the basic results from operator theory used throughout this book.
We first recall that each operator has an associated matrix representation.

Definition 4. Let T : H N →H K be a linear operator, let(ei)
N
i=1 be an orthonormal

basis forH N, and let(gi)
K
i=1 be an orthonormal basis forH K . Then thematrix

representation of T(with respect to the orthonormal bases(ei)
N
i=1 and(gi)

K
i=1) is a

matrix of sizeK ×N and is given byA= (ai j )
K , N

i=1, j=1, where

ai j = 〈Tej ,gi〉.

For all x∈ H N with c= (〈x,ei〉)N
i=1 we have

Tx= Ac.

2.2.1 Invertibility

We start with the following definition.

Definition 5. Let T : H N → H K be a linear operator.

(a) Thekernelof T is defined by kerT := {x∈ H N : Tx= 0}. Its rangeis ranT :=
{Tx : x∈ H N}, sometimes also calledimageand denoted by imT. Therank of
T, rankT, is the dimension of the range ofT.
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(b) The operatorT is calledinjective(or one-to-one), if kerT = {0}, andsurjective
(oronto), if ranT =H K . It is calledbijective (or invertible), if T is both injective
and surjective.

(c) Theadjoint operator T∗ : H K → H N is defined by

〈Tx, x̃〉= 〈x,T∗x̃〉 for all x∈ H
N andx̃∈ H

K .

(d) Thenormof T is defined by

‖T‖ := sup{‖Tx‖ : ‖x‖= 1}.

The next result states several relations between these notions.

Proposition 3. (i) Let T : H N → H K be a linear operator. Then

dimH
N = N = dimkerT + rankT.

Moreover, if T is injective, then T∗T is also injective.
(ii) Let T : H N → H N be a linear operator. Then T is injective if and only if it is

surjective. Moreover ,kerT = (ranT∗)⊥, and hence

H
N = kerT ⊕ ranT∗.

If T : H N → H N is an injective operator, thenT is obviously invertible. If an
operatorT : H N →H K is not injective, we can makeT injective by restricting it to
(kerT)⊥. However,T|(kerT)⊥ might still not be invertible, since it does not need to

be surjective. This can be ensured by considering the operator T : (kerT)⊥ → ranT,
which is now invertible.

The Moore-Penrose inverse of an injective operator provides a one-sided inverse
for the operator.

Definition 6. Let T : H
N → H

K be an injective, linear operator. TheMoore-
Penrose inverseof T, T†, is defined by

T† = (T∗T)−1T∗.

It is immediate to prove invertibility from the left as stated in the following result.

Proposition 4. If T : H
N → H

K is an injective, linear operator, then T†T = Id.

Thus,T† plays the role of the inverse on ranT – not on all ofH K . It projects a
vector fromH K onto ranT and then inverts the operator on this subspace.

A more general notion of this inverse is called thepseudo-inverse, which can be
applied to a non-injective operator. It, in fact, adds one more step to the action of
T† by first restricting to(kerT)⊥ to enforce injectivity of the operator followed
by application of the Moore-Penrose inverse of this new operator. This pseudo-
inverse can be derived from the singular value decomposition. Recalling that by
fixing orthonormal bases of the domain and range of a linear operator we derive an
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associated unique matrix representation, we begin by stating this decomposition in
terms of a matrix.

Theorem 1.Let A be an M×N matrix. Then there exist an M×M unitary matrix
U (see Definition 9), an N×N unitary matrix V , and an M×N diagonal matrixΣ
with nonnegative, decreasing real entries on the diagonal such that

A=UΣV∗.

Hereby, anM×N diagonal matrix withM 6= N is anM ×N matrix (ai j )
M , N

i=1, j=1
with ai j = 0 for i 6= j.

Definition 7. LetA be anM×N matrix, and letU,Σ , andV be chosen as in Theorem
1. ThenA = UΣV∗ is called thesingular value decomposition (SVD)of A. The
column vectors ofU are called theleft singular vectors, and the column vectors of
V are referred to as theright singular vectorsof A.

The pseudo-inverseA+ of A can be deduced from the SVD in the following way.

Theorem 2.Let A be an M×N matrix, and let A= UΣV∗ be its singular value
decomposition. Then

A+ =VΣ+U∗,

whereΣ+ is the N×M diagonal matrix arising fromΣ∗ by inverting the non-zero
(diagonal) entries.

2.2.2 Riesz Bases

In the previous subsection, we already recalled the notion of an orthonormal basis.
However, sometimes the requirement of orthonormality is too strong, but uniqueness
of a decomposition as well as stability shall be retained. The notion of a Riesz basis,
which we next introduce, satisfies these desiderata.

Definition 8. A family of vectors(ϕi)
N
i=1 in a Hilbert spaceH N is a Riesz basis

with lower (respectively,upper) Riesz bounds A(resp.B), if, for all scalars(ai)
N
i=1,

we have

A
N

∑
i=1

|ai|2 ≤
∥

∥

∥

∥

∥

N

∑
i=1

aiϕi

∥

∥

∥

∥

∥

2

≤ B
N

∑
i=1

|ai |2.

The following result is immediate from the definition.

Proposition 5. Let (ϕi)
N
i=1 be a family of vectors. Then the following conditions are

equivalent.

(i) (ϕi)
N
i=1 is a Riesz basis forH N with Riesz bounds A and B.

(ii) For any orthonormal basis(ei)
N
i=1 for H N, the operator T onH N given by

Tei = ϕi for all i = 1,2, . . . ,N is an invertible operator with‖T‖2 ≤ B and
‖T−1‖−2 ≥ A.
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2.2.3 Diagonalization

Next, we continue our list of important properties of linearoperators.

Definition 9. A linear operatorT : H N → H K is called

(a) self-adjoint, if H N = H K andT = T∗.
(b) normal, if T∗T = TT∗.
(c) an isometry, if ‖Tx‖= ‖x‖ for all x∈ H N.
(d) a co-isometry, if T∗ is an isometry.
(e) positive, if H

N = H
K , T is self-adjoint, and〈Tx,x〉 ≥ 0 for all x∈ H

N.
(f) unitary, if it is a surjective isometry.

From the variety of basic relations and results of those notions, the next proposi-
tion presents a selection of those which will be required in the sequel.

Proposition 6. Let T : H N → H K be a linear operator.

(i) We have‖T∗T‖= ‖T‖2, and T∗T and TT∗ are self-adjoint.
(ii) If N = K, the following conditions are equivalent.

(1) T is self-adjoint.
(2) 〈Tx, x̃〉= 〈x,Tx̃〉 for all x, x̃∈ H N.
(3) If H N is complex,〈Tx,x〉 ∈ R for all x ∈ H N.

(iii) The following conditions are equivalent.

(1) T is an isometry.
(2) T∗T = Id.
(3) 〈Tx,Tx̃〉= 〈x, x̃〉 for all x, x̃∈ H N.

(iv) The following conditions are equivalent.

(1) T is unitary.
(2) T and T∗ are isometric.
(3) TT∗ = Id and T∗T = Id.

(v) If U is a unitary operator, then‖UT‖= ‖T‖= ‖TU‖.

Diagonalizations of operators are frequently utilized to derive an understanding
of the action of an operator. The following definitions lay the groundwork for this
theory.

Definition 10. Let T : H N → H N be a linear operator. A non-zero vectorx∈ H N

is an eigenvectorof T with eigenvalueλ , if Tx= λx. The operatorT is called
orthogonally diagonalizable, if there exists an orthonormal basis(ei)

N
i=1 of H N

consisting of eigenvectors ofT.

We start with an easy observation.

Proposition 7. For any linear operator T: H N → H K , the non-zero eigenvalues
of T∗T and TT∗ are the same.



Introduction to Finite Frame Theory 11

If the operator is unitary, self-adjoint or positive, we have more information on
the eigenvalues stated in the next result, which follows immediately from Proposi-
tion 6.

Corollary 2. Let T : H
N → H

N be a linear operator.

(i) If T is unitary, then its eigenvalues have modulus one.
(ii) If T is self-adjoint, then its eigenvalues are real.
(iii) If T is positive, then its eigenvalues are non-negative.

This fact allows us to introduce a condition number associated with each invert-
ible positive operator.

Definition 11. Let T : H N →H N be an invertible positive operator with eigenval-
uesλ1 ≥ λ2 ≥ . . .≥ λN. Then itscondition numberis defined byλ1

λN
.

We next state a fundamental result in operator theory which has its analogue in
the infinite-dimensional setting called thespectral theorem.

Theorem 3.LetH N be complex and let T: H N →H
N be a linear operator. Then

the following conditions are equivalent.

(i) T is normal.
(ii) T is orthogonally diagonizable.
(iii) There exists a diagonal matrix representation of T .
(iv) There exist an orthonormal basis(ei)

N
i=1 of H N and valuesλ1, . . . ,λN such that

Tx=
N

∑
i=1

λi〈x,ei〉ei for all x ∈ H
N.

Moreover,
‖T‖2 = max

1≤i≤N
λi.

Since every self-adjoint operator is normal we obtain the following corollary
(which is independent of whetherH N is real or complex).

Corollary 3. A self-adjoint operator is orthogonally diagonalizable.

Another consequence of Theorem 3 is the following result, which in particular
allows the definition of then-th root of a positive operator.

Corollary 4. Let T : H N →H
N be an invertible positive operator with normalized

eigenvectors(ei)
N
i=1 and respective eigenvalues(λi)

N
i=1, let a∈ R, and define an

operator Ta : H N → H N by

Tax=
N

∑
i=1

λ a
i 〈x,ei〉ei for all x ∈ H

N.

Then Ta is a positive operator and TaTb = Ta+b for a,b ∈ R. In particular, T−1

and T−1/2 are positive operators.
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Finally, we define the trace of an operator, which, by using Theorem 3, can be
expressed in terms of eigenvalues.

Definition 12. Let T : H N → H N be an operator. Then, thetraceof T is defined
by

TrT =
N

∑
i=1

〈Tei ,ei〉, (1)

where(ei)
N
i=1 is an arbitrary orthonormal basis forH N.

The trace is well defined since the sum in Equation 1 is independent of the choice
of the orthonormal basis.

Corollary 5. Let T : H N → H N be an orthogonally diagonalizable operator, and
let (λi)

N
i=1 be its eigenvalues. Then

TrT =
N

∑
i=1

λi .

2.2.4 Projection Operators

Subspaces are closely intertwined with associated projection operators which map
vectors onto the subspace either orthogonally or not. Although orthogonal projec-
tions are more often used, in Chapter [166] we will require the more general notion.

Definition 13. Let P : H N → H N be a linear operator. ThenP is called aprojec-
tion, if P2 = P. This projection is calledorthogonal, if P is in addition self-adjoint.

For the sake of brevity,orthogonal projectionsare often simply referred to as
projectionsprovided there is no danger of misinterpretation.

Relating to our previous comment, for any subspaceW of H
N, there exists

a unique orthogonal projectionP of H N havingW as its range. This projection
can be constructed as follows: Letm denote the dimension ofW , and choose an
orthonormal basis(ei)

m
i=1 of W . Then, for anyx∈ H N, we set

Px=
m

∑
i=1

〈x,ei〉ei .

It is important to notice that alsoId −P is an orthogonal projection ofH N, this
time onto the subspaceW ⊥.

An orthogonal projectionP has the crucial property that each given vector of
H N is mapped to the closest vector in the range ofP.

Lemma 1. Let W be a subspace ofH N, let P be the orthogonal projection onto
W , and let x∈ H N. Then
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‖x−Px‖ ≤ ‖x− x̃‖ for all x̃∈ W .

Moreover, if‖x−Px‖= ‖x− x̃‖ for somex̃∈ W , thenx̃= Px.

The next result gives the relationship between trace and rank for projections. This
follows from the definition of an orthogonal projection and Corollaries 3 and 5.

Proposition 8. Let P be the orthogonal projection onto a subspaceW of H N, and
let m= dimW . Then P is orthogonally diagonalizable with eigenvalue1 of multi-
plicity m and eigenvalue0of multiplicity N−m. In particular, we have thatTrP=m.

3 Basics of Finite Frame Theory

We start by presenting the basics of finite frame theory. For illustration purposes,
we then present some exemplary frame classes. At this point,we would also like to
refer to the monographs and books [35, 36, 100, 101, 112] as well as to [66, 67] for
infinite-dimensional frame theory.

3.1 Definition of a Frame

The definition of a (Hilbert space) frame originates from early work by Duffin and
Schaeffer [80] on nonharmonic Fourier series. The main idea, as already discussed
in Section 1, is to weaken Parseval’s identity yet to still retain norm equivalence
between a signal and its frame coefficients.

Definition 14. A family of vectors(ϕi)
M
i=1 in H N is called aframe forH N, if there

exist constants 0< A≤ B< ∞ such that

A‖x‖2 ≤
M

∑
i=1

|〈x,ϕi〉|2 ≤ B‖x‖2 for all x∈ H
N. (2)

The following notions are related to a frame(ϕi)
M
i=1.

(a) The constantsA andB as in (2) are calledlower and upper frame boundfor the
frame, respectively. The largest lower frame bound and the smallest upper frame
bound are denoted byAop,Bop and are called theoptimal frame bounds.

(b) Any family (ϕi)
M
i=1 satisfying the right hand side inequality in (2) is called a

B-Bessel sequence.
(c) If A= B is possible in (2), then(ϕi)

M
i=1 is called anA-tight frame.

(d) If A= B= 1 is possible in (2) – i.e., Parseval’s Identity holds –, then(ϕi)
M
i=1 is

called aParseval frame.
(e) If there exists a constantc such that‖ϕi‖= c for all i = 1,2, . . . ,M, then(ϕi)

M
i=1

is anequal-norm frame. If c= 1, (ϕi)
M
i=1 is aunit-norm frame.
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(f) If there exists a constantc such that|〈ϕi ,ϕ j〉| = c for all i 6= j, then(ϕi)
M
i=1 is

called anequi-angularframe.
(g) The values(〈x,ϕi〉)M

i=1 are called theframe coefficientsof the vectorx with re-
spect to the frame(ϕi)

M
i=1.

(h) The frame(ϕi)
M
i=1 is calledexact, if (ϕi)i∈I ceases to be a frame forH N for every

I = {1, . . . ,M} \ {i0}, i0 ∈ {1, . . . ,M}.

We can immediately make the following useful observations.

Lemma 2. Let (ϕi)
M
i=1 be a family of vectors inH N.

(i) If (ϕi)
M
i=1 is an orthonormal basis, then(ϕi)

M
i=1 is a Parseval frame. The converse

is not true in general.
(ii) (ϕi)

M
i=1 is a frame forH N if and only if it is a spanning set forH N.

(iii) (ϕi)
M
i=1 is a unit-norm Parseval frame if and only if it is an orthonormal basis.

(iv) If (ϕi)
M
i=1 is an exact frame forH N, then it is a basis ofH N, i.e. a linearly

independent spanning set.

Proof. (i). The first part is an immediate consequence of Proposition 1. For the sec-
ond part, let(ei)

N
i=1 and(gi)

N
i=1 be orthonormal bases forH N. Then(ei/

√
2)N

i=1∪
(gi/

√
2)N

i=1 is a Parseval frame forH N, but not an orthonormal basis.
(ii). If (ϕi)

M
i=1 is not a spanning set forH N then there existsx 6= 0 such that

〈x,ϕi〉 = 0 for all i = 1, . . . ,M. Hence,(ϕi)
M
i=1 cannot be a frame. Conversely, as-

sume that(ϕi)
M
i=1 is not a frame. Then there exists a sequence(xn)

∞
n=1 of normalized

vectors inH
N such that∑M

i=1 |〈xn,ϕi〉|2 < 1/n for all n∈ N. Hence, the limitx of
a convergent subsequence of(xn)

∞
n=1 satisfies〈x,ϕi〉 = 0 for all i = 1, . . . ,M. Since

‖x‖= 1, it follows that(ϕi)
M
i=1 is not a spanning set.

(iii). By the Parseval property, for eachi0 ∈ {1, . . . ,M}, we have

‖ϕi0‖2
2 =

M

∑
i=1

|〈ϕi0,ϕi〉|2 = ‖ϕi0‖4
2+

M

∑
i=1, i6=i0

|〈ϕi0,ϕi〉|2.

Since the frame vectors are normalized, we conclude that

M

∑
i=1, i6=i0

|〈ϕi0,ϕi〉|2 = 0 for all i0 ∈ {1, . . . ,M}.

Hence〈ϕi ,ϕ j〉 = 0 for all i 6= j. Thus,(ϕi)
M
i=1 is an orthonormal system which is

complete by (ii), and (iii) is proved.
(iv). If (ϕi)

M
i=1 is a frame, by (ii), it is also a spanning set forH N. Towards

a contradiction, assume that(ϕi)
M
i=1 is linearly dependent. Then there exist some

i0 ∈ {1, . . . ,M} and valuesλi , i ∈ I := {1, . . . ,M} \ {i0} such that

ϕi0 = ∑
i∈I

λiϕi .

This implies that(ϕi)i∈I is also a frame, thus contradicting exactness of the frame.
⊓⊔
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Before presenting some insightful basic results in frame theory, we now first
discuss some examples of frames to build up intuition.

3.2 Examples

By Lemma 2 (iii), orthonormal bases are unit-norm Parseval frames (and vice versa).
However, applications typically requireredundantParseval frames. One basic way
to approach this construction problem is to build redundantParseval frames using
orthonormal bases, and we will present several examples in the sequel. Since the
associated proofs are straightforward, we leave them to theinterested reader.

Example 1.Let (ei)
N
i=1 be an orthonormal basis forH

N.

(1) The system
(e1,0,e2,0, . . . ,eN,0)

is a Parseval frame forH N. This example indicates that a Parseval frame can
indeed contain zero vectors.

(2) The system
(

e1,
e2√

2
,

e2√
2
,

e3√
3
,

e3√
3
,

e3√
3
, . . . ,

eN√
N
, . . . ,

eN√
N

)

,

is a Parseval frame forH N. This example indicates two important issues: Firstly,
a Parseval frame can have multiple copies of a single vector.Secondly, the norms
of vectors of an (infinite) Parseval frame can converge to zero.

We next consider a series of examples of non-Parseval frames.

Example 2.Let (ei)
N
i=1 is an orthonormal basis forH N.

(1) The system
(e1,e1, . . . ,e1,e2,e3, . . . ,eN)

with the vectore1 appearingN+1 times, is a frame forH N with frame bounds
1 andN+1.

(2) The system
(e1,e1,e2,e2,e3,e3, . . . ,eN)

is a 2-tight frame forH N.
(3) The union ofL orthonormal bases ofH N is a unit-normL-tight frame forH N,

generalizing (2).

A particularly interesting example is the smallest truly redundant Parseval frame
for R2, which is typically coinedMercedes-Benz frame. The reason for this naming
becomes evident in Figure 1.
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Example 3.TheMercedes-Benz framefor R2 is the equal-norm tight frame forR2

given by:
{

√

2
3

(

0
1

)

,
√

2
3

( √
3

2
− 1

2

)

,
√

2
3

(

−
√

3
2

− 1
2

)}

Note that this frame is also equi-angular.

Fig. 1 Mercedes-Benz frame.

For more information on the theoretical aspects of equi-angular frames we refer
to [61, 92, 121, 140]. A selection of their applications is reconstrucion without phase
[6, 5], erasure-resilient transmission [16, 103], and coding [137]. We also refer to
the chapters [157, 158] in this book.

Another standard class of examples can be derived from thediscrete Fourier
transform(DFT) matrix.

Example 4.GivenM ∈N, we letω = exp(2π i
M ). Then the discrete Fourier transform

(DFT) matrix inCM×M is defined by

DM =
1√
M

(

ω jk
)M−1

j ,k=0
.

This matrix is a unitary operator onCM. Later (see Corollary 11) it will be seen that
the selection of anyN rows fromDM, yields a Parseval frame forCN by taking the
associatedM column vectors.

We would like to finally mention that Section 6 contains diverse constructions
of frames. There also exist particularly interesting classes of frames such as Gabor
frames utilized primarily for audio processing. Among the results on various as-
pects of Gabor frames are uncertainty considerations [114], linear independence
[120], group-related properties [90], optimality analysis [128], and applications
[68, 75, 76, 88, 89]. Chapter [159] provides a survey for thisclass of frames. Another
example is the class of group frames, for which various constructions [25, 102, 148],
classifications [65], and intriguing symmetry properties [147, 149] have been stud-
ied. A comprehensive presentation can be found in Chapter [158].
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4 Frames and Operators

The analysis, synthesis, and frame operator determine the operation of a frame when
analyzing and reconstructing a signal. The Grammian operator is perhaps not that
well-known, yet it crucially illuminates the behavior of a frame(ϕi)

M
i=1 embedded

as anN-dimensional subspace in the high-dimensional spaceR
M.

For the rest of this introduction we setℓM
2 := ℓ2({1, . . . ,M}). Note that this space

in fact coincides withRM or CM, endowed with the standard inner product and the
associated Euclidean norm.

4.1 Analysis and Synthesis Operators

Two of the main operators associated with a frame are the analysis and synthesis
operators. The analysis operator – as the name suggests – analyzes a signal in terms
of the frame by computing its frame coefficients. We start by formalizing this notion.

Definition 15. Let (ϕi)
M
i=1 be a family of vectors inH N. Then the associatedanal-

ysis operator T: H N → ℓM
2 is defined by

Tx :=
(

〈x,ϕi〉
)M

i=1, x∈ H
N.

In the following lemma we derive two basic properties of the analysis operator.

Lemma 3. Let (ϕi)
M
i=1 be a sequence of vectors inH N with associated analysis

operator T .

(i) We have

‖Tx‖2 =
M

∑
i=1

|〈x,ϕi〉|2 for all x ∈ H
N.

Hence,(ϕi)
M
i=1 is a frame forH N if and only if T is injective.

(ii) The adjoint operator T∗ : ℓM
2 → H N of T is given by

T∗(ai)
M
i=1 =

M

∑
i=1

aiϕi .

Proof. (i). This is an immediate consequence of the definition ofT and the frame
property (2).

(ii). For x= (ai)
M
i=1 andy∈ H N, we have

〈T∗x,y〉= 〈x,Ty〉=
〈

(ai)
M
i=1,

(

〈y,ϕi〉
)M

i=1

〉

=
M

∑
i=1

ai〈y,ϕi〉=
〈

M

∑
i=1

aiϕi ,y

〉

.

Thus,T∗ is as claimed. ⊓⊔
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The second main operator associated to a frame, the synthesis operator, is now
defined as the adjoint operator to the analysis operator given in Lemma 3(ii).

Definition 16. Let (ϕi)
M
i=1 be a sequence of vectors inH N with associated analy-

sis operatorT. Then the associatedsynthesis operatoris defined to be the adjoint
operatorT∗.

The next result summarizes some basic, yet useful properties of the synthesis
operator.

Lemma 4. Let (ϕi)
M
i=1 be a sequence of vectors inH N with associated analysis

operator T .

(i) Let (ei)
M
i=1 denote the standard unit basis ofℓM

2 . Then for all i= 1,2, . . . ,M, we
have T∗ei = T∗Pei = ϕi , where P: ℓM

2 → ℓM
2 denotes the orthogonal projection

ontoranT.
(ii) (ϕi)

M
i=1 is a frame if and only if T∗ is surjective.

Proof. The first claim follows immediately from Lemma 3 and the fact that kerT∗ =
(ranT)⊥. The second claim is a consequence of ranT∗ = (kerT)⊥ and Lemma 3(i).
⊓⊔

Often frames are modified by the application of an invertibleoperator. The next
result shows not only the impact on the associated analysis operator, but also the
fact that the new sequence again forms a frame.

Proposition 9. Let Φ = (ϕi)
M
i=1 be a sequence of vectors inH N with associated

analysis operator TΦ and let F: H N →H N be a linear operator. Then the analysis
operator of the sequence FΦ = (Fϕi)

M
i=1 is given by

TFΦ = TΦ F∗.

Moreover, ifΦ is a frame forH N and F is invertible, then also FΦ is a frame for
H N.

Proof. Forx∈ H N we have

TFΦx=
(

〈x,Fϕi〉
)M

i=1 =
(

〈F∗x,ϕi〉
)M

i=1 = TΦF∗x.

This provesTFΦ = TΦ F∗. Themoreover-part follows from Lemma 4(ii). ⊓⊔

Next, we analyze the structure of the matrix representationof the synthesis op-
erator. This matrix is of fundamental importance, since this is what most frame
constructions in fact focus on, see also Section 6.

The first result provides the form of this matrix alongside with stability proper-
ties.
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Lemma 5. Let (ϕi)
M
i=1 be a frame forH N with analysis operator T . Then a matrix

representation of the synthesis operator T∗ is the N×M matrix given by




| | · · · |
ϕ1 ϕ2 · · · ϕM

| | · · · |



 .

Moreover, the Riesz bounds of the row vectors of this matrix equal the frame bounds
of the column vectors.

Proof. The form of the matrix representation is obvious. To prove the moreover-
part, let (ej)

N
j=1 be the corresponding orthonormal basis ofH N and for j =

1,2, . . . ,N let
ψ j = [〈ϕ1,ej〉,〈ϕ2,ej〉, . . . ,〈ϕM,ej〉],

be the row vectors of the matrix. Then forx= ∑N
j=1a jej we obtain

M

∑
i=1

|〈x,ϕi〉|2 =
M

∑
i=1

∣

∣

∣

∣

∣

N

∑
j=1

a j〈ej ,ϕi〉
∣

∣

∣

∣

∣

2

=
N

∑
j ,k=1

a jak

M

∑
i=1

〈ej ,ϕi〉〈ϕi ,ek〉

=
N

∑
j ,k=1

a jak〈ψk,ψ j〉=
∥

∥

∥

∥

∥

N

∑
j=1

a jψ j

∥

∥

∥

∥

∥

2

.

The claim follows from here. ⊓⊔

A much stronger result (Proposition 12) can be proven for thecase in which the
matrix representation is derived using a specifically chosen orthonormal basis. The
choice of this orthonormal basis though requires the introduction of the so-called
frame operator in the following Subsection 4.2.

4.2 The Frame Operator

The frame operator might be considered the most important operator associated with
a frame. Although it is ‘merely’ the concatenation of the analysis and synthesis op-
erator, it encodes crucial properties of the frame as we willsee in the sequel. More-
over, it is also fundamental for the reconstruction of signals from frame coefficients
(see Theorem 8).

4.2.1 Fundamental Properties

The precise definition of the frame operator associated witha frame is as follows.

Definition 17. Let (ϕi)
M
i=1 be a sequence of vectors inH N with associated analysis

operatorT. Then the associatedframe operator S: H N → H N is defined by
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Sx:= T∗Tx=
M

∑
i=1

〈x,ϕi〉ϕi , x∈ H
N.

A first observation concerning the close relation of the frame operator to frame
properties is the following lemma.

Lemma 6. Let(ϕi)
M
i=1 be a sequence of vectors inH

N with associated frame oper-
ator S. Then, for all x∈ H N,

〈Sx,x〉=
M

∑
i=1

|〈x,ϕi〉|2.

Proof. This follows directly from〈Sx,x〉= 〈T∗Tx,x〉= ‖Tx‖2 and Lemma 3(i). ⊓⊔

Clearly, the frame operatorS= T∗T is self-adjoint and positive. The most funda-
mental property of the frame operator – if the underlying sequence of vectors forms
a frame – is its invertibility which is crucial for the reconstruction formula.

Theorem 4.The frame operator S of a frame(ϕi)
M
i=1 for H

N with frame bounds A
and B is a positive, self-adjoint invertible operator satisfying

A · Id ≤ S≤ B · Id.

Proof. By Lemma 6, we have

〈Ax,x〉= A‖x‖2 ≤
M

∑
i=1

|〈x,ϕi〉|2 = 〈Sx,x〉 ≤ B‖x‖2 = 〈Bx,x〉 for all x∈ H
N.

This implies the claimed inequality.⊓⊔

The following proposition follows directly from Proposition 9.

Proposition 10.Let(ϕi)
M
i=1 be a frame forH N with frame operator S, and let F be

an invertible operator onH N. Then(Fϕi)
M
i=1 is a frame with frame operator FSF∗.

4.2.2 The Special Case of Tight Frames

Tight frames can be characterized as those frames whose frame operator equals a
positive multiple of the identity. The next result providesa variety of similarly frame
operator inspired classifications.

Proposition 11.Let(ϕi)
M
i=1 be a frame forH N with analysis operator T and frame

operator S. Then the following conditions are equivalent.

(i) (ϕi)
M
i=1 is an A-tight frame forH N.

(ii) S= A · Id.
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(iii) For every x∈ H N,

x= A−1 ·
M

∑
i=1

〈x,ϕi〉ϕi .

(iv) For every x∈ H N,

A‖x‖2 =
M

∑
i=1

|〈x,ϕi〉|2.

(v) T/
√

A is an isometry.

Proof. (i) ⇔ (ii) ⇔ (iii) ⇔ (iv). These are immediate from the definition of the
frame operator and from Theorem 4.

(ii) ⇔ (v). This follows from the fact thatT/
√

A is an isometry if and only if
T∗T = A · Id. ⊓⊔

A similar result for the special case of a Parseval frame can be easily deduced
from Proposition 11 by settingA= 1.

4.2.3 Eigenvalues of the Frame Operator

Tight frames have the property that the eigenvalues of the associated frame opera-
tor all coincide. We next consider the general situation, i.e., frame operators with
arbitrary eigenvalues.

The first and maybe even most important result shows that the largest and small-
est eigenvalues of the frame operator are the optimal frame bounds of the frame.
Optimality refers to the smallest upper frame bound and the largest lower frame
bound.

Theorem 5.Let (ϕi)
M
i=1 be a frame forH N with frame operator S having eigenval-

uesλ1 ≥ . . . ≥ λN. Thenλ1 coincides with the optimal upper frame bound andλN

is the optimal lower frame bound.

Proof. Let (ei)
N
i=1 denote the normalized eigenvectors of the frame operatorSwith

respective eigenvalues(λ j)
N
j=1 written in decreasing order. Letx∈ H N be arbitrar-

ily fixed. Sincex= ∑M
j=1〈x,ej 〉ej , we obtain

Sx=
N

∑
j=1

λ j〈x,ej〉ej .

By Lemma 6, this implies

M

∑
i=1

|〈x,ϕi〉|2 = 〈Sx,x〉=
〈

N

∑
j=1

λ j〈x,ej〉ej ,
N

∑
j=1

〈x,ej 〉ej

〉

=
N

∑
j=1

λ j |〈x,ej 〉|2 ≤ λ1

N

∑
j=1

|〈x,ej 〉|2 = λ1‖x‖2.
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ThusBop ≤ λ1, whereBop denotes the optimal upper frame bound of the frame
(ϕi)

M
i=1. The claimBop= λ1 then follows from

M

∑
i=1

|〈e1,ϕi〉|2 = 〈Se1,e1〉= 〈λ1e1,e1〉= λ1.

The claim concerning the lower frame bound can be proven similarly. ⊓⊔

From this result, we can now draw the following immediate conclusion on Riesz
bounds.

Corollary 6. Let (ϕi)
N
i=1 be a frame forH N. Then the following statements hold.

(i) The optimal upper Riesz bound and the optimal upper framebound of(ϕi)
N
i=1

coincide.
(ii) The optimal lower Riesz bound and the optimal lower frame bound of(ϕi)

N
i=1

coincide.

Proof. Let T denote the analysis operator of(ϕi)
N
i=1 and S the associated frame

operator having eigenvalues(λi)
N
i=1 written in decreasing order. We have

λ1 = ‖S‖= ‖T∗T‖= ‖T‖2 = ‖T∗‖2

and
λN = ‖S−1‖−1 = ‖(T∗T)−1‖−1 = ‖(T∗)−1‖−2.

Now, both claims follow from Theorem 5, Lemma 4, and Proposition 5. ⊓⊔

The next theorem reveals a relation between the frame vectors and the eigenval-
ues and eigenvectors of the associated frame operator.

Theorem 6.Let (ϕi)
M
i=1 be a frame forH N with frame operator S having nor-

malized eigenvectors(ej)
N
j=1 and respective eigenvalues(λ j)

N
j=1. Then for all j=

1,2, . . . ,N we have

λ j =
M

∑
i=1

|〈ej ,ϕi〉|2.

In particular,

TrS=
N

∑
j=1

λ j =
M

∑
i=1

‖ϕi‖2.

Proof. This follows fromλ j = 〈Sej ,ej〉 for all j = 1, . . . ,N and Lemma 6. ⊓⊔

4.2.4 Structure of the Synthesis Matrix

As already promised in Subsection 4.1, we now apply the previously derived results
to obtain a complete characterization of the synthesis matrix of a frame in terms of
the frame operator.
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Proposition 12.Let T : H N → ℓM
2 be a linear operator, let(ej)

N
j=1 be an orthonor-

mal basis ofH N and let(λ j)
N
j=1 be a sequence of positive numbers. By A denote

the N×M matrix representation of T∗ with respect to(ej)
N
j=1 (and the standard unit

basis(êi)
M
i=1 of ℓM

2 ). Then the following conditions are equivalent.

(i) (T∗êi)
M
i=1 forms a frame forH N whose frame operator has eigenvectors(ej)

N
j=1

and associated eigenvalues(λ j)
N
j=1.

(ii) The rows of A are orthogonal, and the j-th row square sumsto λ j .
(iii) The columns of A form a frame forℓN

2 , and AA∗ = diag(λ1, . . . ,λN).

Proof. Let ( f j)
N
j=1 be the standard unit basis ofℓN

2 and denote byU : ℓN
2 →H N the

unitary operator which mapsf j to ej . ThenT∗ =UA.
(i)⇒(ii). For j,k∈ {1, . . . ,N} we have

〈A∗ f j ,A
∗ fk〉= 〈TU f j ,TU fk〉= 〈T∗Tej ,ek〉= λ jδ jk,

which is equivalent to (ii).
(ii)⇒(iii). Since the rows ofA are orthogonal, we have rankA= N which implies

that the columns ofA form a frame forℓN
2 . The rest follows from〈AA∗ f j , fk〉 =

〈A∗ f j ,A∗ fk〉= λ jδ jk for j,k = 1, . . . ,N.
(iii)⇒(i). Since(Aêi)

M
i=1 is a spanning set forℓN

2 andT∗ = UA, it follows that
(T∗êi)

M
i=1 forms a frame forH N. Its analysis operator is given byT since for all

x∈ H N,
(〈x,T∗êi〉)M

i=1 = (〈Tx, êi〉)M
i=1 = Tx.

Moreover,

T∗Tej =UAA∗U∗ej =U diag(λ1, . . . ,λN) f j = λ jU f j = λ jej ,

which completes the proof.⊓⊔

4.3 Grammian Operator

Let (ϕi)
M
i=1 be a frame forH N with analysis operatorT. The previous subsection

was concerned with properties of the frame operator defined by S= T∗T : H N →
H N. Of particular interest is also the operator generated by first applying the syn-
thesis and then the analysis operator. Let us first state the precise definition before
discussing its importance.

Definition 18. Let (ϕi)
M
i=1 be a frame forH N with analysis operatorT. Then the

operatorG : ℓM
2 → ℓM

2 defined by

G(ai)
M
i=1 = TT∗(ai)

M
i=1 =

(

M

∑
i=1

ai〈ϕi ,ϕk〉
)M

k=1

=
M

∑
i=1

ai(〈ϕi ,ϕk〉)M
k=1
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is called theGrammian(operator) of the frame(ϕi)
M
i=1.

Note that the (canonical) matrix representation of the Grammian of a frame
(ϕi)

M
i=1 for H N (which will also be called theGrammian matrix) is given by











‖ϕ1‖2 〈ϕ2,ϕ1〉 · · · 〈ϕM,ϕ1〉
〈ϕ1,ϕ2〉 ‖ϕ2‖2 · · · 〈ϕM,ϕ2〉

...
...

. . .
...

〈ϕ1,ϕM〉 〈ϕ2,ϕM〉 · · · ‖ϕM‖2











.

One property of the Grammian is immediate. In fact, if the frame is unit-norm then
the entries of the Grammian matrix are exactly the cosines ofthe angles between the
frame vectors. Hence, for instance, if a frame is equi-angular then all off diagonal
entries of the Grammian matrix have the same modulus.

The fundamental properties of the Grammian operator are collected in the fol-
lowing result.

Theorem 7.Let (ϕi)
M
i=1 be a frame forH N with analysis operator T , frame opera-

tor S, and Grammian operator G. Then the following statements hold.

(i) An operator U onH N is unitary if and only if the Grammian of(Uϕi)
M
i=1 coin-

cides with G.
(ii) The non-zero eigenvalues of G and S coincide.
(iii) (ϕi)

M
i=1 is a Parseval frame if and only if G is an orthogonal projection of rank N

(namely onto the range of T).
(iv) G is invertible if and only if M= N.

Proof. (i). This follows immediately from the fact that the entriesof the Grammian
matrix for (Uϕi)

M
i=1 are of the form〈Uϕi ,Uϕ j〉.

(ii). SinceTT∗ andT∗T have the same non-zero eigenvalues (see Proposition 7),
the same is true forG andS.

(iii). It is immediate to prove thatG is self-adjoint and has rankN. SinceT is
injective,T∗ is surjective, and

G2 = (TT∗)(TT∗) = T(T∗T)T∗,

it follows thatG is an orthogonal projection if and only ifT∗T = Id, which is equiv-
alent to the frame being Parseval.

(iv). This is immediate by (ii). ⊓⊔

5 Reconstruction from Frame Coefficients

The analysis of a signal is typically performed by merely considering its frame
coefficients. However, if the task is transmission of a signal, the ability to reconstruct
the signal from its frame coefficients and also to do so efficiently becomes crucial.
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Reconstruction from coefficients with respect to an orthonormal basis was already
discussed in Corollary 1. However, reconstruction from coefficients with respect to
a redundant system is much more delicate and requires the utilization of another
frame, called dual frame. If computing such a dual frame is computationally too
complex, a circumvention of this problem is the so-called frame algorithm.

5.1 Exact Reconstruction

We start with stating an exact reconstruction formula.

Theorem 8.Let (ϕi)
M
i=1 be a frame forH N with frame operator S. Then, for every

x∈ H N, we have

x=
M

∑
i=1

〈x,ϕi〉S−1ϕi =
M

∑
i=1

〈x,S−1ϕi〉ϕi .

Proof. This follows directly from the definition of the frame operator in Definition
17 by writingx= S−1Sxandx= SS−1x. ⊓⊔

Notice that the first formula can be interpreted as a reconstruction strategy,
whereas the second formula has the flavor of a decomposition.We further observe
that the sequence(S−1ϕi)

M
i=1 plays a crucial role in the formulas in Theorem 8. The

next result shows that this sequence indeed also constitutes a frame.

Proposition 13.Let (ϕi)
M
i=1 be a frame forH N with frame bounds A and B and

with frame operator S. Then the sequence(S−1ϕi)
M
i=1 is a frame forH N with frame

bounds B−1 and A−1 and with frame operator S−1.

Proof. By Proposition 10, the sequence(S−1ϕi)
M
i=1 forms a frame forH N with

associated frame operatorS−1S(S−1)∗ = S−1. This in turn yields the frame bounds
B−1 andA−1. ⊓⊔

This new frame is called thecanonical dual frame. In the sequel, we will discuss
that also other dual frames may be utilized for reconstruction.

Definition 19. Let (ϕi)
M
i=1 be a frame forH N with frame operator denoted byS.

Then(S−1ϕi)
M
i=1 is called thecanonical dual framefor (ϕi)

M
i=1.

The canonical dual frame of a Parseval frame is now easily determined by Propo-
sition 13.

Corollary 7. Let (ϕi)
M
i=1 be a Parseval frame forH N. Then its canonical dual

frame is the frame(ϕi)
M
i=1 itself, and the reconstruction formula in Theorem 8 reads

x=
M

∑
i=1

〈x,ϕi〉ϕi , x∈ H
N.
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As an application of the above reconstruction formula for Parseval frames, we
prove the following proposition which again shows the closerelation between Par-
seval frames and orthonormal bases already indicated in Lemma 2.

Proposition 14 (Trace Formula for Parseval Frames).Let (ϕi)
M
i=1 be a Parseval

frame forH N, and let F be a linear operator onH N. Then

Tr(F) =
M

∑
i=1

〈Fϕi ,ϕi〉.

Proof. Let (ej)
N
j=1 be an orthonormal basis forH N. Then, by definition,

Tr(F) =
N

∑
j=1

〈Fej ,ej〉.

This implies

Tr(F) =
N

∑
j=1

〈

M

∑
i=1

〈Fej ,ϕi〉ϕi ,ej

〉

=
N

∑
j=1

M

∑
i=1

〈ej ,F
∗ϕi〉〈ϕi ,ej〉

=
M

∑
i=1

〈

N

∑
j=1

〈ϕi ,ej〉ej ,F
∗ϕi

〉

=
M

∑
i=1

〈ϕi ,F
∗ϕi〉=

M

∑
i=1

〈Fϕi ,ϕi〉. ⊓⊔

As already announced, many other dual frames for reconstruction exist. We next
provide a precise definition.

Definition 20. Let (ϕi)
M
i=1 be a frame forH N. Then a frame(ψi)

M
i=1 is called adual

framefor (ϕi)
M
i=1, if

x=
M

∑
i=1

〈x,ϕi〉ψi for all x∈ H
N.

Dual frames, which do not coincide with the canonical dual frame, are often coined
alternate dual frames.

Similar to the different forms of the reconstruction formula in Theorem 8, also
dual frames can achieve reconstruction in different ways.

Proposition 15.Let (ϕi)
M
i=1 and(ψi)

M
i=1 be frames forH N and let T andT̃ be the

analysis operators of(ϕi)
M
i=1 and (ψi)

M
i=1, respectively. Then the following condi-

tions are equivalent.

(i) We have x= ∑M
i=1〈x,ψi〉ϕi for all x ∈ H N.

(ii) We have x= ∑M
i=1〈x,ϕi〉ψi for all x ∈ H

N.
(iii) We have〈x,y〉= ∑M

i=1〈x,ϕi〉〈ψi ,y〉 for all x,y∈ H N.
(iv) T∗T̃ = Id andT̃∗T = Id.
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Proof. Clearly (i) is equivalent toT∗T̃ = Id which holds if and only ifT̃∗T = Id.
The equivalence of (iii) can be derived in a similar way.⊓⊔

One might ask what distinguishes the canonical dual frame from the alternate
dual frames besides its explicit formula in terms of the initial frame. Another seem-
ingly different question is which properties of the coefficient sequence in the de-
composition of some signalx in terms of the frame (see Theorem 8),

x=
M

∑
i=1

〈x,S−1ϕi〉ϕi ,

uniquely distinguishes it from other coefficient sequences– redundancy allows in-
finitely many coefficient sequences. Interestingly, the next result answers both ques-
tions simultaneously by stating that this coefficient sequence has minimalℓ2-norm
among all sequences – in particular those, with respect to alternate dual frames –
representingx.

Proposition 16.Let (ϕi)
M
i=1 be a frame forH N with frame operator S, and let x∈

H N. If (ai)
M
i=1 are scalars such that x= ∑M

i=1aiϕi , then

M

∑
i=1

|ai |2 =
M

∑
i=1

|〈x,S−1ϕi〉|2+
M

∑
i=1

|ai −〈x,S−1ϕi〉|2.

Proof. LettingT denote the analysis operator of(ϕi)
M
i=1, we obtain

(〈x,S−1ϕi〉)M
i=1 = (〈S−1x,ϕi〉)M

i=1 ∈ ranT.

Sincex= ∑M
i=1aiϕi , it follows that

(ai −〈x,S−1ϕi〉)M
i=1 ∈ kerT∗ = (ranT)⊥.

Considering the decomposition

(ai)
M
i=1 = (〈x,S−1ϕi〉)M

i=1+(ai −〈x,S−1ϕi〉)M
i=1,

the claim is immediate. ⊓⊔

Corollary 8. Let (ϕi)
M
i=1 be a frame forH N, and let(ψi)

M
i=1 be an associated al-

ternate dual frame. Then, for all x∈ H N,

‖(〈x,S−1ϕi〉)M
i=1‖2 ≤ ‖(〈x,ψi〉)M

i=1‖2.

We wish to mention that also sequences which are minimal in theℓ1 norm play a
crucial role to date due to the fact that theℓ1 norm promotes sparsity. The interested
reader is referred to Chapter [162] for further details.
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5.2 Properties of Dual Frames

While focussing on properties of the canonical dual frame inthe last subsection, we
next discuss properties shared by all dual frames. The first question arising is: How
do you characterize all dual frames? A comprehensive answeris provided by the
following result.

Proposition 17.Let(ϕi)
M
i=1 be a frame forH N with analysis operator T and frame

operator S. Then the following conditions are equivalent.

(i) (ψi)
M
i=1 is a dual frame for(ϕi)

M
i=1.

(ii) The analysis operator T1 of the sequence(ψi −S−1ϕi)
M
i=1 satisfies

ranT ⊥ ran T1.

Proof. We setϕ̃i := ψi −S−1ϕi for i = 1, . . . ,M and note that

M

∑
i=1

〈x,ψi〉ϕi =
M

∑
i=1

〈x, ϕ̃i +S−1ϕi〉ϕi = x+
M

∑
i=1

〈x, ϕ̃i〉ϕi = x+T∗T1x

holds for all x ∈ H N. Hence,(ψi)
M
i=1 is a dual frame for(ϕi)

M
i=1 if and only if

T∗T1 = 0. But this is equivalent to (ii). ⊓⊔

From this result, we have the following corollary which provides a general for-
mula for all dual frames.

Corollary 9. Let (ϕi)
M
i=1 be a frame forH N with analysis operator T and frame

operator S with associated normalized eigenvectors(ej)
N
j=1 and respective eigen-

values(λ j)
N
j=1. Then every dual frame{ψi}M

i=1 for (ϕi)
M
i=1 is of the form

ψi =
N

∑
j=1

(

1
λ j

〈ϕi ,ej〉+hi j

)

ej , i = 1, . . . ,M,

where each(hi j )
M
i=1, j = 1, . . . ,N, is an element of(ranT)⊥.

Proof. If ψi , i = 1, . . . ,M, is of the given form with sequences(hi j )
M
i=1 ∈ ℓM

2 ,
j =1, . . . ,N, thenψi =S−1ϕi+ϕ̃i , whereϕ̃i :=∑N

j=1hi j ej , i =1, . . . ,M. The analysis
operatorT̃ of (ϕ̃i)

M
i=1 satisfiesT̃ ej = (hi j )

M
i=1. The claim follows from this observa-

tion. ⊓⊔

As a second corollary, we derive a characterization of all frames which have a
uniquely determined dual frame. It is evident, that this unique dual frame coincides
with the canonical dual frame.

Corollary 10. A frame(ϕi)
M
i=1 for H

N has a unique dual frame if and only if M=
N.
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5.3 Frame Algorithms

Let (ϕi)
M
i=1 be a frame forH N with frame operatorS, and assume we are given the

image of a signalx∈H N under the analysis operator, i.e., the sequence(〈x,ϕi〉)M
i=1

in ℓM
2 . Theorem 8 already provided us with the reconstruction formula

x=
M

∑
i=1

〈x,ϕi〉S−1ϕi

by using the canonical dual frame. Since inversion is typically not only computa-
tionally expensive, but also numerically instable, this formula might not be utilizable
in practice.

To resolve this problem, we will next discuss three iterative methods to derive
a converging sequence of approximations ofx from knowledge of(〈x,ϕi〉)M

i=1. The
first on our list is the so-calledframe algorithm.

Proposition 18 (Frame Algorithm). Let (ϕi)
M
i=1 be a frame forH N with frame

bounds A,B and frame operator S. Given a signal x∈ H
N, define a sequence

(y j)
∞
j=0 in H N by

y0 = 0, y j = y j−1+
2

A+B
S(x− y j−1) for all j ≥ 1.

Then(y j)
∞
j=0 converges to x inH N and the rate of convergence is

‖x− y j‖ ≤
(

B−A
B+A

) j

‖x‖, j ≥ 0.

Proof. First, for allx∈ H
N, we have

〈(

Id− 2
A+B

S
)

x,x
〉

= ‖x‖2− 2
A+B

M

∑
i=1

|〈x,ϕi〉|2 ≤‖x‖2− 2A
A+B

‖x‖2=
B−A
A+B

‖x‖2.

Similarly, we obtain

−B−A
B+A

‖x‖2 ≤
〈(

Id− 2
A+B

S
)

x,x
〉

,

which yields
∥

∥

∥
Id− 2

A+B
S
∥

∥

∥
≤ B−A

A+B
. (3)

By the definition ofy j , for any j ≥ 0,

x− y j = x− y j−1−
2

A+B
S(x− y j−1) =

(

Id− 2
A+B

S
)

(x− y j−1).

Iterating this calculation, we derive
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x− y j =
(

Id− 2
A+B

S
) j
(x− y0), for all j ≥ 0.

Thus, by (3),

‖x− y j‖ =
∥

∥

∥

(

Id− 2
A+B

S
) j
(x− y0)

∥

∥

∥

≤
∥

∥

∥
Id− 2

A+B
S
∥

∥

∥

j
‖x− y0‖

≤
(B−A

A+B

) j
‖x‖.

The result is proved. ⊓⊔

We wish to mention that, although the iteration formula in the frame algorithm
containsx, the algorithm does not depend on the knowledge ofx but only on the
frame coefficients(〈x,ϕi〉)M

i=1, sincey j = y j−1+
2

A+B(∑i〈x,ϕi〉ϕi −Syj−1).
One drawback of the frame algorithm is the fact that not only does the conver-

gence rate depend on the ratio of the frame bounds, i.e., the condition number of the
frame, but it depends on it in a highly sensitive way. This causes the problem that a
large ratio of the frame bounds leads to very slow convergence.

To tackle this problem, in [97], theChebyshev methodand theconjugate gradient
methodswere introduced, which are significantly better adapted to frame theory
leading to faster convergence than the frame algorithm. These two algorithms will
next be discussed. We start with theChebyshev algorithm.

Proposition 19 (Chebychev Algorithm, [97]).Let(ϕi)
M
i=1 be a frame forH N with

frame bounds A,B and frame operator S, and set

ρ :=
B−A
B+A

and σ :=

√
B−

√
A√

B+
√

A
.

Given a signal x∈ H N, define a sequence(y j)
∞
j=0 in H N and corresponding

scalars(λ j)
∞
j=1 by

y0 = 0, y1 =
2

B+A
Sx, and λ1 = 2,

and for j≥ 2, set

λ j =
1

1− ρ2

4 λ j−1

and yj = λ j

(

y j−1− y j−2+
2

B+A
S
(

x− y j−1

))

+ y j−2.

Then(y j)
∞
j=0 converges to x inH N and the rate of convergence is

‖x− y j‖ ≤
2σ j

1+σ2 j ‖x‖.
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The advantage of theconjugate gradient method, which we will present next, is
the fact that it does not require knowledge of the frame bounds. However, as before,
the rate of convergence certainly does depend on them.

Proposition 20 (Conjugate Gradient Method, [97]).Let (ϕi)
M
i=1 be a frame for

H
N with frame operator S. Given a signal x∈H

N, define three sequences(y j)
∞
j=0,

(r j )
∞
j=0, and(p j)

∞
j=−1 in H N and corresponding scalars(λ j)

∞
j=−1 by

y0 = 0, r0 = p0 = Sx, and p−1 = 0,

and for j≥ 0, set

λ j =
〈r j , p j〉
〈p j ,Spj〉

, y j+1 = y j +λ j p j , r j+1 = r j −λ jSpj ,

and

p j+1 = Spj −
〈Spj ,Spj〉
〈p j ,Spj〉

p j −
〈Spj ,Spj−1〉
〈p j−1,Spj−1〉

p j−1.

Then(y j)
∞
j=0 converges to x inH N and the rate of convergence is

|||x− y j ||| ≤
2σ j

1+σ2 j |||x||| with σ =

√
B−

√
A√

B+
√

A
,

and||| · ||| is the norm onH N given by|||x|||= 〈x,Sx〉1/2 = ‖S1/2x‖, x∈ H N.

6 Construction of Frames

As diverse as the various desiderata are which applicationsrequire a frame to sat-
isfy, as diverse are also the methods to construct frames [37, 59]. In this section,
we will present a prominent selection. For further details and results, such as, for
example, the construction of frames through spectral tetris [31, 47, 44] and through
eigensteps [30], we refer to Chapter [155].

6.1 Tight and Parseval Frames

Tight frames are particularly desirable due to the fact thatthe reconstruction of
a signal from tight frame coefficients is numerically optimally stable as already
discussed in Section 5. Most of the constructions we will present utilize a given
frame, which is then modified to become a tight frame.

We start with the most basic result for generating a Parsevalframe which is the
application ofS−1/2, Sbeing the frame operator.



32 Peter G. Casazza, Gitta Kutyniok, and Friedrich Philipp

Lemma 7. If (ϕi)
M
i=1 is a frame forH N with frame operator S, then(S−1/2ϕi)

M
i=1 is

a Parseval frame.

Proof. By Proposition 10, the frame operator for(S−1/2ϕi)
M
i=1 is S−1/2SS−1/2 = Id.

⊓⊔
Although this result is impressive in its simplicity, from apractical point of view

it has various problems, the most significant being that thisprocedure requires in-
version of the frame operator.

However, Lemma 7 can certainly be applied if all eigenvaluesand respective
eigenvectors of the frame operator are given. If only information on the eigenspace
corresponding to the largest eigenvalue is missing, then there exists a simple prac-
tical method to generate a tight frame by adding a provably minimal number of
vectors.

Proposition 21.Let (ϕi)
M
i=1 be any family of vectors inH N with frame operator

S having eigenvectors(ej)
N
j=1 and respective eigenvaluesλ1 ≥ λ2 ≥ . . . ≥ λN. Let

1≤ k≤ N be such thatλ1 = λ2 = . . .= λk > λk+1. Then

(ϕi)
M
i=1∪

(

(λ1−λ j)
1/2ej

)N

j=k+1
(4)

forms aλ1-tight frame forH N.
Moreover, N− k is the least number of vectors which can be added to(ϕi)

M
i=1 to

obtain a tight frame.

Proof. A straightforward calculation shows that the sequence in (4) is indeed aλ1-
tight frame forH N.

For themoreover-part, assume that there exist vectors(ψ j) j∈J with frame oper-
ator S1 satisfying that(ϕi)

M
i=1 ∪ (ψ j) j∈J is anA-tight frame. This impliesA ≥ λ1.

Now defineS2 to be the operator onH N given by

S2ej =

{

0 : 1≤ j ≤ k,
(λ1−λ j)ej : k+1≤ j ≤ N.

It follows thatA · Id = S+S1 and

S1 = A · Id−S≥ λ1Id−S= S2.

SinceS2 hasN− k non-zero eigenvalues, alsoS1 has at leastN− k non-zero eigen-
values. Hence|J| ≥ N− k, showing that indeedN− k added vectors is minimal.
⊓⊔

Before we delve into further explicit constructions, we need to first state some
fundamental results on tight, and, in particular, Parsevalframes.

The most basic invariance property a frame could have is invariance under or-
thogonal projections. The next result shows that this operation indeed maintains
and may even improve the frame bounds. In particular, the orthogonal projection of
a Parseval frame remains a Parseval frame.
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Proposition 22.Let (ϕi)
M
i=1 be a frame forH N with frame bounds A,B, and let P

be an orthogonal projection ofH N onto a subspaceW . Then(Pϕi)
M
i=1 is a frame

for W with frame bounds A,B.
In particular, if (ϕi)

M
i=1 is a Parseval frame forH N and P is an orthogonal

projection onH N ontoW , then(Pϕi)
M
i=1 is a Parseval frame forW .

Proof. For anyx∈ W ,

A‖x‖2 = A‖Px‖2 ≤
M

∑
i=1

|〈Px,ϕi〉|2 =
M

∑
i=1

|〈x,Pϕi〉|2 ≤ B‖Px‖2 = B‖x‖2.

This proves the claim. Thein particular-part follows immediately. ⊓⊔

Proposition 22 immediately yields the following corollary.

Corollary 11. Let(ei)
N
i=1 be an orthonormal basis forH N, and let P be an orthog-

onal projection ofH N onto a subspaceW . Then(Pei)
N
i=1 is a Parseval frame for

W .

Corollary 11 can be interpreted in the following way: Given an M ×M unitary
matrix, if we select anyN rows from the matrix, then the column vectors from
these rows form a Parseval frame forH

N. The next theorem, known asNaimark’s
Theorem, shows that indeed every Parseval frame can be viewed as the result of this
kind of operation.

Theorem 9 (Naimark’s Theorem).Let (ϕi)
M
i=1 be a frame forH N with analysis

operator T , let(ei)
M
i=1 be the standard unit basis ofℓM

2 , and let P: ℓM
2 → ℓM

2 be the
orthogonal projection ontoranT. Then the following conditions are equivalent.

(i) (ϕi)
M
i=1 is a Parseval frame forH N.

(ii) For all i = 1, . . . ,M, we have Pei = Tϕi .
(iii) There existψ1, . . . ,ψM ∈ H M−N such that(ϕi ⊕ψi)

M
i=1 is an orthonormal basis

of H M.

Moreover, if (iii) holds, then(ψi)
M
i=1 is a Parseval frame forH M−N. If (ψ ′

i )
M
i=1 is

another Parseval frame as in (iii), then there exists a unique linear operator L on
H M−N such that Lψi = ψ ′

i , i = 1, . . . ,M, and L is unitary.

Proof. (i)⇔(ii). By Theorem 7(iii)(ϕi)
M
i=1 is a Parseval frame if and only ifTT∗ =

P. Therefore, (i) and (ii) are equivalent due toT∗ei = ϕi for all i = 1, . . . ,M.
(i)⇒(iii). We setci := ei −Tϕi , i = 1, . . . ,M. Then, by (ii),ci ∈ (ranT)⊥ for all i.

Let Φ : (ranT)⊥ → H
M−N be unitary and putψi := Φci , i = 1, . . . ,M. Then, since

T is isometric,

〈ϕi ⊕ψi,ϕk⊕ψk〉= 〈ϕi ,ϕk〉+ 〈ψi ,ψk〉= 〈Tϕi ,Tϕk〉+ 〈ci,ck〉= δik,

which proves (iii).
(iii)⇒(i). This follows directly from Corollary 11.
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Concerning themoreover-part, it follows from Corollary 11 that(ψi)
M
i=1 is a Par-

seval frame forH M−N. Let (ψ ′
i )

M
i=1 be another Parseval frame as in (iii) and denote

the analysis operators of(ψi)
M
i=1 and(ψ ′

i )
M
i=1 by A andA′, respectively. We make

use of the decompositionH M = H N ⊕H M−N. Note that bothU := (T,A) and
U ′ := (T,A′) are unitary operators fromH M ontoℓM

2 . By PM−N denote the projec-
tion in H M ontoH M−N and set

L := PM−NU ′∗U |H M−N = PM−NU ′∗A.

Let y∈H N. Then, sinceU |H N =U ′|H N = T, we havePM−NU ′∗Uy= PM−Ny= 0.
Hence,

Lψi = PM−NU ′∗U(ϕi ⊕ψi) = PM−NU ′∗ei = PM−N(ϕi ⊕ψ ′
i ) = ψ ′

i .

The uniqueness ofL follows from the fact that both(ψi)
M
i=1 and(ψ ′

i )
M
i=1 are spanning

sets forH M−N.
To show thatL is unitary, we observe that, by Proposition 10, the frame operator

of (Lψi)
M
i=1 is given byLL∗. The claimLL∗ = Id now follows from the fact that also

the frame operator of(ψ ′
i )

M
i=1 is the identity. ⊓⊔

The simplest way to construct a frame from a given one is just to scale the frame
vectors. Therefore, it seems desirable to have a characterization of the class of
frames which can be scaled to a Parseval frame or a tight frame(which is equiv-
alent). We coin such frames scalable.

Definition 21. A frame (ϕi)
M
i=1 for H

N is called (strictly) scalable, if there exist
non-negative (positive, respectively) numbersa1, . . . ,aM such that(aiϕi)

M
i=1 is a Par-

seval frame.

The next result is closely related to Naimark’s Theorem.

Theorem 10 ([117]).Let(ϕi)
M
i=1 be a frame forH N with analysis operator T . Then

the following statements are equivalent.

(i) (ϕi)
M
i=1 is strictly scalable.

(ii) There exists a linear operator L: H M−N → ℓM
2 such that TT∗+LL∗ is a positive

definite diagonal matrix.
(iii) There exists a sequence(ψi)

M
i=1 of vectors inH M−N such that(ϕi ⊕ψi)

M
i=1 forms

a complete orthogonal system inH M.

We mention that Theorem 10 leads to a simple test for strict scalability in the
caseM = N+1, see [117].

If H N is real then the following result applies, which can be utilized to derive a
geometric interpretation of scalability. For this we once more refer to [117].

Theorem 11 ([117]).Let H N be real and let(ϕi)
M
i=1 be a frame forH N without

zero vectors. Then the following statements are equivalent.

(i) (ϕi)
M
i=1 is not scalable.
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(ii) There exists a self-adjoint operator Y onH N with Tr(Y)< 0 and〈Yϕi ,ϕi〉 ≥ 0
for all i = 1, . . . ,M.

(iii) There exists a self-adjoint operator Y onH N with Tr(Y) = 0 and〈Yϕi ,ϕi〉 > 0
for all i = 1, . . . ,M.

We finish this subsection with an existence result of tight frames with prescribed
norms of the frame vectors. Its proof in [45] heavily relies on a deep understanding
of the so-called frame potential and is a pure existence proof. However, in special
cases constructive methods are presented in [57].

Theorem 12 ([45]).Let N≤M, and let a1 ≥ a2 ≥ . . .≥ aM be positive real numbers.
Then the following conditions are equivalent.

(i) There exists a tight frame(ϕi)
M
i=1 for H N satisfying‖ϕi‖ = ai for all i =

1,2, . . . ,M.
(ii) For all 1≤ j < N,

a2
j ≤

∑M
i= j+1a2

i

N− j
.

(iii) We have
M

∑
i=1

a2
i ≥ Na2

1.

Equal-norm tight frames are even more desirable, but are difficult to construct.
A powerful method, so-calledspectral tetris, for such constructions was recently
derived in [47], and we refer to Chapter [155]. This methodology even generates
sparse frames [50], which reduce the computational complexity and also ensure
high compressibility of the synthesis matrix – which then isa sparse matrix. The
reader should though be cautioned that spectral tetris has the drawback that it often
generates multiple copies of the same frame vector. For practical applications, this
shall typically be avoided, since the frame coefficients associated with a repeated
frame vector does not provide any new information about the incoming signal.

6.2 Frames with Given Frame Operator

It is often desirable to not only construct tight frames, butmore generally frames
with a prescribed frame operator. Typically in such a case the eigenvalues of the
frame operator are given assuming that the eigenvalues are the standard unit basis.
Applications are for instance noise reduction if colored noise is present.

The first comprehensive results containing necessary and sufficient conditions for
the existence and the construction of tight frames with frame vectors of a prescribed
norm were derived in [45] and [57], see also Theorem 12. The result in [45] was
then extended in [58] to the following theorem, which now, inaddition, includes
prescribing the eigenvalues of the frame operator.
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Theorem 13 ([58]).Let S be a positive self-adjoint operator onH N, and letλ1 ≥
λ2 ≥ . . . ≥ λN > 0 be the eigenvalues of S. Further, let M≥ N, and let c1 ≥ c2 ≥
. . .≥ cM be positive real numbers. Then the following conditions areequivalent.

(i) There exists a frame(ϕi)
M
i=1 for H N with frame operator S satisfying‖ϕi‖ = ci

for all i = 1,2, . . . ,M.
(ii) For every1≤ k≤ N, we have

k

∑
j=1

c2
j ≤

k

∑
j=1

λ j and
M

∑
i=1

c2
i =

N

∑
j=1

λ j .

It is though often preferable to utilize equal-norm frames,since then, roughly
speaking, each vector provides the same coverage for the space. In [58], it was
shown that there always exists an equal-norm frame with a prescribed frame opera-
tor. This is the content of the next result.

Theorem 14 ([58]).For every M≥ N and every invertible positive self-adjoint op-
erator S onH N there exists an equal-norm frame forH N with M elements and
frame operator S. In particular, there exist equal norm Parseval frames with M ele-
ments inH N for every N≤ M.

Proof. We define the norm of the to-be-constructed frame to bec, where

c2 =
1
M

N

∑
j=1

λ j .

It is sufficient to prove that the conditions in Theorem 13(ii) are satisfied forci = c
for all i = 1,2, . . . ,M. The definition ofc immediately implies the second condition.

For the first condition, we observe that

c2
1 = c2 =

1
M

N

∑
j=1

λ j ≤ λ1.

Hence this condition holds forj = 1. Now, towards a contradiction, assume that
there exists somek ∈ {2, . . . ,N} for which this condition fails for the first time by
counting from 1 upwards, i.e.,

k−1

∑
j=1

c2
j = (k−1)c2 ≤

k−1

∑
j=1

λ j , but
k

∑
j=1

c2
j = kc2 >

k

∑
j=1

λ j .

This implies

c2 ≥ λk and thus c2 ≥ λ j for all k+1≤ j ≤ N.

Hence,
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Mc2 ≥ kc2+(N− k)c2 >
k

∑
j=1

λ j +
N

∑
j=k+1

c2
j ≥

N

∑
j=1

λ j +
N

∑
j=k+1

λ j =
N

∑
j=1

λ j ,

which is a contradiction. The proof is completed.⊓⊔

By an extension of the aforementioned algorithmspectral tetris[31, 48, 44, 50] to
non-tight frames, Theorem 14 can be constructively realized. The interested reader
is referred to Chapter [155]. We also mention that an extension of spectral tetris
to construct fusion frames (cf. Section 9) exists. Further details on this topic are
contained in Chapter [166].

6.3 Generic Frames

Generic frames are those optimally resilient against erasures. The precise definition
is as follows.

Definition 22. A frame(ϕi)
M
i=1 for H N is called ageneric frame, if the erasure of

any M −N vectors leaves a frame, i.e., for anyI ⊂ {1, . . . ,M}, |I | = M −N, the
sequence(ϕi)

M
i=1,i 6∈I is still a frame forH N.

It is evident that such frames are of significant importance for applications. A
first study was undertaken in [127]. Recently, using methodsfrom algebraic geome-
try, equivalence classes of generic frames were extensively studied [27, 81, 136]. It
was for instance shown that equivalence classes of generic frames are dense in the
Grassmannian variety. For each reader to be able to appreciate these results, Chap-
ter [157] provides an introduction to algebraic geometry followed by a survey about
this and related results.

7 Frame Properties

As already discussed before, crucial properties of frames such as erasure robustness,
resilience against noise, or sparse approximation properties originate from spanning
and independence properties of frames [13, 14], which are typically based on the
Rado-Horn Theorem [104, 129] and its redundant version [55]. These in turn are
only possible because of their redundancy [12]. This section is devoted to shed light
on these issues.
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7.1 Spanning and Independence

As intuitively clear, the frame bounds imply certain spanning properties which are
detailed in the following result. This theorem should be compared to Lemma 2,
which already presented some first statements about spanning sets in frames.

Theorem 15.Let (ϕi)
M
i=1 be a frame forH N with frame bounds A and B. Then the

following holds.

(i) ‖ϕi‖2 ≤ Bop for all i = 1,2, . . . ,M.
(ii) If, for some i0 ∈ {1, . . . ,M}, we have‖ϕi0‖2 = Bop, thenϕi0 ⊥ span{ϕi}M

i=1,i6=i0
.

(iii) If, for some i0 ∈ {1, . . . ,M}, we have‖ϕi0‖2 < Aop, thenϕi0 ∈ span{ϕi}M
i=1,i6=i0

.

In particular, if (ϕi)
M
i=1 is a Parseval frame, then eitherϕi0 ⊥ span{ϕi}M

i=1,i6=i0
(and

in this case‖ϕi‖= 1) or ‖ϕi0‖< 1.

Proof. For anyi0 ∈ {1, . . . ,M} we have

‖ϕi0‖4 ≤ ‖ϕi0‖4+ ∑
i6=i0

|〈ϕi0,ϕi〉|2 =
M

∑
i=1

|〈ϕi0,ϕi〉|2 ≤ Bop‖ϕi0‖2. (5)

The claims (i) and (ii) now directly follow from (5).
(iii). Let P denote the orthogonal projection ofH N onto (span{ϕi}M

i=1,i6=i0
)⊥.

Then

Aop‖Pϕi0‖2 ≤ ‖Pϕi0‖4+
M

∑
i=1,i6=i0

|〈Pϕi0,ϕi〉|2 = ‖Pϕi0‖4.

Hence, eitherPϕi0 = 0 (and thusϕi0 ∈ span{ϕi}M
i=1,i6=i0

) or Aop≤‖Pϕi0‖2 ≤ ‖ϕi0‖2.
This proves (iii). ⊓⊔

Ideally, we are interested in having an exact description ofa frame in terms of its
spanning and independence properties. One could think of the following questions
to be answered by such a measure: How many disjoint linearly independent span-
ning sets does the frame contain? After removing these, how many disjoint linearly
independent sets which span hyperplanes does it contain? And many more.

One of the main results in this direction is the following from [14].

Theorem 16.Every unit-norm tight frame(ϕi)
M
i=1 for H N with M = kN+ j ele-

ments,0≤ j < N, can be partitioned into k linearly independent spanning sets plus
a linearly independent set of j elements.

For its proof and further related results we refer to Chapter[156].

7.2 Redundancy

As we have discussed and will be seen throughout this book, redundancy is the key
property of frames. This fact makes it even more surprising that until recently not
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much attention has been paid to introduce meaningful quantitative measures of re-
dundancy. The classical measure of theredundancyof a frame(ϕi)

M
i=1 for H N is

the quotient of the number of frame vectors and the dimensionof the ambient space,
i.e., M

N . This measure has however serious problems to distinguish,for instance, the
two frames in Example 2 (1) and (2) by assigning the same redundancy measure
2N
N = 2 to both of those. From a frame perspective these two frames are very dif-

ferent, since, for instance, one contains two spanning setswhereas the other just
contains one.

Recently, in [12] a new notion of redundancy was proposed which seems to better
capture the spirit of what redundancy should represent. To present this notion, let
S = {x∈ H

N : ‖x‖= 1} denote the unit sphere inH N, and letPspan{x} denote the
orthogonal projection onto the subspace span{x} for somex∈ H N.

Definition 23. Let Φ = (ϕi)
M
i=1 be a frame forH N. For eachx∈ S, theredundancy

functionRΦ : S→ R+ is defined by

RΦ(x) =
M

∑
i=1

‖Pspan{ϕi}x‖2.

Then theupper redundancyof Φ is defined by

R
+
Φ = max

x∈S
RΦ(x),

and thelower redundancyof Φ is defined by

R
−
Φ = min

x∈S
RΦ (x).

Moreover,Φ hasuniform redundancy, if

R
−
Φ = R

+
Φ .

One might hope that this new notion of redundancy provides information about
spanning and independence properties of the frame, since these are closely related to
questions such as whether a frame is resilient with respect to deletion of a particular
number of frame vectors, say. And, indeed, such a link existsand is detailed in the
next result.

Theorem 17 ([12]).LetΦ = (ϕi)
M
i=1 be a frame forH N without zero vectors. Then

the following conditions hold.

(i) Φ contains⌊R−
Φ⌋ disjoint spanning sets.

(ii) Φ can be partitioned into⌈R+
Φ⌉ linearly independent sets.

Various other properties of this notion of redundancy are known such as additiv-
ity or its range, and we refer to [12] and Chapter [156] for more details.

At this point, we would just like to point out that another interpretation of upper
and lower redundancy is possible, since it coincides with the optimal frame bounds
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of the normalized frame( ϕ
‖ϕ‖ )

M
i=1 – after deletion of zero vectors. The crucial point

to make is that with this viewpoint Theorem 17 combines analytic and algebraic
properties ofΦ.

7.3 Equivalence of Frames

We now consider equivalence classes of frames. As in other research areas, the idea
being that frames in the same equivalence class share certain properties.

7.3.1 Isomorphic Frames

The following definition states one equivalence relation for frames.

Definition 24. Two frames(ϕi)
M
i=1 and (ψi)

M
i=1 for H N are calledisomorphic, if

there exists an operatorF : H N → H N satisfyingFϕi = ψi for all i = 1,2, . . . ,M.

We remark that – due to the spanning property of frames – an operatorF as in
the above definition is both invertible and unique. Moreover, we mention that in [4]
the isomorphy of frames with an operatorF as above was termedF-equivalence.

The next theorem characterizes the isomorphy of two frames in terms of their
analysis and synthesis operators.

Theorem 18.Let (ϕi)
M
i=1 and(ψi)

M
i=1 be frames forH N with analysis operators T1

and T2, respectively. Then the following conditions are equivalent.

(i) (ϕi)
M
i=1 is isomorphic to(ψi)

M
i=1.

(ii) ranT1 = ranT2.
(iii) kerT∗

1 = kerT∗
2 .

If one of (i)–(iii) holds then the operator F: H N → H N with Fϕi = ψi for all
i = 1, . . . ,N is given by F= T∗

2 (T
∗
1 |ranT1)

−1.

Proof. The equivalence of (ii) and (iii) follows by orthogonal complementation. In
the following let(ei)

M
i=1 denote the standard unit vector basis ofℓM

2 .
(i)⇒(iii). Let F be an invertible operator onH N such thatFϕi = ψi for all

i = 1, . . . ,M. Then Proposition 9 impliesT2 = T1F∗ and henceFT∗
1 = T∗

2 . SinceF
is invertible, (iii) follows.

(ii)⇒(i). Let P be the orthogonal projection ontoW := ranT1 = ranT2. Then
ϕi = T∗

1 ei = T∗
1 Pei andψi = T∗

2 ei = T∗
2 Pei. The operatorsT∗

1 andT∗
2 both mapW

bijectively ontoH N. Therefore, the operatorF := T∗
2 (T

∗
1 |W )−1 mapsH N bijec-

tively onto itself. Consequently, for eachi ∈ {1, . . . ,M} we have

Fϕi = T∗
2 (T

∗
1 |W )−1T∗

1 Pei = T∗
2 Pei = ψi ,

which proves (i) as well as the additional statement on the operatorF . ⊓⊔
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An obvious, though interesting result in the context of frame isomorphy is that
the Parseval frame in Lemma 7 is in fact isomorphic to the original frame.

Lemma 8. Let(ϕi)
M
i=1 be a frame forH N with frame operator S. Then the Parseval

frame(S−1/2ϕi)
M
i=1 is isomorphic to(ϕi)

M
i=1.

Similarly, a given frame is also isomorphic to its canonicaldual frame.

Lemma 9. Let (ϕi)
M
i=1 be a frame forH N with frame operator S. Then the canoni-

cal dual frame(S−1ϕi)
M
i=1 is isomorphic to(ϕi)

M
i=1.

Intriguingly, it turns out – and will be proven in the following result – that the
canonical dual frame is the only dual frame which is isomorphic to a given frame.

Proposition 23.LetΦ = (ϕi)
M
i=1 be a frame forH N with frame operator S, and let

(ψi)
M
i=1 and (ψ̃i)

M
i=1 be two different dual frames forΦ. Then(ψi)

M
i=1 and (ψ̃i)

M
i=1

are not isomorphic.
In particular, (S−1ϕi)

M
i=1 is the only dual frame forΦ which is isomorphic toΦ.

Proof. Let (ψi)
M
i=1 and(ψ̃i)

M
i=1 be different dual frames forΦ. Towards a contra-

diction, we assume that(ψi)
M
i=1 and(ψ̃i)

M
i=1 are isomorphic, and letF denote the

invertible operator satisfyingψi = Fψ̃i , i = 1,2, . . . ,M. Then, for eachx∈ H N we
have

F∗x=
M

∑
i=1

〈F∗x, ψ̃i〉ϕi =
M

∑
i=1

〈x,Fψ̃i〉ϕi =
M

∑
i=1

〈x,ψi〉ϕi = x.

Thus,F∗ = Id which impliesF = Id, a contradiction. ⊓⊔

7.3.2 Unitarily Isomorphic Frames

A stronger version of equivalence is given by the notion of unitarily isomorphic
frames.

Definition 25. Two frames(ϕi)
M
i=1 and (ψi)

M
i=1 for H N areunitarily isomorphic,

if there exists a unitary operatorF : H
N → H

N satisfyingFϕi = ψi for all i =
1,2, . . . ,M.

In the situation of Parseval frames though, the notions of isomorphy and unitary
isomorphy coincide.

Lemma 10.Let (ϕi)
M
i=1 and(ψi)

M
i=1 be isomorphic Parseval frames forH N. Then

they are even unitarily isomorphic.

Proof. Let F be an invertible operator onH N with Fϕi = ψi for all i = 1,2, . . . ,M.
By Proposition 10, the frame operator of(Fϕi)

M
i=1 is FIdF∗ = FF∗. On the other

hand, the frame operator of(ψi)
M
i=1 is the identity. Hence,FF∗ = Id. ⊓⊔

We end this section with a necessary and sufficient conditionfor two frames to
be unitarily isomorphic.
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Proposition 24.For two frames(ϕi)
M
i=1 and (ψi)

M
i=1 for H N with analysis opera-

tors T1 and T2, respectively, the following conditions are equivalent.

(i) (ϕi)
M
i=1 and(ψi)

M
i=1 are unitarily isomorphic.

(ii) ‖T∗
1 c‖= ‖T∗

2 c‖ for all c ∈ ℓM
2 .

(iii) T1T∗
1 = T2T∗

2 .

Proof. (i)⇒(iii). Let F be a unitary operator onH N with Fϕi = ψi for all i =
1, . . . ,M. Then, since by Proposition 9 we haveT2 = T1F∗, we obtainT2T∗

2 =
T1F∗FT∗

1 = T1T∗
1 and thus (iii).

(iii)⇒(ii). This is immediate.
(ii)⇒(i). Since (ii) implies kerT∗

1 = kerT∗
2 , it follows from Theorem 18 that

Fϕi =ψi for all i = 1, . . . ,M, whereF = T∗
2 (T

∗
1 |ranT1)

−1. But this operator is unitary
since (ii) also implies

‖T∗
2 (T

∗
1 |ranT1)

−1x‖= ‖T∗
1 (T

∗
1 |ranT1)

−1x‖= ‖x‖

for all x∈ H N. ⊓⊔

8 Applications of Finite Frames

Finite frames are a versatile methodology for any application which requires redun-
dant, yet stable decompositions. For instance, for analysis or transmission of signals,
but surprisingly also for more theoretically oriented questions. We state some such
applications in this section, which also coincide with the chapters of this book.

8.1 Noise and Erasure Reduction

Noise and erasures are one of the most common problems signaltransmissions have
to face [131, 132, 133]. The redundancy of frames is particularly suitable to re-
duce and compensate for such disturbances. Pioneering studies can be found in
[51, 94, 95, 96], followed by the fundamental papers [10, 16,103, 137, 150]. In addi-
tion one is always faced with the problem of suppressing errors introduced through
quantization, both PCM [21, 152] and Sigma-Delta quantization [7, 8, 17, 18]. The-
oretical error considerations range from worst to average case scenarios. Different
strategies for reconstruction exist depending on whether the receiver is aware or
unaware of noise and erasures. Some more recent work also takes special types of
erasures [19] or the selection of dual frames for reconstruction [124, 122] into ac-
count. Chapter [160] provides a comprehensive survey on these considerations and
related results.
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8.2 Resilience against Perturbations

Perturbations of a signal are an additional problem faced bysignal processing appli-
cations. Various results on the ability of frames to be resilient against perturbations
are known. One class focusses on generally applicable frameperturbations results
[3, 69, 38, 60], some even in the Banach space setting [40, 69]. Yet another topic
are perturbations of specific frames such as Gabor frames [41], frames containing a
Riesz basis [39], or frames for shift-invariant spaces [154]. Finally, also extensions
such as fusion frames are studied with respect to their behavior under perturbations
[53].

8.3 Quantization Robustness

Each signal processing application contains an analog-to-digital conversion step,
which is called quantization. Quantization is typically applied to the transform co-
efficients, which in our case are (redundant) frame coefficients, see [95, 96]. Inter-
estingly, the redundancy of the frame can be successfully explored in the quantiza-
tion step by using so-called Sigma-Delta algorithms and a particular non-canonical
dual frame reconstruction. In most regimes, the performance is significantly better
than rounding each coefficient separately (PCM). This was first observed in [7, 8].
Within a short amount of time, the error bounds were improved[17, 115], refined
quantization schemes were studied [18, 15], specific dual frame constructions for
reconstruction were developed [9, 99, 119], and also PCM wasrevisited [106, 152].
The interested reader is referred to Chapter [161], which provides an introduction
to quantization of finite frames.

8.4 Compressed Sensing

Since high dimensional signals are typically concentratedon lower dimensional sub-
spaces, it is a natural assumption that the collected data can be represented by a
sparse linear combination of an appropriately chosen frame. The novel methodol-
ogy of Compressed Sensing, initially developed in [33, 34, 79], utilizes this obser-
vation to show that such signals can be reconstructed from very few non-adaptive
linear measurements by linear programming techniques. Foran introduction, we re-
fer to the books [85, 87] and the survey [26]. Finite frames thus play an essential
role, both as sparsifying systems and in designing the measurement matrix. For a
selection of studies focussing in particular on the connection to frames, we refer
to [1, 2, 32, 70, 142, 143], and on the connection to structured frames such as fu-
sion frames, see [23, 86]. Chapter [162] provides an introduction into Compressed
Sensing and the connection to finite frame theory.
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We wish to mention that there exists yet another intriguing connection of finite
frames to sparsity methodologies, namely, aiming for sparse frame vectors to ensure
low computational complexity. For this, we refer to the two papers [31, 50] and to
Chapter [166].

8.5 Filter Banks

Filter banks are the basis for most signal processing applications. We exemplarily
mention the general books [126, 146] and those with a particular focus on wavelets
[76, 135, 151], as well as the beautiful survey articles [110, 111]. Usually, several
filters are applied in parallel to an input signal, followed by downsampling. This
processing method is closely related to finite frame decomposition provided that the
frame consists of equally-spaced translates of a fixed set ofvectors, first observed in
[20, 22, 72, 73] and later refined and extended in [63, 64, 91, 113]. This viewpoint
has the benefit of providing a deeper understanding of filtering procedures, while
containing the potential of extensions of classical filter bank theory. We refer to
Chapter [163] which provides an introduction into filter banks and their connections
with finite frame theory.

8.6 Stable Partitions

The Feichtinger conjecture in frame theory conjectures theexistence of certain par-
titions of frames into sequences with “good” frame bounds, see [42]. Its relevance
becomes evident when modeling distributed processing and stable frames are re-
quired for the local processing units (see also Section 9 on fusion frames). The
fundamental papers [62, 49, 56] then linked this conjectureto a variety of open con-
jectures in what is customarily coined pure mathematics such as the Kadison-Singer
Problem inC∗-Algebras [108]. Chapter [164] provides an introduction into these
connections and their significance. It should be mentioned that a particular focus of
this chapter is also on the so-called Paulsen problem [11, 28, 46], which provides
error estimates on the ability of a frame to be simultaneously (almost) equal-norm
and (almost) tight.

9 Extensions

Typically motivated by applications, various extensions of finite frame theory have
been developed over the last years. In this book, the chapters [165] and [166] are
devoted to the main two generalizations, whose key ideas we will now briefly de-
scribe.
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• Probabilistic Frames.This theory is based on the observation that finite frames
can be regarded as mass points distributed inH N. As an extension, proba-
bilistic frames, which were introduced and studied in [82, 83, 84], constitute
a class of general probability measures again with appropriate stability con-
straints. Applications include, for instance, directional statistics in which prob-
abilistic frames can be utilized to measure inconsistencies of certain statistical
tests [109, 144, 145]. For more details on the theory and applications of proba-
bilistic frames, we refer to Chapter [165].

• Fusion Frames.Signal processing by finite frames can be regarded as projections
onto one-dimensional subspaces. In contrast to this, fusion frames, which were
introduced in [52, 54], to analyze and process a signal by (orthogonal) projections
onto multi-dimensional subspaces, which again have to satisfy some stability
conditions. They also allow for a local processing in the different subspaces.
This theory is in fact a perfect fit to applications requiringdistributed processing,
and we refer to the series of papers [23, 24, 29, 31, 43, 47, 44,64, 118, 125].
We should also mention that a closely related generalization called G-frames
exists, which however does not admit any additional (local)structure and which
is unrelated to applications (see, for instance, [138, 139]). A detailed introduction
into fusion frame theory can be found in Chapter [166].
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99. C.S. Güntürk, M. Lammers, A.M. Powell, R. Saab, andÖ Yilmaz,Sobolev duals for random
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