Introduction to Finite Frame Theory

Peter G. Casazza, Gitta Kutyniok, and Friedrich Philipp

1 Why Frames?

The Fourier transform has been a major tool in analysis fer 490 years. How-
ever, it solely provides frequency information, and hidasté phases) information
concerning the moment of emission and duration of a signalG&bor resolved
this problem in 1946 [93] by introducing a fundamental nevprapch to signal
decomposition. Gabor’s approach quickly became the pgmador this area, be-
cause it provided resilience to additive noise, resilietocquantization, resilience
to transmission losses as well as an ability to capture itapbisignal character-
istics. Unbeknownst to Gabor, he had discovered the fundthproperties of a
frame without any of the formalism. In 1952, Duffin and Sclieef80] were work-
ing on some deep problems in non-harmonic Fourier seriestiah they required
a formal structure for working with highly over-completerfdies of exponential
functions inL2[0, 1]. For this, they introduced the notion oiHilbert space framge
for which Gabor’s approach is now a special case, falling thie area otime-
frequency analysif98]. Much later — in the late 1980’s — the fundamental comncep
of frames was revived by Daubechies, Grossman and Mayer(§&€| also [76]),
who showed its importance for data processing.

Traditionally, frames were used in signal and image prangs®on-harmonic
Fourier series, data compression, and sampling theorytdB8aty, frame theory has
ever increasing applications to problems in both pure argliep mathematics,
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physics, engineering, computer science, to name a fewr&aifehese applications
will be investigated in this book. Since applications mgirdquire frames in finite-
dimensional spaces, this will be our focus. In this situgtia frame is a spanning
set of vectors — which are generatdundaniover-completgrequiring control of
its condition numbers. Thus a typical frame possesses mamgefvectors than the
dimension of the space, and each vector in the space willihéméely many repre-
sentations with respect to the frame. But it will also have patural representation
given by a special class of scalars calledftaene coefficientsf the vector. It is this
redundancy of framewhich is key to their significance for applications.

The role of redundancy varies depending on the requirenoéthe applications
at hand. First, redundancy gives greater defigbility which allows frames to be
constructed to fit a particular problem in a manner not pdsdilp a set of linearly
independent vectors. For instance, in areas such as quamrungraphy, classes of
orthonormal bases with the property that the modulus ofriheri products of vec-
tors from different bases are a constant are required. Angseexample comes from
speech recognition, when a vector needs to be determindtetgbisolute value of
the frame coefficients (up to a phase factor). A second majeargdage of redun-
dancy isrobustnessBy spreading the information over a wider range of vectors,
resilience against lossesr@sure¥ can be achieved, which are, for instance, a se-
vere problem in wireless sensor networks for transmissiseds or when sensors
are intermittently fading out, modeling the brain where meytells are dying out.
A further advantage of spreading information over a widergeaof vectors is to
mitigate the effects of noise in the signal.

This represents a tiny fraction of the theory and applicetiof frame theory that
you will encounter in this book. New theoretical insightslarovel applications are
continually arising due to the fact that the underlying pijites of frame theory are
basic ideas which are fundamental to a wide canon of areaseérch. In this sense,
frame theory might be regarded as partly belonging to aggieemonic analysis,
functional analysis, operator theory as well as numerinalr algebra and matrix
theory.

1.1 The Role of Decompositions and Expansions

Focussing on the finite-dimensional situation Xéte given data which we assume
to belong to some real or complékdimensional Hilbert space?’N. Further, let
(i)™, be a representation system (i.e. a spanning sety#, which might be
chosen from an existing catalogue, designed dependingeotyple of data we are
facing, or learned from sample sets of the data.

One common approach to data processing consists idegbempositiorof the
datax according to the systei@®;)™, by considering the map

X (%, $i))iLs.
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As we will see, the generated sequenped;))M ; belonging to/z({1,...,M}) can
then be used, for instance, for transmissiorx.oAlso, careful choice of the rep-
resentation system enables us to solve a variety of andhalis. As an example,
under certain conditions the positions and orientationsdafes of an image are
determined by those indicés {1,...,M} belonging to the largest coefficients in
magnitude|(x, §;)|, i.e., by hard thresholding, in the case tii¢t)M, is a shear-
let system (see [116]). Finally, the sequeri¢e ¢;))M ; allows compression of,
which is in fact the heart of the new JPEG2000 compressiardata when choos-
ing (¢i)M, to be a wavelet system [141].

An accompanying approach is tlegpansiornof the datax by considering se-

quencegci)M , satisfying
M
X="Y C¢i.
i; i Qi

Itis well known that suitably chosen representation systalflow sparse sequences
(c)M, in the sense thafc||o = #{i : ¢i # 0} is small. For example, certain wavelet
systems typically sparsify natural images in this sense {seexample [78, 123,
134] and the references therein). This observation is kejléwing the application
of the abundance of existing sparsity methodologies sucboaspressed Sensing
[87] to x. In contrast to this viewpoint which assumess explicitly given, the
approach of expanding the data is also highly beneficialercdse wherg is only
implicitly given, which is, for instance, the problem all EBolvers face. Hence,
using(¢i)M, as a generating system for the trial space, the PDE sohaksaduces
to computing(ci)M ; which is advantageous for deriving efficient solvers predid
that — as before — a sparse sequence does exist (see, €/g7410

1.2 Beyond Orthonormal Bases

To choose the representation syst@m!\ ; to form an orthonormal basis for’™N
is the standard choice. However, the linear independenseatf a system causes a
variety of problems for the aforementioned applications.

Starting with thedecompositiorviewpoint, using((x, ¢i>)iN=l for transmission
is far from being robust to erasures, since the erasure of msingle coefficient
causes a true information loss. Also, for analysis tasksooidrmal bases are far
from being advantageous, since they do not allow any flaiibii design, which is
for instance needed for the design of directional represgiemt systems. In fact, it is
conceivable that no orthonormal basis with parallelingoerties such as curvelets
or shearlets does exist. A task benefitting from linear iethelence is compression,
which naturally requires a minimal number of coefficients.

Also, from anexpansiorpoint of view, the utilization of orthonormal bases is
not advisable. A particular problem affecting sparsity meelologies as well as the
utilization for PDE solvers is the uniqueness of the seqedngM,. This non-
flexibility prohibits the search for a sparse coefficientigmtre.
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Itis evident that those problems can be tackled by allowtiegstysten{¢;i)M , to
be redundant. Certainly, numerical stability issues intyipécal processing of data

M
Ko (B 3 (906 =X

with an adapted systeld;)M ; have to be taken into account. This leads naturally
to the notion of afilbert spacg frame The main idea is to have a controlled norm
equivalence between the datand the sequence of coefficierits, ¢i))M ;.

The area of frame theory has very close relations to otheareh fields in both
pure and applied mathematics. General (Hilbert space)drdm®ory — in particu-
lar, including the infinite-dimensional situation — intecss functional analysis and
operator theory. It also bears close relations to the naea af applied harmonic
analysis, in which the design of representation systempiedily by a careful parti-
tioning of the Fourier domain — is one major objective. Soesearchers even con-
sider frame theory as belonging to this area. Restrictintp¢ofinite-dimensional
situation — in which customarily the terfmite frame theoryis used — the classi-
cal areas of matrix theory and numerical linear algebra kboge intersections, but
also, for instance, the novel area of Compressed Sensirigeasiapointed out.

Nowadays, frames have established themselves as a staratamad in applied
mathematics, computer science, and engineering. Figiteditheory deserves spe-
cial attention due to its importance for applications, anghtbe even considered a
research area of its own. This is also the reason why this bpe&ifically focusses
on finite frame theory. The subsequent chapters will shovdiversity of this rich
and vivid research area to date ranging from the developaidrgmeworks to ana-
lyze specific properties of frames, the design of differéadges of frames to various
applications of frames and also extensions of the notionfiefrae.

1.3 Outline

In the sequel, in Section 2 we first provide some backgroufodimation on Hilbert
space theory and operator theory to make this book selagwed. Frames are then
subsequently introduced in Section 3, followed by a disonsef the four main
operators associated with a frame, namely the analysithesis, frame, and Gram-
mian operator (see Section 4). Reconstruction results laditams naturally in-
cluding the notion of a dual frame is the focus of Section GsThfollowed by the
presentation of different constructions of tight as welhags-tight frames (Section
6), and a discussion of some crucial properties of framegaiticular, their span-
ning properties, the redundancy of a frame, and equivalesiagons among frames
in Section 7. This chapter is concluded by brief introdutsito diverse applications
and extensions of frames (Sections 8 and 9).
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2 Background Material

Let us start by recalling some basic definitions and restdta Hilbert space theory
and operator theory, which will be required for all subsedwhapters. We do not
include the proofs of the presented results, and refer tetdredard literature such
as, forinstance, [153] for Hilbert space theory and [71, 13B] for operator theory.
We would like to emphasize that all following results areeppbtated in the finite
dimensional setting, which is the focus of this book.

2.1 Review of Basics from Hilbert Space Theory

LettingN be a positive integer, we denote N a real or compleX-dimensional
Hilbert space. This will be the space considered througtiositbook. Sometimes,
if it is convenient, we identify/#N with RN or CN. By (-,-) and|| - || we denote the
inner product onz”N and its corresponding norm, respectively.

Let us now start with the origin of frame theory, which is thation of an or-
thonormal basis. Alongside, we recall the basic definitimeswill also require in
the sequel.

Definition 1. A vectorx € N is callednormalizedf ||x|| = 1. Two vectors,y €
N are callecbrthogonalif (x,y) = 0. A system(g)k_; of vectors ins#N is called

(a) completgor aspanning setif span{a}}‘:l =N,

(b) orthogonalif for all i # j, the vectorss ande;j are orthogonal.
(c) orthonormalif it is orthogonal and each is normalized.

(e) orthonormal basigor 7N if it is complete and orthonormal.

A fundamental result in Hilbert space theoryParseval’s Identity

Proposition 1 (Parseval's Identity). If (&), is an orthonormal basis fop#Z’N,
then, for every x N, we have

N
X1 = _;I(x,a>lz~

Interpreting this identity from a signal processing poihtiew, itimplies that the
energy of the signal is preserved under the map ((x,&))N.; which we will later
refer to as the analysis map. We would also like to mentiohiatgoint, that this
identity is not only satisfied by orthonormal bases. In feeiundant systems (“non-
bases”) such aSel,\/iEez,%zez,%seg,%seg,%seg,...,\/—lﬁe,\l,...,ﬁe,\.) also sat-
isfy this inequality, and will later be coindearseval frames.

Parseval’s identity has the following implication, whidiosvs that a vector can
be recovered from the coefficienté, &)X ; by a simple procedure. Thus, from
an application point of view, this result can also be intetpd as a reconstruction
formula.
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Corollary 1. If (g)N , is an orthonormal basis fog#N, then, for every x #N,
we have

N
X:-;<X’a>ei'

Next, we present a series of identities and inequalitieg;wdre basics exploited
in various proofs.

Proposition 2. Let x X € s#N.
(i) Cauchy-Schwartz InequalityVe have

[0 < XX

with equality if and only if x= cX for some constant c.
(i) Triangle InequalityWe have

(x| < X[ =+ [1%]]-

(iii) Polarization Identity (Real Formlf s#N is real, then
o 1 9|12 912
(%) = 7 [Ix+%* = Ix=%]7].
(iv) Polarization Identity (Complex Formif #N is complex, then
o 1 N - i . o
(x%) =7 [+ 17 =[x = %%] + 2 [+ i1 = [)x—i%]%] .

(v) Pythagorean TheorenGiven pairwise orthogonal vector(sq){\i1 e N, we

have
M 2 M 5
Zm = _ZIMH :
1= =

We next turn to considering subspaces/#flV, again starting with the basic no-
tations and definitions.

Definition 2. Let #/, 7 be subspaces o#'N.
(a) A vectorx € N is calledorthogonal to# (denoted by L %), if

(x,X) =0 forallXe 7.
Theorthogonal complememif 7 is then defined by
Wt ={xeaN:x1L W}

(b) The subspace#” and? are calledbrthogonal subspacdsglenoted by?” 1 7)),
if w c ¥+ (or, equivalentlyy c #1).
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The notion oforthogonal direct sumsvhich will play an essential role in Chapter
[166], can be regarded as a generalization of Parsevaliitg¢Proposition 1).

Definition 3. Let (%)M, be a family of subspaces o#N. Then theirorthogonal
direct sumis defined as the space

M
SH; =KX
(i; )zz

with inner product defined by

M M
<X7X> = Zl<xh)zl> forall x= (Xi>i=la X= ()’Z|>:\il € <Z\€B%> :
i= 1= (2

The extension of Parseval’s identity can be seen when chg&st x yielding
IXI1? = 5 (1%

2.2 Review of Basics from Operator Theory

We next introduce the basic results from operator theorg tls®ughout this book.
We first recall that each operator has an associated magrigsentation.

Definition 4. Let T : s#N — 7 be a linear operator, Ié&)N , be an orthonormal
basis for#N, and let(gi)K ; be an orthonormal basis fo#’¥. Then thematrix

representation of with respect to the orthonormal bases)! ; and (g)K ;) is a

matrix of sizeK x N and is given byA = (a;j);<; jﬂl, where

aij = (Tej,0:).
For allx € 7N with c = ((x,&)); we have

Tx=Ac

2.2.1 Invertibility

We start with the following definition.

Definition 5. Let T : N — X be a linear operator.

(a) Thekernelof T is defined by kef := {xc #N : Tx= 0}. Itsrangeis ranT :=
{Tx:xe N}, sometimes also calléchageand denoted by iffi. Therank of
T, rankT, is the dimension of the range of
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(b) The operatol is calledinjective(or one-to-ong, if kerT = {0}, andsurjective
(oronto), if ranT = K. Itis calledbijective (or invertible)if T is both injective
and surjective.

(c) Theadjoint operator T : 77K — #N is defined by

(Tx %) = (x, T*%) forallxe #N andxe K,
(d) Thenormof T is defined by
[T == sup{[|TX]: [[x]| = 1}.
The next result states several relations between thesansoti

Proposition 3. (i) Let T : N — J#X be a linear operator. Then
dimsN = N = dimkerT + rankT.

Moreover, if T is injective, then™ is also injective.
(i) Let T : 2N — #N be a linear operator. Then T is injective if and only if it is
surjective. MoreoverkerT = (ranT*)*, and hence

N = kerT @ranT*.

If T:.7N — N is an injective operator, theh is obviously invertible. If an
operatofT : 7N — X is not injective, we can makEe injective by restricting it to
(kerT)*. However,T | ,r): might still not be invertible, since it does not need to
be surjective. This can be ensured by considering the apératkerT )+ — ranT,
which is now invertible.

The Moore-Penrose inverse of an injective operator pravédene-sided inverse
for the operator.

Definition 6. Let T : #N — KX be an injective, linear operator. Thdoore-
Penrose inversef T, TT, is defined by

TH=(T"T)" 1"
It isimmediate to prove invertibility from the left as stdti the following result.
Proposition 4. 1f T : 22N — X is an injective, linear operator, then™T = Id.

Thus,TT plays the role of the inverse on r&in- not on all of. 7K. It projects a
vector from#’X onto rarl and then inverts the operator on this subspace.

A more general notion of this inverse is called fieeudo-inversavhich can be
applied to a non-injective operator. It, in fact, adds oneergiep to the action of
TT by first restricting to(kerT)* to enforce injectivity of the operator followed
by application of the Moore-Penrose inverse of this new afoer This pseudo-
inverse can be derived from the singular value decompaosifRecalling that by
fixing orthonormal bases of the domain and range of a linearaipr we derive an
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associated unigue matrix representation, we begin byngtétis decomposition in
terms of a matrix.

Theorem 1.Let A be an Mx N matrix. Then there exist an MM unitary matrix
U (see Definition 9), an N N unitary matrix V, and an M« N diagonal matrix>
with nonnegative, decreasing real entries on the diagonehghat

A=UXV"
Hereby, arM x N diagonal matrix withM # N is anM x N matrix (a; )y, "
with &;; = 0 fori # .

Definition 7. LetAbe anM x N matrix, and letJ, X, andV be chosen asin Theorem
1. ThenA =UZ2V* is called thesingular value decomposition (SVDj A. The
column vectors ol are called théeft singular vectorsand the column vectors of
V are referred to as théght singular vectorof A.

The pseudo-invers&™ of A can be deduced from the SVD in the following way.

Theorem 2.Let A be an Mx N matrix, and let A=UZXV* be its singular value
decomposition. Then
At =VITU*,

whereX " is the Nx M diagonal matrix arising from>* by inverting the non-zero
(diagonal) entries.

2.2.2 Riesz Bases

In the previous subsection, we already recalled the noti@marthonormal basis.

However, sometimes the requirement of orthonormalityasstoong, but uniqueness
of a decomposition as well as stability shall be retainec fidtion of a Riesz basis,
which we next introduce, satisfies these desiderata.

Definition 8. A family of vectors(¢;)N ; in a Hilbert space’#N is aRiesz basis
with lower (respectivelyuppe) Riesz bounds fresp.B), if, for all scalars(a)N ;,

we have
N ) N
AY lal* <[y adi
2,372

The following result is immediate from the definition.

2 N
<BY |al?
2

Proposition 5. Let (¢i)N ; be a family of vectors. Then the following conditions are
equivalent.

(i) (¢)N, is a Riesz basis fopN with Riesz bounds A and B.

(if) For any orthonormal basige)N ; for 7N, the operator T on#N given by
Ta = ¢ for all i = 1,2,...,N is an invertible operator with|T|> < B and
T4 2>A
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2.2.3 Diagonalization

Next, we continue our list of important properties of lineperators.

Definition 9. A linear operatofl : #N — 7K is called

(a) self-adjoint if N = X andT = T*.

(b) normal if T*"T =TT*.

(c) an isometryif || Tx|| = ||| for all x € s#N.

(d) a co-isometryif T* is an isometry.

(e) positive if N = 7K, T is self-adjoint, andTx,x) > 0 for all x € N,
(f) unitary, if it is a surjective isometry.

From the variety of basic relations and results of thoseonstithe next proposi-
tion presents a selection of those which will be requiredhengequel.

Proposition 6. Let T: 2N — X be a linear operator.

(i) We have|T*T|| = || T||?, and T“T and TT are self-adjoint.
(ii) If N =K, the following conditions are equivalent.

(1) T is self-adjoint.
(2) (TxX) = (x, TX) for all x,% € N,
(3) If N is complex{Tx x) € R for all x € 7N,

(iif) The following conditions are equivalent.

(1) T is an isometry.
(2) T*T = Id.
(3) (Tx TX) = (x,X) for all x,% € N,

(iv) The following conditions are equivalent.
(1) T is unitary.

(2) T and T" are isometric.
B)TT =Idand T*T = Id.

(v) IfU is a unitary operator, thefjUT|| = ||T|| = || TU]|.

Diagonalizations of operators are frequently utilized évice an understanding
of the action of an operator. The following definitions lay tiroundwork for this
theory.

Definition 10. Let T : s#N — J#N be a linear operator. A non-zero vectog N
is aneigenvectorof T with eigenvalueA, if Tx= Ax. The operatoiT is called
orthogonally diagonalizableif there exists an orthonormal bas{le)i’\‘:1 of seN
consisting of eigenvectors af.

We start with an easy observation.

Proposition 7. For any linear operator T: s#N — X, the non-zero eigenvalues
of T*T and TT are the same.
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If the operator is unitary, self-adjoint or positive, we kawnore information on
the eigenvalues stated in the next result, which follows @diately from Proposi-
tion 6.

Corollary 2. Let T: .#N — #N be a linear operator.

() If T is unitary, then its eigenvalues have modulus one.
(i) If T is self-adjoint, then its eigenvalues are real.
(iii) If T is positive, then its eigenvalues are non-negativ

This fact allows us to introduce a condition number assediatith each invert-
ible positive operator.

Definition 11. Let T : 22N — N be an invertible positive operator with eigenval-
uesAi > A > ... > AN. Then itscondition numbers defined by;\—;.

We next state a fundamental result in operator theory whichits analogue in
the infinite-dimensional setting called thpectral theorem

Theorem 3.Let.7#N be complex and let T.#N — 7N be a linear operator. Then
the following conditions are equivalent.

(i) T is normal.
(ii) T is orthogonally diagonizable.
(iif) There exists a diagonal matrix representation of T.
(iv) There exist an orthonormal bagie )N ; of #N and valuesiy, ..., Ay such that

N
Tx= Zx\i<x,ei>a for all x e N,
i=

Moreover,
ITII?= max A;.
1<i<N

Since every self-adjoint operator is normal we obtain théofdng corollary
(which is independent of whethe#’N is real or complex).

Corollary 3. A self-adjoint operator is orthogonally diagonalizable.

Another consequence of Theorem 3 is the following resulictvin particular
allows the definition of the-th root of a positive operator.

Corollary 4. Let T: 2N — N be an invertible positive operator with normalized
eigenvectorge)N ; and respective eigenvaluési)N ,, let ac R, and define an
operator T2: s#N — o#N by

N
T = ZAia<x,a>a for all x € 7N,
i=

Then T is a positive operator and AT = TP for a,b € R. In particular, T-1
and T-%/2 are positive operators.
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Finally, we define the trace of an operator, which, by usingdrem 3, can be
expressed in terms of eigenvalues.

Definition 12. Let T : s#N — J#N be an operator. Then, theceof T is defined
by

N
WTézﬁqm, 1)

where(g)N ; is an arbitrary orthonormal basis fot™N.

The trace is well defined since the sum in Equation 1 is indégetof the choice
of the orthonormal basis.

Corollary 5. Let T: 2N — 2N be an orthogonally diagonalizable operator, and
let (A))N; be its eigenvalues. Then

N
T = i;/\i.

2.2.4 Projection Operators

Subspaces are closely intertwined with associated piojeoperators which map
vectors onto the subspace either orthogonally or not. Aiginoorthogonal projec-
tions are more often used, in Chapter [166] we will requieertfore general notion.

Definition 13. Let P: s#N — N be a linear operator. The®is called aprojec-
tion, if P> = P. This projection is calledrthogonal if P is in addition self-adjoint.

For the sake of brevityprthogonal projectionsare often simply referred to as
projectionsprovided there is no danger of misinterpretation.

Relating to our previous comment, for any subsp#ceof N, there exists
a unique orthogonal projectio® of 7N having# as its range. This projection
can be constructed as follows: Letdenote the dimension ¢#, and choose an
orthonormal basige )™ ; of #. Then, for any € s#N, we set

m

Px= _;<x, a)e.

It is important to notice that alstdl — P is an orthogonal projection o#N, this
time onto the subspacg .

An orthogonal projectiorP has the crucial property that each given vector of
2N is mapped to the closest vector in the rang®.of

Lemma 1.Let # be a subspace o#’N, let P be the orthogonal projection onto
#, and let xe s#N. Then
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Ix—Px| < |x—&| forall ke #.
Moreover, if||[x— Px|| = ||x— X|| for someX € #/, thenX = Px.

The nextresult gives the relationship between trace aridfoauprojections. This
follows from the definition of an orthogonal projection andrGllaries 3 and 5.

Proposition 8. Let P be the orthogonal projection onto a subsp#tef N, and
let m=dim» . Then P is orthogonally diagonalizable with eigenvaluef multi-
plicity m and eigenvalu@ of multiplicity N—m. In particular, we have thatr P =m.

3 Basics of Finite Frame Theory

We start by presenting the basics of finite frame theory. Fastration purposes,
we then present some exemplary frame classes. At this peéniyould also like to
refer to the monographs and books [35, 36, 100, 101, 112] has [66, 67] for

infinite-dimensional frame theory.

3.1 Definition of a Frame

The definition of a (Hilbert space) frame originates fromearork by Duffin and
Schaeffer [80] on nonharmonic Fourier series. The main, idealready discussed
in Section 1, is to weaken Parseval’s identity yet to stithie norm equivalence
between a signal and its frame coefficients.

Definition 14. A family of vectors(¢i)M , in #N is called &rame for.#’N, if there
exist constants & A < B < o such that

M
Alx|? < -Zl|<x’ $i)|? <B|x||> forallxe sN. ()
1=

The following notions are related to a fraro@ )M ;.

(a) The constantd andB as in (2) are calletbwer and upper frame bourfdr the
frame, respectively. The largest lower frame bound andriiedlest upper frame
bound are denoted b, p, Bop and are called theptimal frame bounds

(b) Any family (¢i)M, satisfying the right hand side inequality in (2) is called a
B-Bessel sequence

(c) If A= Bis possible in (2), thetigi)M , is called anA-tight frame

(d) If A=B=1is possible in (2) —i.e., Parseval’s Identity holds —, thénM , is
called aParseval frame

(e) If there exists a constaasuch that|¢i|| = cfor alli = 1,2,...,M, then(¢;)M ;
is anequal-norm framelf c= 1, (¢;)M, is aunit-norm frame
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(f) If there exists a constamtsuch that(¢i,¢;)| = c for all i # j, then(¢i)M, is
called arequi- angularframe

(9) The valueg (x, ¢;))M =1 are called thdrame coefficientsf the vectorx with re-
spect to the framépi )M, .

(h) The frame(¢i )M, is calledexact if (¢ )ic| ceases to be a frame fg#™N for every
I ={1,...,M}\ {io},i0 € {1,...,M}.
We can immediately make the following useful observations.

Lemma 2. Let (¢i)M, be a family of vectors in#N.

(i) If (¢i)M, is an orthonormal basis, thef;)M , is a Parseval frame. The converse
is not true in general.
(i) (¢)M, is a frame foro#’N if and only if it is a spanning set fosZN.
(i) (¢i){\":1 is a unit-norm Parseval frame if and only if it is an orthon@hbasis.
(iv) If (¢)M, is an exact frame for#N, then it is a basis of#N, i.e. a linearly
independent spanning set.

Proof. (i). The first part is an immediate consequence of Propasitid-or the sec-
ond part, lete)N ; and(g)N ; be orthonormal bases fo#’N. Then(e /v2)N ;U
(6i/V2)N , is a Parseval frame fa#”N, but not an orthonormal basis.

(i) If (¢i)M; is not a spanning set fo#N then there existg # 0 such that
(x,¢i) =0 for alli = 1,...,M. Hence,(¢i)M, cannot be a frame. Conversely, as-
sume thaf¢i)M ; is not a frame. Then there exists a sequengg;_, of normalized
vectors inZN such thaty M | (x, ¢i)|? < 1/n for all n € N. Hence, the limitx of
a convergent subsequence(mf) °_, satisfies(x, ¢;) = 0 foralli =1,...,M. Since
||| = 1, it follows that(¢;)M , is not a spanning set.

(iii). By the Parseval property, for eache {1,...,M}, we have

M
iol|2 = gy = io I07
115112 i;|<¢ $)|” =l ¢ Hz+I 12%0 (i

Since the frame vectors are normalized, we conclude that

M

Z (i, d1)2=0 forallig € {1,...,M}.
i=1,1#i0

Hence(¢i,¢;) = 0 for all i # j. Thus,(¢i)M; is an orthonormal system which is
complete by (ii), and (iii) is proved.

(V). If (¢0)M, is a frame, by (ii), it is also a spanning set fe#’N. Towards
a contradiction, assume théhi)M , is linearly dependent. Then there exist some
io€{1,...,M}andvalues\,iel :={1,...,M}\ {io} such that

¢|0=%/\i¢i-

This implies that($i)ic| is also a frame, thus contradicting exactness of the frame.
O
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Before presenting some insightful basic results in frameotj, we now first
discuss some examples of frames to build up intuition.

3.2 Examples

By Lemma 2 (iii), orthonormal bases are unit-norm ParseeahEs (and vice versa).
However, applications typically requiredundantParseval frames. One basic way
to approach this construction problem is to build redundRarseval frames using
orthonormal bases, and we will present several exampldirseéquel. Since the
associated proofs are straightforward, we leave them tmtheested reader.

Example 1Let (g)N ; be an orthonormal basis fo#N.

(1) The system
(el707e2)0) M 7eN70)
is a Parseval frame fas#N. This example indicates that a Parseval frame can

indeed contain zero vectors.
(2) The system

(QEEEEE &N ﬂ)
V22 VBVBYETTTYNT YN

is a Parseval frame far”N. This example indicates two important issues: Firstly,
a Parseval frame can have multiple copies of a single veéa¢mondly, the norms
of vectors of an (infinite) Parseval frame can converge to.zer

We next consider a series of examples of non-Parseval frames

Example 2Let (g)N, is an orthonormal basis forN.

(1) The system
(el7el7"')e1)e2)e3)"')a\|)

with the vectore; appearingN + 1 times, is a frame fog#”N with frame bounds
1 andN+ 1.
(2) The system
(e1,€1,€2,€2,63,€3,...,€N)

is a 2-tight frame forZ'N.
(3) The union ofL orthonormal bases o\ is a unit-normL-tight frame for N,
generalizing (2).

A particularly interesting example is the smallest trulgiuadant Parseval frame
for R2, which is typically coinedMlercedes-Benz fram@&he reason for this naming
becomes evident in Figure 1.
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Example 3The Mercedes-Benz franfer R? is the equal-norm tight frame fd®?

()]

Note that this frame is also equi-angular.

Fig. 1 Mercedes-Benz frame.

For more information on the theoretical aspects of equiaéargrames we refer
to[61, 92,121, 140]. A selection of their applications isarstrucion without phase
[6, 5], erasure-resilient transmission [16, 103], and ngdiL37]. We also refer to
the chapters [157, 158] in this book.

Another standard class of examples can be derived fronditwete Fourier
transform(DFT) matrix.

Example 4GivenM € N, we letw = exp(2™). Then the discrete Fourier transform
(DFT) matrix inCM*M s defined by

1 L\ M-1
Dy =—= (w”‘) .
k=0

This matrix is a unitary operator o&™. Later (see Corollary 11) it will be seen that
the selection of anil rows fromDy,, yields a Parseval frame f@" by taking the
associated/ column vectors.

We would like to finally mention that Section 6 contains dseconstructions
of frames. There also exist particularly interesting aassf frames such as Gabor
frames utilized primarily for audio processing. Among tlsults on various as-
pects of Gabor frames are uncertainty considerations [l1iar independence
[120], group-related properties [90], optimality anaty$128], and applications
[68, 75, 76, 88, 89]. Chapter [159] provides a survey forthass of frames. Another
example is the class of group frames, for which various ecangsons [25, 102, 148],
classifications [65], and intriguing symmetry properti&47, 149] have been stud-
ied. A comprehensive presentation can be found in Chap5&j[1
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4 Frames and Operators

The analysis, synthesis, and frame operator determingotration of a frame when
analyzing and reconstructing a signal. The Grammian opeigfperhaps not that
well-known, yet it crucially illuminates the behavior of eafme(¢i)M; embedded
as anN-dimensional subspace in the high-dimensional sfidte

For the rest of this introduction we séf := ¢>({1,...,M}). Note that this space
in fact coincides witiRM or CM, endowed with the standard inner product and the
associated Euclidean norm.

4.1 Analysis and Synthesis Operators

Two of the main operators associated with a frame are the/sinadnd synthesis
operators. The analysis operator — as the name suggestlyzesm@signal in terms
of the frame by computing its frame coefficients. We startdiyrfalizing this notion.

Definition 15. Let (¢;)M, be a family of vectors in#N. Then the associatezhal-
ysis operator T: N — ¢} is defined by

Txi= (% ¢1))",, xeN

In the following lemma we derive two basic properties of thalgsis operator.

Lemma 3. Let (¢i)M, be a sequence of vectors N with associated analysis
operator T.

(i) We have
M
| Tx|? = Zl|<x’ ¢i)|? forallx e 2N
i=

Hence,(¢i)M, is a frame for#N if and only if T is injective.
(if) The adjoint operator T : ¢! — 7N of T is given by

M
T*(ai)g\ilz_;aid’i-

Proof. (i). This is an immediate consequence of the definitioff aihd the frame

property (2).
(ii). For x= (a)M, andy € N, we have

M M
(T™xy) = (X, Ty) = <(ai)iM:17 (v, ¢i>):\il> = ;amy, ¢i) = <_;a4¢i,y>-

Thus, T* is as claimed. O
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The second main operator associated to a frame, the sysith@siator, is now
defined as the adjoint operator to the analysis operatongiveemma 3(ii).

Definition 16. Let (¢;)M; be a sequence of vectors.iN with associated analy-
sis operatoil . Then the associatesynthesis operatas defined to be the adjoint
operatorT *.

The next result summarizes some basic, yet useful propesfithe synthesis
operator.

Lemma 4. Let (¢i)M, be a sequence of vectors i’N with associated analysis
operator T.

(i) Let (a){\"zl denote the standard unit basis@f. Thenforalli=1,2,...,M, we
have T'e = T*Pa = ¢;, where P: /' — ¢} denotes the orthogonal projection
ontoranT .

(i) (¢i)M, is a frame if and only if T is surjective.

Proof. The first claim follows immediately from Lemma 3 and the féetttkem* =
(ranT)*. The second claim is a consequence oflrar: (kerT)+ and Lemma 3(i).
O

Often frames are modified by the application of an invertdperator. The next
result shows not only the impact on the associated analyssator, but also the
fact that the new sequence again forms a frame.

Proposition 9. Let @ = (¢i)M, be a sequence of vectors i with associated
analysis operator § and let F: s#N — N be a linear operator. Then the analysis
operator of the sequence®= (F ¢;)M, is given by

Teo = ToF*.

Moreover, if® is a frame fors#N and F is invertible, then also ® is a frame for
N,
Proof. Forx € 2N we have

Trox = ((X, F¢i>)iM:1 = ((F*x, ¢i>)i'\11 =ToF"x.
This proveslg ¢ = TpF*. Themoreoverpart follows from Lemma 4(ii). O

Next, we analyze the structure of the matrix representatfdhe synthesis op-
erator. This matrix is of fundamental importance, since ikiwhat most frame
constructions in fact focus on, see also Section 6.

The first result provides the form of this matrix alongsidéhwatability proper-
ties.
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Lemma 5. Let (¢i)M, be a frame for#N with analysis operator T. Then a matrix
representation of the synthesis operatcri the Nx M matrix given by

ey

Moreover, the Riesz bounds of the row vectors of this madpitakthe frame bounds
of the column vectors.

Proof. The form of the matrix representation is obvious. To prowerttoreover
part, let (ej)'j\‘:l be the corresponding orthonormal basis.#fN and for j =
1,2,...,Nlet

wl = [<¢1’ej>7<¢27ej>a'"7<¢Mvej>]7

be the row vectors of the matrix. Then for= 3\, aje; we obtain

2

M M N N
i;KX =2 JZlaj<eja¢’i> :.Z a@Zle,, (1.
= Z aja (W, ¥j) = Z?w,

The claim follows from here. O

A much stronger result (Proposition 12) can be proven forctse in which the
matrix representation is derived using a specifically chas¢honormal basis. The
choice of this orthonormal basis though requires the intetidn of the so-called
frame operator in the following Subsection 4.2.

4.2 The Frame Operator

The frame operator might be considered the most importaradpr associated with
a frame. Although it is ‘merely’ the concatenation of the lgg&s and synthesis op-
erator, it encodes crucial properties of the frame as wesa#l in the sequel. More-
over, itis also fundamental for the reconstruction of sigfiem frame coefficients
(see Theorem 8).

4.2.1 Fundamental Properties

The precise definition of the frame operator associated avitame is as follows.

Definition 17. Let (¢)M ; be a sequence of vectors.i#N with associated analysis
operatofT. Then the associatdthme operator S N — N is defined by
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Sx:=T*Tx= _i(x, o)V, xe N

A first observation concerning the close relation of the favperator to frame
properties is the following lemma.

Lemma 6. Let (¢)M, be a sequence of vectors.i#N with associated frame oper-
ator S. Then, for all x N,

M
=3 lixdil

Proof. This follows directly from(Sx x) = (T*Tx,x) = || Tx|? and Lemma 3(i). O

Clearly, the frame operat&= T*T is self-adjoint and positive. The most funda-
mental property of the frame operator — if the underlyingsage of vectors forms
a frame — is its invertibility which is crucial for the recdnsction formula.

Theorem 4. The frame operator S of a franté; )M, for s#N with frame bounds A
and B is a positive, self-adjoint invertible operator sting

A-ld <S<B-Id.

Proof. By Lemma 6, we have
M
(AxX) = Allx||? < 3 10 ¢1)1> = (Sxx) <B|[X|>= (Bxx) forallxe 2N,
i=

This implies the claimed inequality.CI
The following proposition follows directly from Propositi 9.

Proposition 10.Let (¢i)M, be a frame for#N with frame operator S, and let F be
an invertible operator on#”N. Then(F ¢; ){V':l is a frame with frame operator FSF

4.2.2 The Special Case of Tight Frames

Tight frames can be characterized as those frames whose fsparator equals a
positive multiple of the identity. The next result providegariety of similarly frame
operator inspired classifications.

Proposition 11.Let(¢i)M, be a frame forz#’N with analysis operator T and frame
operator S. Then the following conditions are equivalent.

(i) ()M, is an A-tight frame forz™N.

(i) S=A-1d.
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(iii) For every xe N,
M

x=A1. ;<X7 ¢|>¢|

(iv) For every xc 77N,
M
AlXIZ =S [(x, i)
2,

(v) T/+/Alis an isometry.

Proof. (i) < (i) < (iii) < (iv). These are immediate from the definition of the
frame operator and from Theorem 4.

(ii) < (v). This follows from the fact thal /+/A is an isometry if and only if
T*T=A-1d. O

A similar result for the special case of a Parseval frame eaedsily deduced
from Proposition 11 by setting = 1.

4.2.3 Eigenvalues of the Frame Operator

Tight frames have the property that the eigenvalues of thecésted frame opera-
tor all coincide. We next consider the general situatiamn, frame operators with
arbitrary eigenvalues.

The first and maybe even most important result shows thaatigest and small-
est eigenvalues of the frame operator are the optimal fraoneds of the frame.

Optimality refers to the smallest upper frame bound and dngelst lower frame
bound.

Theorem 5. Let (¢)M, be a frame forz#N with frame operator S having eigenval-
uesA; > ... > An. ThenA; coincides with the optimal upper frame bound ahd
is the optimal lower frame bound.

Proof. Let ()N ; denote the normalized eigenvectors of the frame opeBatdth
respective eigenvaluga j)n-\‘:]_ written in decreasing order. Letc .7’N be arbitrar-

ily fixed. Sincex =3, (x,€j)ej, we obtain
N
Sx= JZl/\j <X, e,-)ej.
By Lemma 6, this implies
M

N N
.Z|<X, ¢i)|? = (Sxx) = <Zl’\j<x’ €j)ej, y <X7ej>ej>
=

i= =1

N N
= 3 AjlxeF <Ay [xe)*=Adlx|%
JZ\ j j JZl j
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ThusBop < A1, whereBop denotes the optimal upper frame bound of the frame
(¢i)M,. The claimBop = A; then follows from

§|<el,¢i>|2 = (Se, &) = (A1ey,e1) = A1

The claim concerning the lower frame bound can be proverailyi O

From this result, we can now draw the following immediateatosion on Riesz
bounds.

Corollary 6. Let (¢)} ; be a frame forz#’N. Then the following statements hold.

(i) The optimal upper Riesz bound and the optimal upper framend Of(d’i)iN:l
coincide.

(if) The optimal lower Riesz bound and the optimal lower feabound of(¢)N
coincide.

Proof. Let T denote the analysis operator @)\ ; and S the associated frame
operator having eigenvalu(e.&;i)i'\‘:1 written in decreasing order. We have

M=IS| =TTl =[TI?= T

and
AN=[SH =TT =T YA

Now, both claims follow from Theorem 5, Lemma 4, and Proposib. O

The next theorem reveals a relation between the frame \seataf the eigenval-
ues and eigenvectors of the associated frame operator.

Theorem 6.Let (¢i)M, be a frame for#N with frame operator S having nor-
malized eig(::nvect0|(sej)'J-\‘:l and respective eigenvalu(ebj)'j\‘:l. Then for all j=
1,2,...,N we have

M
IEDNCH IS
i i; i» @i
In particular,
N M )
TrS=5S A =5 ||l
PREPR

Proof. This follows fromA; = (Sq,€j) forall j=1,...,N and Lemma6. O

4.2.4 Structure of the Synthesis Matrix

As already promised in Subsection 4.1, we now apply the pusly derived results
to obtain a complete characterization of the synthesisixnaftia frame in terms of
the frame operator.
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Proposition 12.Let T: %™ — ¢} be a linear operator, lete;)'\_; be an orthonor-
mal basis of##N and Iet(/\j)ﬂ-\'zl be a sequence of positive numbers. By A denote
the Nx M matrix representation of Twith respect tqe; )?‘:1 (and the standard unit
basis(&)M , of /4. Then the following conditions are equivalent.

(i) (T*&)M, forms a frame for#”N whose frame operator has eigenvecteg'\ |
and associated eigenvalugk; )'J-\‘Zl.

(if) The rows of A are orthogonal, and the j-th row square sumg;.
(i) The columns of A form a frame fdl;‘, and AAX =diagAq,...,AN).

Proof. Let (fj)L, be the standard unit basis @f and denote by : £ — 7™ the
unitary operator which mapi to ej. ThenT* = UA.
()=(ii). For j,ke {1,...,N} we have

(A" fj, A" fi) = (TUF, TUfi) = (T"Tey, &) = Ajdjk,

which is equivalent to (ii).

(if) =(iii). Since the rows oA\ are orthogonal, we have raAk= N which implies
that the columns oA form a frame for¢}. The rest follows from{AA* fj, fi) =
<A*fj,A*fk> :/\jéjk for j,kz 1,....N.

(i) =(i). Since (A&)M, is a spanning set fof) andT* = UA, it follows that
(T*éq)i"il forms a frame forz#N. Its analysis operator is given By since for all
xe N,

(T )My = (Tx &) =Tx

Moreover,
T*Tej = UAA*U*ej =U diag()\l,... ,)\N)fj = )\J'U fj = )\jej,

which completes the proof.00

4.3 Grammian Operator

Let (¢i)M; be a frame for#’N with analysis operatcF. The previous subsection
was concerned with properties of the frame operator defigesl-b T*T : #N —
N, Of particular interest is also the operator generated bydipplying the syn-
thesis and then the analysis operator. Let us first statertroesp definition before
discussing its importance.

Definition 18. Let (¢)M; be a frame for#”N with analysis operatof. Then the
operatoG : /' — (¥ defined by

M M M
G(ai)z\il = TT*(ai)i'\il = <'Zai<¢i’¢k>> = .Zai(<¢i’¢k>)y:1
i= k=1 1=
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is called theGrammian(operato) of the frame(¢i)M ;.

Note that the (canonical) matrix representation of the Gnégan of a frame
(¢i)iM:l for N (which will also be called th&rammian matrixis given by

11> (92, ¢1) - (dm, 1)
(91,02) lld2ll® -+ (dwm,92)

(01, 0m) (2. 00) - || w2

One property of the Grammian is immediate. In fact, if therfeais unit-norm then
the entries of the Grammian matrix are exactly the cosindssodingles between the
frame vectors. Hence, for instance, if a frame is equi-aargihlen all off diagonal
entries of the Grammian matrix have the same modulus.

The fundamental properties of the Grammian operator ateatet in the fol-
lowing result.

Theorem 7.Let (¢)M, be a frame for#N with analysis operator T, frame opera-
tor S, and Grammian operator G. Then the following statembotd.

(i) An operator U ons#N is unitary if and only if the Grammian ¢t ¢;)M, coin-
cides with G.
(i) The non-zero eigenvalues of G and S coincide.
(i) (¢i){\i1 is a Parseval frame if and only if G is an orthogonal projectiof rank N
(namely onto the range of)T
(iv) Gis invertible if and only if M= N.

Proof. (i). This follows immediately from the fact that the entrigithe Grammian
matrix for (U ¢i)M ; are of the formU ¢;,U ¢;).

(ii). SinceTT* andT*T have the same non-zero eigenvalues (see Proposition 7),
the same is true faB andS.

(iii). It is immediate to prove thaG is self-adjoint and has ranK. SinceT is
injective, T* is surjective, and

G2=(TT)(TTH) =T(T*T)T*,

it follows thatG is an orthogonal projection if and onlyT™T = Id, which is equiv-
alent to the frame being Parseval.
(iv). This is immediate by (ii). O

5 Reconstruction from Frame Coefficients

The analysis of a signal is typically performed by merely sidaring its frame
coefficients. However, if the task is transmission of a sigha ability to reconstruct
the signal from its frame coefficients and also to do so efiityebecomes crucial.
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Reconstruction from coefficients with respect to an orthiorad basis was already
discussed in Corollary 1. However, reconstruction fromffacients with respect to

a redundant system is much more delicate and requires timatitin of another

frame, called dual frame. If computing such a dual frame imotationally too

complex, a circumvention of this problem is the so-calleshfe algorithm.

5.1 Exact Reconstruction

We start with stating an exact reconstruction formula.

Theorem 8.Let ()M, be a frame for#”N with frame operator S. Then, for every
x e N, we have

M

X= _i@@ $1)S 1o = _;<X, S i)

Proof. This follows directly from the definition of the frame opewatn Definition
17 by writingx = S~ 1Sxandx=SSx. O

Notice that the first formula can be interpreted as a recoatstm strategy,
whereas the second formula has the flavor of a decomposieriurther observe
that the sequendes 1¢i)M; plays a crucial role in the formulas in Theorem 8. The
next result shows that this sequence indeed also constaftame.

Proposition 13.Let (¢)M; be a frame fors#N with frame bounds A and B and
with frame operator S. Then the seque(®el¢;)M, is a frame fors#N with frame
bounds B and A and with frame operator S-.

Proof. By Proposition 10, the sequen¢81¢;)M, forms a frame for#N with
associated frame operatdr'S(S—1)* = S-1. This in turn yields the frame bounds
BlandA™l O

This new frame is called theanonical dual frameln the sequel, we will discuss
that also other dual frames may be utilized for reconstoncti

Definition 19. Let (¢;)M, be a frame fors#’N with frame operator denoted I
Then(S1¢;)M , is called thecanonical dual framéor (¢i)M ;.

The canonical dual frame of a Parseval frame is now easigraghed by Propo-
sition 13.

Corollary 7. Let (¢i)M, be a Parseval frame foz#’N. Then its canonical dual
frame is the framé¢; )M , itself, and the reconstruction formula in Theorem 8 reads

<

x=S(x¢)¢i, xe. N
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As an application of the above reconstruction formula forsBzal frames, we
prove the following proposition which again shows the cledation between Par-
seval frames and orthonormal bases already indicated inmzegh

Proposition 14 (Trace Formula for Parseval Frames)Let (¢i)M ; be a Parseval
frame for.#N, and let F be a linear operator o\, Then

M

Tr(F) = _;<F¢i7¢i>-

Proof. Let (g )J-N=l be an orthonormal basis fo#’N. Then, by definition,

=

Tr(F) = (Fej.gj).
=1

This implies

Tr(F)

Il
= M=
z M=

N M
< <Feja ¢I7ej> leejvlz ¢ ¢Iaej>
M M
- Z<Z ¢I7ej eJ7F ¢I> :Z<¢I7F ¢> Z<F¢I7¢I> O

As already announced, many other dual frames for recongtnuexist. We next
provide a precise definition.

Definition 20. Let (¢i)M; be a frame for#’N. Then a framéyi )M, is called adual
framefor ()M ,, if

M
X = _Z(x, oy forallxe 2N,

Dual frames, which do not coincide with the canonical duaife, are often coined
alternate dual frames

Similar to the different forms of the reconstruction formih Theorem 8, also
dual frames can achieve reconstruction in different ways.

Proposition 15.Let (¢)M, and (¢i)M, be frames forN and let T andf be the
analysis operators of$)™, and (yi)M,, respectively. Then the following condi-
tions are equivalent.

(i) We have x= Zl 1 (X, W) @i for all x € 2N,

(i) We have x= M < i) i for all x € 2N,
(iii) We have(x,y) = SM(x, ¢i)(g,y) for all x,y € #N.
(iv) T*T =Id andT* T Id.
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Proof. Clearly (i) is equivalent ta*T = Id which holds if and only ifi *T = Id.
The equivalence of (iii) can be derived in a similar wayzl

One might ask what distinguishes the canonical dual frame fihe alternate
dual frames besides its explicit formula in terms of the@hframe. Another seem-
ingly different question is which properties of the coe#iti sequence in the de-
composition of some signalin terms of the frame (see Theorem 8),

M
X = _;<X7§l¢i>¢i7

uniquely distinguishes it from other coefficient sequeneesdundancy allows in-
finitely many coefficient sequences. Interestingly, thet nesult answers both ques-
tions simultaneously by stating that this coefficient seqeehas minimaf,-norm
among all sequences — in particular those, with respecti¢onalte dual frames —
representing.

Proposition 16.Let (¢;)M, be a frame for#N with frame operator S, and letx
N If (a)M, are scalars such thatx SM; & ¢;, then
il 2 il 1 2 J 1 2
i;Iail = i;l(xs“ ¢i)| +i;|ai — (%S "i)[".
Proof. Letting T denote the analysis operator(aﬁi)i“il, we obtain
(xS 1iNM, = ((S X ¢i))M, cranT.
Sincex = yM, a ¢, it follows that
(a — (x,S 1)), € kerT* = (ranT)*.
Considering the decomposition
@My = (S M1+ (@ — (xS i)y,
the claim is immediate. O

Corollary 8. Let (¢i)M, be a frame for#N, and let(¢)M ; be an associated al-
ternate dual frame. Then, for all& 57N,

(xS i) ll2 < 1%, g))La [

We wish to mention that also sequences which are minimakidithorm play a
crucial role to date due to the fact that thenorm promotes sparsity. The interested
reader is referred to Chapter [162] for further details.
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5.2 Properties of Dual Frames

While focussing on properties of the canonical dual framtélast subsection, we
next discuss properties shared by all dual frames. The fies$tgpn arising is: How

do you characterize all dual frames? A comprehensive ansamovided by the

following result.

Proposition 17.Let(¢i)M, be a frame forz#’N with analysis operator T and frame
operator S. Then the following conditions are equivalent.

(i) ()M, is a dual frame for(¢i )M ;.
(i) The analysis operatorTof the sequencap — S 1¢i)M, satisfies

ranT L ranT;.

Proof. We setd; := ¢ — S™1¢; fori =1,...,M and note that

M M

M
> (U= 3 (Bt STH0G =k S (X B =+ T Tax

holds for allx € #N. Hence,(¢)M is a dual frame for(¢;)M, if and only if
T*Ty = 0. But this is equivalent to (ii). O

From this result, we have the following corollary which piges a general for-
mula for all dual frames.

Corollary 9. Let (¢))M, be a frame for#N with analysis operator T and frame
operator S with associated normalized eigenvec(aﬁ'j\‘=1 and respective eigen-

values(Aj)™.;. Then every dual framgys }1; for (¢i)M, is of the form

N

1 — .
wIZZ()\—J<¢|,eJ>+h|J)eJ; |:1,...,M,

where eactthij),, j=1,...,N, is an element ofranT ).

Proof. If ¢, i = 1,...,M, is of the given form with sequencei;)™, € /¥,
j=1,...,N, thenys = S~ ¢+ @, wheredi == 3}, hijej,i =1,...,M. The analysis
operatorT of (§i)M, satisfiesT g = (hij)M,. The claim follows from this observa-
tion. O

As a second corollary, we derive a characterization of alinies which have a
uniquely determined dual frame. It is evident, that thisquei dual frame coincides
with the canonical dual frame.

Corollary 10. A frame(¢i)M, for N has a unique dual frame if and only if M
N.
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5.3 Frame Algorithms

Let ()M, be a frame for#’N with frame operato8, and assume we are given the
image of a signak € »#N under the analysis operator, i.e., the sequétice;))M
in ). Theorem 8 already provided us with the reconstruction toam

M
X= _;(X, $1)S ‘o

by using the canonical dual frame. Since inversion is tylsiczot only computa-
tionally expensive, but also numerically instable, thisriala might not be utilizable
in practice.

To resolve this problem, we will next discuss three iteetnethods to derive
a converging sequence of approximations &fom knowledge of((x, ¢i))}\il. The
first on our list is the so-callefilame algorithm

Proposition 18 (Frame Algorithm). Let (¢i){\i1 be a frame forZN with frame
bounds AB and frame operator S. Given a signalkex#N, define a sequence
(V) 5o in 2N by

Yo=0, yj=Yj-1+—=Sx—yj-1) forall j >1.

A+B

Then(yj)?":o converges to x inZ”N and the rate of convergence is

B .
ol = (52) 1. 320

Proof. First, for allx € 2#N, we have

2
Id— —Ixll2 Y2 < ||x)|2 2 _ 2
(1055 gS)xx) = A+BZ'X¢' 12 5o 2 = 2]

Similarly, we obtain

A= (- 52590

B—-A
A+B’

which yields

Hm_ sH < (3)

A+B
By the definition ofy;, for anyj > 0,

2
X—Y) =X=Yj-1 A+BS(X yi-1) = (Id A+B)(X_yj—l)-

Iterating this calculation, we derive
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2 i ;
X—yj = (|d_ms) (X—Yo), forallj>0.

Thus, by (3),

2

Ix=yil = | (19~ :259) <o)

2 j
< = _
< [1a - 258 1x-vol

< (25) Ixl

The result is proved. O

We wish to mention that, although the iteration formula ia frame algorithm
containsy, the algorithm does not depend on the knowledgg biit only on the
frame coefficients(x, ¢i))M,, sinceyj = yj_1+ x25 (i (X, ¢i)$i — Sy —1).

One drawback of the frame algorithm is the fact that not omgsthe conver-
gence rate depend on the ratio of the frame bounds, i.e.ptiditton number of the
frame, but it depends on it in a highly sensitive way. ThissesLthe problem that a
large ratio of the frame bounds leads to very slow convergenc

To tackle this problem, in [97], théhebyshev methahd theconjugate gradient
methodswere introduced, which are significantly better adaptedramg theory
leading to faster convergence than the frame algorithmséd o algorithms will
next be discussed. We start with tBbebyshev algorithm

Proposition 19 (Chebychev Algorithm, [97]).Let(¢i)M ; be a frame forzzN with
frame bounds A and frame operator S, and set

_BoA nd oo VBZVA
P TBrA T VBTVA

Given a signal xc 7N, define a sequenc(ey,—)}"=O in 2N and corresponding
scalars(Aj){, by

2
yO = O’ yl = msx and /\]_ = 27
and for j> 2, set
1 2
/\J:m and yj:)\J(yjflfyjfermS(X*ykl))erJ*Z

Then(yj)?"=O converges to x inZ”N and the rate of convergence is

20
[x=yjll < WHXH-
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The advantage of theonjugate gradient methoavhich we will present next, is
the fact that it does not require knowledge of the frame beuHdwever, as before,
the rate of convergence certainly does depend on them.

Proposition 20 (Conjugate Gradient Method, [97]).Let (¢i)M, be a frame for
2N with frame operator S. Given a signabx#N, define three sequenc@@)?’zo,

(r)§=o, @and(pj)__4 in 2N and corresponding scalars\ )71 by
Yo=0, ro=pp=Sx and p1=0,
and for j> 0, set

APy
Y (P Se)’

Yi+1=Yj+Ajpj, Tjt1=rj—A;Sp,

and
< H,Sm pi — <SQ,SQ—1> Di_1.
(p;.Sp) " (Pj-1.Sp-1)

Then(y; )5 converges to x i#”™ and the rate of convergence is

Ix—yilll < =22 x| with o= YB=VA
M= 1507 VB+ VA’

and||| - ||| is the norm onzN given by|||x||| = (x,S¥ Y2 = ||SY2x||, x € s#N.

Pj+1=Sp —

6 Construction of Frames

As diverse as the various desiderata are which applicat@msre a frame to sat-
isfy, as diverse are also the methods to construct frames5&7 In this section,
we will present a prominent selection. For further detaild gesults, such as, for
example, the construction of frames through spectraktfifi, 47, 44] and through
eigensteps [30], we refer to Chapter [155].

6.1 Tight and Parseval Frames

Tight frames are particularly desirable due to the fact thatreconstruction of
a signal from tight frame coefficients is numerically optlipastable as already
discussed in Section 5. Most of the constructions we wilspng utilize a given
frame, which is then modified to become a tight frame.

We start with the most basic result for generating a Pargesale which is the
application ofS~Y/2, Sbeing the frame operator.
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Lemma 7.1f (¢i)M, is a frame for#N with frame operator S, thef8 /2¢;)M , is
a Parseval frame.

Proof. By Proposition 10, the frame operator {& ¥/2¢;)M , is S /2SS /2 = |d.
O

Although this result is impressive in its simplicity, fronpeactical point of view
it has various problems, the most significant being thatghigedure requires in-
version of the frame operator.

However, Lemma 7 can certainly be applied if all eigenvalaed respective
eigenvectors of the frame operator are given. If only infation on the eigenspace
corresponding to the largest eigenvalue is missing, theretéxists a simple prac-
tical method to generate a tight frame by adding a provablyimal number of
vectors.

Proposition 21. Let (¢i)i“il be any family of vectors i#’N with frame operator
S having eigenvector(sre,-)ﬂ-\‘=1 and respective eigenvaluds > A, > ... > An. Let
1<k<Nbesuchthah; =A;=... =A¢ > A¢s1. Then

N
@20 (=A%) 4)
forms aA;-tight frame for. 2N,
Moreover, N~ k is the least number of vectors which can be adde@td” ; to
obtain a tight frame.

Proof. A straightforward calculation shows that the sequence)is(fhdeed a\;-
tight frame forzN.

For themoreoverpart, assume that there exist vectys) s with frame oper-
ator S satisfying that(¢i)M; U (¢)j)jes is anA-tight frame. This impliesA > A;.
Now defineS; to be the operator ox’N given by

Se — 0:1<j<Kk
I (A1—Aj)g i k+1<j<N.

It follows thatA-Id = S+ S; and
S =A-ld-S>A\ld-S=S,.

SinceS; hasN — k non-zero eigenvalues, al§p has at leasN — k non-zero eigen-
values. HenceJ| > N —k, showing that indee® — k added vectors is minimal.
O

Before we delve into further explicit constructions, we ahée first state some
fundamental results on tight, and, in particular, Parskreahes.

The most basic invariance property a frame could have igiemwee under or-
thogonal projections. The next result shows that this dmerandeed maintains
and may even improve the frame bounds. In particular, thegdnal projection of
a Parseval frame remains a Parseval frame.
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Proposition 22.Let (¢i)M, be a frame for#’N with frame bounds /B, and let P
be an orthogonal projection of#’N onto a subspac#’. Then(P¢;)M, is a frame
for % with frame bounds /8.

In particular, if (¢;)M, is a Parseval frame for#’N and P is an orthogonal
projection onN onto 7, then(P¢;)M , is a Parseval frame fo¥ .

Proof. For anyx € 7/,

M M
AlX[|? = AlPX|? < .Z|<P>9 ¢i)|> = -ZKX’ P¢i)|? < BJ|Px|? = B|x||.
1= 1=

This proves the claim. Thia particular-part follows immediately. O
Proposition 22 immediately yields the following corollary

Corollary 11. Let(e)N ; be an orthonormal basis fo#”N, and let P be an orthog-
onal projection of#™ onto a subspac#’. Then(Pg)Y ; is a Parseval frame for
v

Corollary 11 can be interpreted in the following way: GivenM x M unitary
matrix, if we select anyN rows from the matrix, then the column vectors from
these rows form a Parseval frame f&#fN. The next theorem, known &aimark’s
Theoremshows that indeed every Parseval frame can be viewed asshi¢ of this
kind of operation.

Theorem 9 (Naimark's Theorem).Let (¢))M, be a frame forz#N with analysis
operator T, let(e)M; be the standard unit basis 6§', and let P: ¢/§' — ¢ be the
orthogonal projection ontoanT . Then the following conditions are equivalent.

(i) (¢i)M, is a Parseval frame fopZ™N.
(i) Foralli =1,...,M, we have Pe=T ¢;.
(i) There existyy, ..., gu € 2#M~N such that¢; @ ¢4)M, is an orthonormal basis
of M.

Moreover, if (iii) holds, ther(¢s)M; is a Parseval frame fopZM-N_If (¢ )M, is
another Parseval frame as in (iii), then there exists a uritjopear operator L on
#M~Nsuch that s = ¢, i =1,...,M, and L is unitary.

Proof. (i)« (ii). By Theorem 7(iii) (¢i)M, is a Parseval frame if and only T T* =
P. Therefore, (i) and (ii) are equivalent dueTitg = ¢; foralli=1,...,M.

(i)=(iii). We setc; := g — T¢j,i = 1,...,M. Then, by (ii),ci € (ranT)* for all i.
Let®@: (ranT)* — #M-N be unitary and put; := ®c;,i = 1,...,M. Then, since
T is isometric,

(6 D Ui, P ® W) = (i, Di) + (Wi, W) = (T i, T i) + (Gi, &) = ik,

which proves (iii).
(iii) =(i). This follows directly from Corollary 11.
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Concerning thenoreovetpart, it follows from Corollary 11 thatyi)M ; is a Par-
seval frame for#M-N. Let (y)M ; be another Parseval frame as in (iii) and denote
the analysis operators ¢fi)M, and (¢/)M, by A andA', respectively. We make
use of the decompositiow’™ = #N @ #M-N. Note that bottJ := (T,A) and
U’ := (T,A’) are unitary operators froo#’™ onto/}!. By Ry_n denote the projec-
tion in s#M onto#M-N and set

L:=PRy_nU™*U

M-N = Pu_nU™*A.

Lety e o#N. Then, sincéJ
Hence,

N =U'|n =T, we haveRy_nyU"*Uy = Ry_ny = 0.

Ly = Pu_nU"U(¢i & ) = Pu_nU"e =Pu_n(di e @) = ).

The uniqueness dffollows from the fact that bottys )M ; and(y)M ; are spanning
sets forsZM-N,

To show that is unitary, we observe that, by Proposition 10, the frameaipe
of (Lyi)M, is given byLL*. The claimLL* = Id now follows from the fact that also
the frame operator dfy)M , is the identity. O

The simplest way to construct a frame from a given one is ustale the frame
vectors. Therefore, it seems desirable to have a charaatien of the class of
frames which can be scaled to a Parseval frame or a tight f(anieh is equiv-
alent). We coin such frames scalable.

Definition 21. A frame (¢i)M, for s#N is called 6trictly) scalable if there exist
non-negative (positive, respectively) numbays .. ,ay such thata;¢)M , is a Par-
seval frame.

The next result is closely related to Naimark’s Theorem.

Theorem 10 ([117]).Let(¢i)M, be a frame forz#N with analysis operator T. Then
the following statements are equivalent.

(i) ()M, is strictly scalable.
(i) There exists a linear operator L#M—N — (M such that TT +LL* is a positive
definite diagonal matrix.
(iii) There exists a sequen¢g)M ; of vectors in#M~N such that(¢; & ¢)M ; forms
a complete orthogonal system.igf™.

We mention that Theorem 10 leads to a simple test for strifabdity in the
caseM =N+ 1, see [117].

If 2N is real then the following result applies, which can be zitl to derive a
geometric interpretation of scalability. For this we oncererefer to [117].

Theorem 11 ([117]).Let N be real and let(¢;)M, be a frame for#N without
zero vectors. Then the following statements are equivalent

() (¢i)M, is not scalable.
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(i) There exists a self-adjoint operator Y o#N with Tr(Y) < 0 and (Y ¢;,$;) >0
foralli=1,...,M.

(iii) There exists a self-adjoint operator Y o™ with Tr(Y) = 0 and (Y ¢i, ¢i) > 0
foralli=1,...,M.

We finish this subsection with an existence result of tightfes with prescribed
norms of the frame vectors. Its proof in [45] heavily reliesaodeep understanding
of the so-called frame potential and is a pure existencefpktmwever, in special
cases constructive methods are presented in [57].

Theorem 12 ([45]).LetN< M, andleta >a, > ... > ay be positive real numbers.
Then the following conditions are equivalent.

(i) There exists a tight framégi)M,; for 7N satisfying ||¢i|| = & for all i =
1,2,... M.
(ii) Forall 1< j <N,
M 2
22 < 2izj1d
] = N—j :
(iii) We have

M
2 2
a- > Nay.
2

Equal-norm tight frames are even more desirable, but afiewtfto construct.

A powerful method, so-calledpectral tetris for such constructions was recently
derived in [47], and we refer to Chapter [155]. This methodgl even generates
sparse frames [50], which reduce the computational contplexd also ensure
high compressibility of the synthesis matrix — which themisparse matrix. The
reader should though be cautioned that spectral tetrishieedrawback that it often
generates multiple copies of the same frame vector. Fotipahapplications, this
shall typically be avoided, since the frame coefficient®eisged with a repeated
frame vector does not provide any new information aboutrkerning signal.

6.2 Frames with Given Frame Operator

It is often desirable to not only construct tight frames, mgre generally frames
with a prescribed frame operator. Typically in such a cageeilgenvalues of the
frame operator are given assuming that the eigenvaluebaigandard unit basis.
Applications are for instance noise reduction if coloredsaads present.

The first comprehensive results containing necessary dficisnt conditions for
the existence and the construction of tight frames with &aectors of a prescribed
norm were derived in [45] and [57], see also Theorem 12. Thaltrén [45] was
then extended in [58] to the following theorem, which nowauidition, includes
prescribing the eigenvalues of the frame operator.
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Theorem 13 ([58]).Let S be a positive self-adjoint operator gfN, and letA; >
A2 > ... > AN > 0 be the eigenvalues of S. Further, let2MN, and let g > ¢, >
.. > cv be positive real numbers. Then the following conditionseaeivalent.

() There exists a framegb )M, for 2N with frame operator S satisfyingpi|| = ¢
foralli=1,2,.
(ii) Foreveryl <k g N, we have

It is though often preferable to utilize equal-norm framsiace then, roughly
speaking, each vector provides the same coverage for tlee.spa[58], it was
shown that there always exists an equal-norm frame with scpleed frame opera-
tor. This is the content of the next result.

Theorem 14 ([58]).For every M> N and every invertible positive self-adjoint op-
erator S onsN there exists an equal-norm frame fgt’™N with M elements and
frame operator S. In particular, there exist equal norm Raa frames with M ele-
ments inz”N for every N< M.

Proof. We define the norm of the to-be-constructed frame to,lvéhere

It is sufficient to prove that the conditions in Theorem 13Hiie satisfied foc; = ¢
foralli=1,2,...,M. The definition oft immediately implies the second condition.
For the first condition, we observe that

1N
= ZZMZ

Hence this condition holds fof = 1. Now, towards a contradiction, assume that
there exists somk € {2,...,N} for which this condition fails for the first time by
counting from 1 upwards, i.e.,

= |

k—1 k—1 k k
Y f=(k-1F< 5 A, but Y cf=ké> 5 A
=1 =1 =1 =1
This implies
¢®> ) andthus ¢>A; forallk+1< j<N.

Hence,
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K N N N N
Mc? > ke + (N—-K)&? > $ A+ Z =S A+ Y A=A
=1 j=k+1 =1 j=k+1 =1

which is a contradiction. The proof is completed]

By an extension of the aforementioned algoritspectral tetrig31, 48, 44, 50] to
non-tight frames, Theorem 14 can be constructively redliZbe interested reader
is referred to Chapter [155]. We also mention that an extenef spectral tetris
to construct fusion frames (cf. Section 9) exists. Furtheails on this topic are
contained in Chapter [166].

6.3 Generic Frames

Generic frames are those optimally resilient against eeasd he precise definition
is as follows.

Definition 22. A frame (¢i)M, for s#N is called ageneric frameif the erasure of
any M — N vectors leaves a frame, i.e., for ahy {1,...,M}, |I| =M —N, the
sequencédi)!’, ,, is still a frame forzN.

It is evident that such frames are of significant importarareajpplications. A
first study was undertaken in [127]. Recently, using metlioms algebraic geome-
try, equivalence classes of generic frames were exteystedlied [27, 81, 136]. It
was for instance shown that equivalence classes of gemanet are dense in the
Grassmannian variety. For each reader to be able to apfadicese results, Chap-
ter [157] provides an introduction to algebraic geometiipfeed by a survey about
this and related results.

7 Frame Properties

As already discussed before, crucial properties of framels as erasure robustness,
resilience against noise, or sparse approximation priggestiginate from spanning
and independence properties of frames [13, 14], which griedlly based on the
Rado-Horn Theorem [104, 129] and its redundant version. [bbgse in turn are
only possible because of their redundancy [12]. This seésialevoted to shed light
on these issues.
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7.1 Spanning and Independence

As intuitively clear, the frame bounds imply certain spangnproperties which are
detailed in the following result. This theorem should be paned to Lemma 2,
which already presented some first statements about sppseisiin frames.

Theorem 15.Let(¢i)M, be a frame forz#N with frame bounds A and B. Then the
following holds.
() 952 < Bopforalli =1,2,....M.

(ii) If, for some b € {1,....,M}, we have| iy [|* = Bop, thengi, L spar(¢i}; ;.

(iii) If, for some b € {1,...,M}, we have|¢;, > < Aop, thengi, € spar{ i}, .-

In particular, if ()M, is a Parseval frame, then eithe, L Spar{¢i}i"ilyi¢io (and
in this case| ¢i|| = 1) or ||§j, | < 1.

Proof. For anyip € {1,...,M} we have

M
I1i0lI* < 11 io1*+ 5 1{bio, #1) 17 = _Z\|<¢i07¢i>|2 < Bopl 1> (5)

iIO

The claims (i) and (ii) now directly follow from (5).
(iii). Let P denote the orthogonal projection g#™ onto (sparf{@i}";; ;)"
Then

M
AopllPhio 1> < [P |1 * + > [(Pig, $i) 17 = [P *.
i:l,lyﬁio
Hence, eithePg;, = 0 (and thuspi, € spar{$i}" ;) or Aop < [|Phis || < || i ]|
This proves (iii)). O

Ideally, we are interested in having an exact descripticmfodme in terms of its
spanning and independence properties. One could thinkedbtlowing questions
to be answered by such a measure: How many disjoint lineadlggendent span-
ning sets does the frame contain? After removing these, hamyrdisjoint linearly
independent sets which span hyperplanes does it contaitchPnany more.

One of the main results in this direction is the followingrfr¢14].

Theorem 16.Every unit-norm tight framé¢;)M ; for N with M = kN+ j ele-
ments0 < j < N, can be partitioned into k linearly independent spannieis plus
a linearly independent set of j elements.

For its proof and further related results we refer to Chajite6].

7.2 Redundancy

As we have discussed and will be seen throughout this bodiundancy is the key
property of frames. This fact makes it even more surprisivag tintil recently not
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much attention has been paid to introduce meaningful gtaging measures of re-
dundancy. The classical measure of teeundancyof a frame(¢)M ; for 72N is
the quotient of the number of frame vectors and the dimerwfitie ambient space,
i.e., M This measure has however serious problems to distingiisimstance, the
two frames in Example 2 (1) and (2) by assigning the same ahoy measure
ZWN = 2 to both of those. From a frame perspective these two frameegeay dif-
ferent, since, for instance, one contains two spanningwkéseas the other just
contains one.

Recently, in [12] a new notion of redundancy was proposediwvbeems to better
capture the spirit of what redundancy should represent.réegmt this notion, let
S = {xe N : ||x|| = 1} denote the unit sphere ist’N, and letPy,,(x denote the
orthogonal projection onto the subspace gpérior somex € #N.

Definition 23. Let @ = (¢)M, be a frame for#’N. For eachx € S, theredundancy
functionZo : S — RT is defined by

M
Ro(X) =Y ||Psparey x>
i; spar{¢i}

Then theupper redundancyf @ is defined by
+
6 = gAs),
and thdower redundancyf @ is defined by
5 = MinR .
Ry min o(X)
Moreover,® hasuniform redundancyif
Ko =R

One might hope that this new notion of redundancy provid&sination about
spanning and independence properties of the frame, siase #re closely related to
guestions such as whether a frame is resilient with respeleletion of a particular
number of frame vectors, say. And, indeed, such a link eristsis detailed in the
next result.

Theorem 17 ([12]).Let @ = (¢i)M; be a frame for#"N without zero vectors. Then
the following conditions hold.

(i) @ contains|#,, | disjoint spanning sets.
(i) @ can be partitioned intd. %, linearly independent sets.

Various other properties of this notion of redundancy arkmsuch as additiv-
ity or its range, and we refer to [12] and Chapter [156] for endetails.

At this point, we would just like to point out that anotheranpretation of upper
and lower redundancy is possible, since it coincides wighaptimal frame bounds
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of the normalized fram(aH%H)i"":l — after deletion of zero vectors. The crucial point
to make is that with this viewpoint Theorem 17 combines atiagnd algebraic
properties ofd.

7.3 Equivalence of Frames

We now consider equivalence classes of frames. As in otseareh areas, the idea
being that frames in the same equivalence class sharercpragierties.

7.3.1 Isomorphic Frames

The following definition states one equivalence relationffames.

Definition 24. Two frames(¢)M; and (i)™, for s#N are calledisomorphig if
there exists an operatbr: sZN — N satisfyingF ¢; = ¢ foralli =1,2,...,M.

We remark that — due to the spanning property of frames — aratppé as in
the above definition is both invertible and unique. Morepwer mention that in [4]
the isomorphy of frames with an operatoias above was termdd-equivalence.

The next theorem characterizes the isomorphy of two framesrims of their
analysis and synthesis operators.

Theorem 18.Let (¢;)M; and (¢i)M, be frames for#”N with analysis operators;T
and b, respectively. Then the following conditions are equintle

(i) ()M, is isomorphic to(gi)M ;.
(i) ranTy = ranT>.
(iii) kerTy" = kerTy.

If one of (i)—(iii) holds then the operator E#ZN — #N with F¢; = y; for all
i=1,...,Nisgiven by F= T (T} |rant,) "*.

Proof. The equivalence of (ii) and (iii) follows by orthogonal coltementation. In
the following let(e)M, denote the standard unit vector basig¥f

(i)=(iii). Let F be an invertible operator os’N such thatF ¢; = y; for all
i =1,...,M. Then Proposition 9 implie$; = T;F* and hencéT;" = T,". SinceF
is invertible, (iii) follows.

(ii)=-(i). Let P be the orthogonal projection ont¢” := ranT; = ranT,. Then
¢i =Ty 'e = T;'Pg and i = T,'e = T, Pa. The operator3;" and T, both map#?
bijectively onto.##N. Therefore, the operatdi := T; (T} | )~ maps#™ bijec-
tively onto itself. Consequently, for eack {1,...,M} we have

Foi =T, (Ty'ly) 'TyPa = T, Pa = 1,

which proves (i) as well as the additional statement on treatprF. O
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An obvious, though interesting result in the context of feaisomorphy is that
the Parseval frame in Lemma 7 is in fact isomorphic to theiaigrame.

Lemma 8. Let(¢)M ; be a frame forz#’N with frame operator S. Then the Parseval
frame(SY/2¢;)M, is isomorphic to(¢;)M, .

Similarly, a given frame is also isomorphic to its canonibaél frame.

Lemma 9. Let (¢i)M, be a frame forzz™N with frame operator S. Then the canoni-
cal dual frame(S~1¢i)M, is isomorphic to(¢)M .

Intriguingly, it turns out — and will be proven in the follomg result — that the
canonical dual frame is the only dual frame which is isomarpha given frame.

Proposition 23.Let @ = (¢i)M ; be a frame for#’N with frame operator S, and let
(g)M; and (@M be two different dual frames fab. Then(¢i)M, and (@),
are not isomorphic.

In particular, (S~1¢;)M, is the only dual frame fof which is isomorphic tab.

Proof. Let (¢#)M, and ()M, be different dual frames fo®. Towards a contra-
diction, we assume thdti)M, and ()M ; are isomorphic, and Ié€ denote the
invertible operator satisfyings = F{li, i = 1,2,...,M. Then, for eacx € 7N we

have
M M M

Fx= _Z<F*X, &) i = Z<X,F¢i>¢i = ;(X, W) i = x.

Thus,F* = I1d which impliesF = Id, a contradiction. O

7.3.2 Unitarily Isomorphic Frames

A stronger version of equivalence is given by the notion otarity isomorphic
frames.

Definition 25. Two frames(¢i)M; and (¢1)M, for 5N areunitarily isomorphic
if there exists a unitary operatér: #N — N satisfyingF¢; = ; for all i =
1,2,... .M.

In the situation of Parseval frames though, the notionsarhizrphy and unitary
isomorphy coincide.

Lemma 10.Let ()M, and (¢)M, be isomorphic Parseval frames fa#’N. Then
they are even unitarily isomorphic.

Proof. Let F be an invertible operator as’N with F¢; = ; foralli =1,2,..., M.
By Proposition 10, the frame operator @ )M, is FIdF* = FF*. On the other
hand, the frame operator @)™, is the identity. HenceFF* =Id. O

We end this section with a necessary and sufficient conditiotwo frames to
be unitarily isomorphic.
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Proposition 24.For two frames(¢i)M, and (y4)M, for 2#N with analysis opera-
tors T; and T, respectively, the following conditions are equivalent.

(i) (¢1)M, and (g#)M; are unitarily isomorphic.
(i) | Tycll = || T,c| forallc € .
(iii) T1T) = T T,

Proof. (i)=(iii). Let F be a unitary operator o#’N with F¢; = y; for all i =
1,...,M. Then, since by Proposition 9 we haVg = T;F*, we obtainT,T,
TiF*F T = Ty T, and thus (iii).

(iii) =(ii). This is immediate.

(if)=(i). Since (ii) implies kel = kerT;, it follows from Theorem 18 that
Foi=yiforalli=1,....M, whereF = TZ*(Tl*|ranT1)*1. But this operator is unitary
since (ii) also implies

* * -1 * * -1
T3 (Ty' frany) X[ = (| T2 (77 [ranmy) ™ X[ = [[X]

forallxe #N. O

8 Applications of Finite Frames

Finite frames are a versatile methodology for any applicatvhich requires redun-
dant, yet stable decompositions. For instance, for aredysransmission of signals,
but surprisingly also for more theoretically oriented digss. We state some such
applications in this section, which also coincide with theyters of this book.

8.1 Noise and Erasure Reduction

Noise and erasures are one of the most common problems sigmstnissions have
to face [131, 132, 133]. The redundancy of frames is paditylsuitable to re-
duce and compensate for such disturbances. Pioneerinigstoan be found in
[51, 94, 95, 96], followed by the fundamental papers [10,108, 137, 150]. In addi-
tion one is always faced with the problem of suppressingeirdgroduced through
quantization, both PCM [21, 152] and Sigma-Delta quantrg, 8, 17, 18]. The-
oretical error considerations range from worst to average scenarios. Different
strategies for reconstruction exist depending on whetheréceiver is aware or
unaware of noise and erasures. Some more recent work akls® gpkcial types of
erasures [19] or the selection of dual frames for reconstnu¢124, 122] into ac-
count. Chapter [160] provides a comprehensive survey aethensiderations and
related results.
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8.2 Resilience against Perturbations

Perturbations of a signal are an additional problem facesidnal processing appli-
cations. Various results on the ability of frames to be r@silagainst perturbations
are known. One class focusses on generally applicable fpamarbations results
[3, 69, 38, 60], some even in the Banach space setting [40,Yé®lanother topic
are perturbations of specific frames such as Gabor framégdfdtes containing a
Riesz basis [39], or frames for shift-invariant spaces [1B#hally, also extensions
such as fusion frames are studied with respect to their hehawder perturbations
[53].

8.3 Quantization Robustness

Each signal processing application contains an analafjgital conversion step,
which is called quantization. Quantization is typicallypéipd to the transform co-
efficients, which in our case are (redundant) frame coeffisiesee [95, 96]. Inter-
estingly, the redundancy of the frame can be successfufiioead in the quantiza-
tion step by using so-called Sigma-Delta algorithms andréqodar non-canonical
dual frame reconstruction. In most regimes, the perforraémsignificantly better
than rounding each coefficient separately (PCM). This wasdinserved in [7, 8].
Within a short amount of time, the error bounds were imprdued 115], refined
gquantization schemes were studied [18, 15], specific daahdrconstructions for
reconstruction were developed [9, 99, 119], and also PCMresasited [106, 152].
The interested reader is referred to Chapter [161], whicvides an introduction
to quantization of finite frames.

8.4 Compressed Sensing

Since high dimensional signals are typically concentrateldwer dimensional sub-
spaces, it is a natural assumption that the collected datdoeaepresented by a
sparse linear combination of an appropriately chosen frame novel methodol-

ogy of Compressed Sensing, initially developed in [33, 34, utilizes this obser-

vation to show that such signals can be reconstructed frognfesy non-adaptive

linear measurements by linear programming techniquesarortroduction, we re-

fer to the books [85, 87] and the survey [26]. Finite framasstplay an essential
role, both as sparsifying systems and in designing the nmeamsant matrix. For a

selection of studies focussing in particular on the corioedb frames, we refer
to [1, 2, 32, 70, 142, 143], and on the connection to strudtfirames such as fu-
sion frames, see [23, 86]. Chapter [162] provides an intttdn into Compressed
Sensing and the connection to finite frame theory.
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We wish to mention that there exists yet another intriguiognection of finite
frames to sparsity methodologies, namely, aiming for spfiesne vectors to ensure
low computational complexity. For this, we refer to the twapprs [31, 50] and to
Chapter [166].

8.5 Filter Banks

Filter banks are the basis for most signal processing aits. We exemplarily
mention the general books [126, 146] and those with a paati¢ocus on wavelets
[76, 135, 151], as well as the beautiful survey articles [11111]. Usually, several
filters are applied in parallel to an input signal, followeg downsampling. This
processing method is closely related to finite frame decaitipa provided that the
frame consists of equally-spaced translates of a fixed setatbrs, first observed in
[20, 22, 72, 73] and later refined and extended in [63, 64, 23].TThis viewpoint
has the benefit of providing a deeper understanding of figeprocedures, while
containing the potential of extensions of classical filtank theory. We refer to
Chapter [163] which provides an introduction into filter kamand their connections
with finite frame theory.

8.6 Stable Partitions

The Feichtinger conjecture in frame theory conjectureggigtence of certain par-
titions of frames into sequences with “good” frame bounds, [¢12]. Its relevance
becomes evident when modeling distributed processing &idesframes are re-
quired for the local processing units (see also Section 9usiom frames). The
fundamental papers [62, 49, 56] then linked this conjedmeevariety of open con-
jectures in what is customarily coined pure mathematick ss¢he Kadison-Singer
Problem inC*-Algebras [108]. Chapter [164] provides an introductiotoithese
connections and their significance. It should be mentiohatla particular focus of
this chapter is also on the so-called Paulsen problem [114&8 which provides
error estimates on the ability of a frame to be simultango(emost) equal-norm
and (almost) tight.

9 Extensions

Typically motivated by applications, various extensiohfirite frame theory have
been developed over the last years. In this book, the cle[it6b] and [166] are
devoted to the main two generalizations, whose key ideas Waaw briefly de-
scribe.



Introduction to Finite Frame Theory 45

e Probabilistic FramesThis theory is based on the observation that finite frames
can be regarded as mass points distributed4tY. As an extension, proba-
bilistic frames, which were introduced and studied in [83, 84], constitute
a class of general probability measures again with appatgstability con-
straints. Applications include, for instance, directibsiatistics in which prob-
abilistic frames can be utilized to measure inconsistencfecertain statistical
tests [109, 144, 145]. For more details on the theory andegifmns of proba-
bilistic frames, we refer to Chapter [165].

e Fusion FramesSignal processing by finite frames can be regarded as piamjsct
onto one-dimensional subspaces. In contrast to this, ritseames, which were
introducedin [52, 54], to analyze and process a signal lia¢gional) projections
onto multi-dimensional subspaces, which again have tsfgasome stability
conditions. They also allow for a local processing in thded@nt subspaces.
This theory is in fact a perfect fit to applications requirdigtributed processing,
and we refer to the series of papers [23, 24, 29, 31, 43, 476414118, 125].
We should also mention that a closely related generalizataled G-frames
exists, which however does not admit any additional (lostl)cture and which
is unrelated to applications (see, for instance, [138, 1 29]letailed introduction
into fusion frame theory can be found in Chapter [166].
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