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Gitta Kutyniok and Demetrio Labate

Scientists frequently refer to the 21st century as the era ofdata. In fact, since tech-
nological advances make data acquisition easier and less expensive, we are facing
today a deluge of data, including, for instance, astronomical, medical, seismic, me-
teorological and surveillance data, which require efficient analysis and processing.
The enormity of the challenge this poses is evidenced not only by the sheer amount
of data, but also by the diversity of data types and the variety of processing tasks
which are required. To efficiently handle tasks ranging fromfeature analysis over
classification to compression, highly sophisticated mathematical and computational
methodologies are needed. From a mathematical standpoint,data can be modeled,
for example, as functions, distributions, point clouds, orgraphs. Moreover, data can
be classified by membership in one of the two categories: Explicitly given data,
such as imaging or measurement data, and implicitly given data, such as solutions
of differential or integral equations.

A fundamental property of virtually all data found in practical applications is
that the relevant information which needs to be extracted oridentified is sparse, i.e.,
data are typically highly correlated and the essential information lies on low dimen-
sional manifolds. This information can thus be captured, inprinciple, using just few
terms in an appropriate dictionary. This observation is crucial not only for tasks
such as data storage and transmission, but also for feature extraction, classification,
and other high-level tasks. Indeed, finding a dictionary which sparsely represents a
certain data class entails the intimate understanding of its dominant features, which
are typically associated with singularities and other geometric properties. Related
to this is the observation that virtually all multivariate data are typically dominated
by anisotropic features such as singularities on lower dimensional embedded man-
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ifolds. This is exemplified, for instance, by edges in natural images or shock fronts
in the solutions of transport equations. Hence, to efficiently analyze and process
these data, it is of fundamental importance to discover and truly understand their
geometric structures.

The subject of this volume is a recently introduced multiscale framework, called
shearlets, which allows optimal encoding of several classes of multivariate data
through its ability to sparsely represent anisotropic features. As will be illustrated in
the following, shearlets emerged as part of an extensive research activity developed
during the last 10 years to create a new generation of analysis and processing tools
for massive and higher dimensional data, which could go beyond the limitations
of traditional Fourier and wavelet systems. One of the forerunners of this area of
research is David L. Donoho, who observed that, in higher dimensions, traditional
multiscale systems and wavelets ought to be replaced by aGeometric Multiscale
Analysiswhere multiscale analysis is adapted to intermediate-dimensional singular-
ities. It is important to remark that many of the ideas which are at the core of this
approach can be traced back to key results in harmonic analysis from the 1990’s,
such as Hart Smith’s Hardy space for Fourier Integral Operators and Peter Jones’
Analyst’s Traveling Salesman theorem. Both results concern the higher-dimensional
setting, where geometric ideas are brought into play to discover ‘new architectures
for decomposition, rearrangement and reconstruction of operators and functions’
[15].

This broader area of research is currently at the crossroad of applied mathematics,
electrical engineering, and computer science, and has seenspectacular advances in
recent years, resulting in highly sophisticated and efficient algorithms for image
analysis and new paradigms for data compression and approximation. By presenting
the theory and applications of shearlets obtained during last five years, this book is
also a journey into one of the most active and exciting areas of research in applied
mathematics.

1 The Rise of Shearlets

1.1 The Role of Applied Harmonic Analysis

Applied harmonic analysis has established itself as the main area in applied math-
ematics focused on the efficient representation, analysis,and encoding of data. The
primary object of this discipline is the process of ‘breaking into pieces’ – from the
Greek worldanalysis–, to gain insight into an object. Given a class of dataC in
L2(Rd), say, a collection ofanalyzingfunctions(ϕi)i∈I ⊆ L2(Rd) with I being a
countable indexing set is seeked such that, for allf ∈ C , we have the expansion

f = ∑
i∈I

ci( f )ϕi . (1)
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This formula provides not only a decomposition for any element f of the class
C into a countable collection of linear measurements(ci( f ))i∈I ⊆ ℓ2(I), hence its
analysis. It also illustrates the process ofsynthesis, where f is reconstructed from
the expansion coefficients(ci( f ))i∈I .

One major goal of applied harmonic analysis is the construction of special classes
of analyzing elements which can best capture the most relevant information in a cer-
tain data class. Let us illustrate the two most successful types of analyzing systems
in the one-dimensional setting. TheGabor systemsare designed to best represent
the joint time-frequency content of data. In this case, the analyzing elements(ϕi)i∈I

are obtained as translations and frequency shifts of a generating functionϕ ∈ L2(R)
as follows:

{ϕp,q = ϕ(·− p)e2π iq· : p,q∈ Z}.
In contrast to this approach,wavelet systemsrepresent the data as associated with
different location and resolution levels. In this case, theanalyzing elements(ϕi)i∈I

are obtained through the action of dilation and translationoperators on a generating
functionψ ∈ L2(R), called awavelet, as:

{ψ j ,m = 2 j/2ψ(2 j ·−m) : j,m∈ Z}. (2)

Given a prescribed class of dataC , one major objective is to design an ana-
lyzing system(ϕi)i∈I in such a way that, for each functionf ∈ C , the coefficient
sequence(ci( f ))i∈I in (1) can be chosen to besparse. In the situation of an infinite-
dimensional Hilbert space – which is our focus here – the degree of sparsity is
customarily measured as the decay rate of the error of bestn-term approximation.
Loosely speaking, this means that we can approximate anyf ∈ C with high accu-
racy by using a coefficient sequence(c̃i( f ))i∈I containing very few non-zero entries.
In the finite-dimensional setting, such a sequence is calledsparse, and this explains
the use of the termsparse approximations. Intuitively, if a function can be sparsely
approximated, it is conceivable that ‘important’ featurescan be detected by thresh-
olding, i.e., by selecting the indices associated with the ‘largest’ coefficients in ab-
solute values, or that high compression rates can be achieved by storing only few
‘large’ coefficientsci( f ), see [18].

There is another fundamental phenomenon to observe here. If(ϕi)i∈I is an or-
thonormal basis, the coefficient sequence(ci( f ))i∈I in (1) is certainly uniquely de-
termined. However, if we allow more freedom in the sense of choosing(ϕi)i∈I to
form a frame – a redundant, yet stable system (see Subsection2.3) – the sequences
(ci( f ))i∈I might be chosen significantly sparser for eachf ∈ C . Thus, methodolo-
gies fromframe theorywill come into play, see Subsection 2.3 and [7, 5].

We can observe a close connection to yet another highly topical area. During the
last four years, sparse recovery methodologies such as, in particular, Compressed
Sensing have revolutionized the areas of applied mathematics, computer science,
and electrical engineering by beating the traditional sampling theory limits, see
[3, 22]. They exploit the fact that many types of signals can be represented using
only a few non-vanishing coefficients when choosing a suitable basis or, more gen-
erally, a frame. Nonlinear optimization methods, such asℓ1 minimization, can then
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be employed to recover such signals from ‘very few’ measurements under appro-
priate assumptions on the signal and on the basis or frame. These results can often
be generalized to data which are merely sparsely approximated by a frame, thereby
enabling Compressed Sensing methodologies for the situation we discussed above.

1.2 Wavelets and Beyond

Historically, the introduction ofwaveletsabout 20 years ago represents a milestone
in the development of efficient encoding of piecewise regular signals. The major
reason for the spectacular success of wavelets consists notonly in their ability to
provide optimally sparse approximations of a large class offrequently occurring
signals and to represent singularities much more efficiently than traditional Fourier
methods, but also in the existence of fast algorithmic implementations which pre-
cisely digitalize the continuum domain transforms. The keyproperty enabling such
a unified treatment of the continuum and digital setting is aMultiresolution Analysis,
which allows a direct transition between the realms of real variable functions and
digital signals. This framework also combines very naturally with the theory of filter
banks developed in the digital signal processing community. An additional aspect of
the theory of wavelets which has contributed to its success is its rich mathematical
structure, which allows one to design families of wavelets with various desirable
properties expressed in terms of regularity, decay, or vanishing moments. As a con-
sequence of all these properties, wavelets have literally revolutionized image and
signal processing, and produced a large number of very successful applications, in-
cluding the algorithm of JPEG2000, the current standard forimage compression.
We refer the interested reader to [60] for more details aboutwavelets and their ap-
plications.

Despite their success, wavelets are not very effective whendealing with multi-
variate data. In fact, wavelet representations are optimalfor approximating data with
pointwise singularities only, and cannot handle equally well distributed singularities
such as singularities along curves. The intuitive reason for this is that wavelets are
isotropic objects, being generated by isotropically dilating a single or finite set of
generators. However, in dimensions two and higher, distributed discontinuities such
as edges of surface boundaries are usually present or even dominant, and – as a
result – wavelets are far from optimal in dealing with multivariate data.

The limitations of wavelets and traditional multiscale systems have stimulated
a flurry of activity involving mathematicians, engineers, and applied scientists. In-
deed, the need to increase the directional sensitivity of wavelets was already recog-
nized in the early filter bank literature, and several versions of ‘directional’ wavelets
were introduced, including thesteerable pyramidby Simoncelli et al. [62], thedi-
rectional filter banksby Bamberger and Smith [2], and the2D directional wavelets
by Antoine et al. [1]. A more sophisticated approach was proposed more recently
with the introduction ofcomplex wavelets[40, 41]. However, even though they fre-
quently outperform standard wavelets in applications, these methods do not provide
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optimally sparse approximations of multivariate data governed by anisotropic fea-
tures. The fundamental reason for this failure is that theseapproaches are not truly
multidimensional extensions of the wavelet approach.

The real breakthrough occurred with the introduction ofcurveletsby Candès and
Donoho [4] in 2004, which was the first system providing optimally sparse approx-
imations for a class of bivariate functions exhibiting anisotropic features. Curvelets
form a pyramid of analyzing functions defined not only at various scales and loca-
tions, as wavelets do, but also at various orientations, with the number of orienta-
tions increasing at finer scales. Another fundamental property is that their supports
are highly anisotropic and become increasingly elongated at finer scales. Due to this
anisotropy, curvelets are essentially as good as an adaptive representation system
from the point of view of the ability to sparsely approximateimages with edges.
The two main drawbacks of the curvelet approach are that, firstly, this system is not
singly generated, i.e., it is not derived from the action of countably many operators
applied to a single (or finite set) of generating functions; secondly, since its con-
struction involves rotations and this operator does not preserve the digital lattice,
which prevents a direct transition from the continuum to thedigital setting.

Contourletswere introduced in 2005 by Do and Vetterli [13] as a purely discrete
filter-bank version of the curvelet framework. This approach offers the advantage of
allowing a tree-structured filter bank implementation similar to the wavelet imple-
mentation, which was exploited to obtain remarkable numerical results. However,
the directional selectivity is artificially imposed by the special sampling rule of a
filter bank and a proper continuum theory is missing.

In the same year,shearletswere introduced by Guo, Kutyniok, Labate, Lim, and
Weiss in [57, 28]. This approach was derived within a larger class of affine-like
systems – the so-calledcomposite wavelets[35, 37, 36] – as a truly multivariate
extension of the wavelet framework. One of the distinctive features of shearlets is
the use of shearing to control directional selectivity, in contrast to rotation used
by curvelets. This is a fundamentally different concept, since it allows to derive
shearlet systems as singly generated systems, and it also ensures a unified treatment
of the continuum and digital world due to the fact that the shear matrix preserves
the integer lattice. Indeed, as will be extensively discussed in the remainder of this
volume, the shearlet representation offers a unique combination of the following list
of desiderata:

• A single or a finite set of generating functions.
• Optimally sparse approximations of anisotropic features in multivariate data.
• Compactly supported analyzing elements.
• Fast algorithmic implementations.
• A unified treatment of the continuum and digital realms.
• Association with classical approximation spaces.

In the following, we will present a self-contained overviewof the key results from
the theory and applications of shearlets, focused primarily on the 2D setting. These
results will be elaborated in much more detail in the variouschapters of this vol-
ume, which will discuss both the continuum and digital aspects of shearlets. Before
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starting our overview, it will be useful to establish the notation adopted throughout
this volume and to present some background material from harmonic analysis and
wavelet theory.

2 Notation and Background Material

2.1 Fourier Analysis

The Fourier transform is the most fundamental tool in harmonic analysis. Before
stating the definition, we notice that, in the following, vectors in Rd or Cd will
always be understood as column vectors, and their inner product – as also the inner
product inL2(Rd) – shall be denoted by〈·, ·〉. For a functionf ∈ L1(Rd), theFourier
transformof f is defined by

f̂ (ξ ) =
∫

f (x)e−2π i〈x,ξ 〉dx,

and f is called aband-limitedfunction if its Fourier transform is compactly sup-
ported. Theinverse Fourier transformof a functiong∈ L1(Rd) is given as

ǧ(x) =
∫

g(ξ )e2π i〈x,ξ 〉dξ .

If f ∈ L1(Rd) with f̂ ∈ L1(Rd), we havef = ( f̂ )ˇ, hence in this case – which is by
far not the only possible case – the inverse Fourier transform is the ‘true’ inverse.
It is well known that this definition can be extended toL2(Rd) and, as usual, also
these extensions will be denoted byf̂ andǧ. By using this definition of the Fourier
transform, thePlancherel formulafor f ,g∈ L2(Rn) reads

〈 f ,g〉 = 〈 f̂ , ĝ〉,

and, in particular,
‖ f‖2 = ‖ f̂‖2.

We refer to [24] for additional background information on Fourier analysis.

2.2 Modeling of Signal Classes

In the continuum setting, the standard model ofd-dimensional signals is the space
of square-integrable functionsonRd, denoted byL2(Rd). However, this space also
contains objects which are very far from ‘natural’ images and data. Hence, it is
convenient to introduce subclasses and subspaces which canbetter model the types
of data encountered in applications. One approach for doingthis consists in im-
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posing some degree of regularity. Therefore, we consider the continuous functions
C(Rd), thek-times continuously differentiable functionsCk(Rd), and the infinitely
many times continuously differentiable functionsC∞(Rd), which are also referred
to assmooth functions. Since images are compactly supported in nature, a notion
for compactly supported functionsis also required which will be indicated with the
subscript 0, e.g.,C∞

0 (R
d).

Sometimes it is useful to consider curvilinear singularities such as edges in
images as singularities of distributions, which requires the space of distributions
D ′(Rd) as a model. For a distributionu, we say thatx∈Rd is aregular pointof u, if
there exists a functionφ ∈C∞

0 (Ux) with φ(x) 6= 0 andUx being a neighborhood ofx.
This impliesφ u∈C∞

0 (R
d), which is equivalent to(φ u)∧ being rapidly decreasing.

The complement of the set of regular points ofu is called thesingular supportof
u and is denoted by sing supp(u). Notice that the singular support ofu is a closed
subset of supp(u).

The anisotropic nature of singularities on one- or multi-dimensional embedded
manifolds becomes apparent through the notion of a wavefront set. For simplicity,
we illustrate the 2-dimensional case only. For a distributionu, a point(x,s)∈R2×R

is a regular directed point, if there exist neighborhoodsUx of x andVs of s as well
as a functionφ ∈C∞

0 (R
2) satisfyingφ |Ux ≡ 1 such that, for eachN > 0, there exists

a constantCN with

|(uφ)∧(η)| ≤CN (1+ |η |)−N for all η ∈ R2 with η2
η1

∈Vs.

The complement inR2×R of the regular directed points ofu is called thewavefront
setof u and is denoted byWF(u). Thus, the singular support describes the location
of the set of singularities ofu, and the wavefront set describes both the location and
local perpendicular orientation of the singularity set.

Fig. 1 Natural images are governed by anisotropic structures.

A class of functions, which is of particular interest in imaging sciences, is the
class of so-calledcartoon-like images. This class was introduced in [14] to provide
a simplified model of natural images, which emphasizes anisotropic features, most
notably edges, and is consistent with many models of the human visual system.
Consider, for example, the photo displayed in Figure 1. Since the image basically
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Fig. 2 Example of a cartoon-like image.

consists of smooth regions separated by edges, it is suggestive to use a model con-
sisting of piecewise regular functions, such as the one illustrated in Figure 2. For
simplicity, the domain is set to be[0,1]2 and the regularity can be chosen to beC2,
leading to the following definition.

Definition 1. TheclassE2(R2) of cartoon-like imageis the set of functionsf :R2 →
C of the form

f = f0+ f1χB,

whereB⊂ [0,1]2 is a set with∂B being a closedC2-curve with bounded curvature
and fi ∈C2(R2) are functions with suppf0 ⊂ [0,1]2 and‖ fi‖C2 ≤ 1 for eachi = 0,1.

Let us finally mention that, in the digital setting, the usualmodels for d-
dimensional signals are either functions onZd such asℓ2(Zd) or functions on
{0, . . . ,N−1}d, sometimes denoted byZd

N.

2.3 Frame Theory

When designing representation systems of functions, it is sometimes advantageous
or unavoidable to go beyond the setting of orthonormal basesand consider redun-
dant systems. The notion of aframe, originally introduced by Duffin and Schaeffer
in [19] and later revived by Daubechies in [12], guarantees stability while allowing
non-unique decompositions. Let us recall the basic definitions from frame theory in
the setting of a general (real or complex) Hilbert spaceH .

A sequence(ϕi)i∈I in H is called aframe for H , if there exist constants 0<
A≤ B< ∞ such that

A‖x‖2 ≤ ∑
i∈I

|〈x,ϕi〉|2 ≤ B‖x‖2 for all x∈ H .

The frame constantsA andB are calledlowerandupper frame bound, respectively.
The supremun over allA and the infimum over allB such that the frame inequalities
hold are theoptimal frame bounds. If A andB can be chosen asA=B, then the frame
is calledA-tight, and if A = B = 1 is possible, then(ϕi)i∈I is a Parseval frame. A
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frame is calledequal-norm, if there exists somec> 0 such that‖ϕi‖= c for all i ∈ I ,
and it isunit-normif c= 1.

Apart from providing redundant expansions, frames serve asan analysis tool. In
fact, they allow the analysis of data by studying the associated frame coefficients
(〈x,ϕi〉)i∈I , where the operatorT defined by

T : H → ℓ2(I), x 7→ (〈x,ϕi〉)i∈I

is called theanalysis operator. The adjointT∗ of the analysis operator is referred to
as thesynthesis operatorand satisfies

T∗ : ℓ2(I)→ H , ((ci)i∈I ) 7→ ∑
i∈I

ciϕi .

The main operator associated with a frame, which provides a stable reconstruction
process, is theframe operator

S= T∗T : H → H , x 7→ ∑
i∈I
〈x,ϕi〉ϕi .

The operatorS is a positive, self-adjoint invertible operator onH with A · IdH ≤
S≤B· IdH , where IdH denotes the identity operator onH . In the case of a Parseval
frame, this reduces toS= IdH .

In general, a signalx∈ H can be recovered from its frame coefficients through
the reconstruction formula

x= ∑
i∈I

〈x,ϕi〉S−1ϕi .

The sequence(S−1ϕi)i∈I , which can be shown to form a frame itself, is referred to
as thecanonical dual frame. Taking a different viewpoint and regarding a frame as a
means for expansion in the system(ϕi)i∈I , we observe that, for each vectorx∈ H ,

x= ∑
i∈I

〈x,S−1ϕi〉ϕi .

If the frame does not constitute a basis, i.e., it is redundant, the coefficient sequence
(〈x,S−1ϕi〉)i∈I of this expansion is certainly not unique. It is this property which
then enables to derive much sparser expansions. It should also be noted that the
sequence(〈x,S−1ϕi〉)i∈I has the distinct property of being the smallest inℓ2 norm
of all expansion coefficient sequences.

For more details on frame theory, we refer the interested reader to [5, 7].

2.4 Wavelets

Wavelet analysis plays a central role in this volume since, as will be made more pre-
cise in the following, shearlets arise naturally from this general framework. Hence
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a full understanding of shearlets can only be derived through a sound understanding
of wavelet theory.

We start by rewriting the definition of adiscrete wavelet systemin L2(R), stated
at the beginning of the introduction in (2), as

{ψ j ,m = D j
2Tmψ = 2 j/2ψ(2 j · −m) : j,m∈ Z}, (3)

whereψ ∈ L2(R), D2 is the dyadicdilation operatoronL2(R) defined by

D2ψ(x) = 2−1/2ψ(2−1x), (4)

andTt is thetranslation operatoronL2(R), defined by

Ttψ(x) = ψ(x− t), for t ∈ R. (5)

The associatedDiscrete Wavelet Transformis then defined to be the mapping

L2(R) ∋ f 7→ Wψ f ( j,m) = 〈 f ,ψ j ,m〉, j,m∈ Z.

If the system (3) is an orthonormal basis ofL2(R), it is called anorthonormal
wavelet system, andψ is called awavelet. Being a wavelet is by no means very
restrictive and plenty of choices exist. In fact, it is possible to construct wavelets
ψ , which arewell localizedin the sense that they have rapid decay both in the spa-
tial and frequency domain, or which satisfy other regularity or decay requirements.
Among the classical constructions, let us highlight the twomost well-known: the
Daubechies wavelets, which have compact support and can be chosen to have high
regularity, leading to good decay in the frequency domain; and theLemarìe-Meyer
wavelets, which are band-limited andC∞ in the frequency domain, forcing rapid
decay in the spatial domain. It should be emphasized that thelocalization proper-
ties of wavelet bases are among the major differences with respect to Fourier bases,
and play a fundamental role in their approximation properties, as we will be shown
below.

In fact, there is a general machinery to construct discrete wavelet systems, called
Multiresolution Analysis(MRA). In dimensiond = 1, this is defined as a sequence
of closed subspaces(Vj) j∈Z in L2(R) which satisfies the following properties:

(i) {0} ⊂ . . .⊂V−2 ⊂V−1 ⊂V0 ⊂V1 ⊂V2 ⊂ . . .⊂ L2(R).

(ii)
⋂

j∈ZVj = {0} and
⋃

j∈ZVj = L2(R).

(iii) f ∈Vj if and only if D2 f ∈Vj+1.

(iv) There exists aφ ∈ L2(R), calledscaling function, such that{Tmφ : m∈ Z} is an
orthonormal basis1 for V0. is then

This approach enables the decomposition of functions into different resolutionlev-
els associated with the so-calledwavelet spaces Wj , j ∈ Z. These spaces are defined

1 This assumption can be replaced by the weaker assumption that {Tmφ : m∈ Z} is Riesz basis for
V0
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by considering the orthogonal complements

Wj :=Vj+1⊖Vj , j ∈ Z.

That is, a functionf j+1 ∈Vj+1 is decomposed asf j+1 = f j +g j ∈ Vj ⊕Wj , where
f j contains, roughly, the lower frequency component off j+1 andg j its higher fre-
quency component. It follows thatL2(R) can be broken up as a direct sum of wavelet
spaces. Thus, given an MRA, there always exists a functionψ ∈ L2(R) such that
{ψ j ,m : j,m∈ Z} is an orthonormal basis forL2(R). In fact, the MRA approach
allows to introduce an alternative orthonormal basis involving both the wavelet and
the scaling function, of the form

{φm = Tmφ = φ(·−m) : m∈ Z}∪{ψ j ,m : j ≥ 0,m∈ Z}.

In this case, the translates of the scaling function take care of the low frequency re-
gion – the subspaceV0 ⊂ L2(R) – and the wavelet terms of the high frequency region
– the complementary spaceL2(R) \V0. We refer to [60] for additional information
about the theory of MRA.

The extension of wavelet theory to higher dimensions requires the introduction of
some group theoretic tools. For this, it is useful to start byintroducing the continuous
affine systemsof L2(Rd), which are defined by

{
ψM,t = Tt DM ψ = |detM|−1/2 ψ(M−1(· − t)) : (M, t) ∈ G×Rd}. (6)

In this definition,ψ ∈ L2(Rd), G is a subset ofGLd(R), the group ofd-dimensional
invertible matrices,DM is the dilation operator onL2(Rd), defined by

DMψ(x) = |detM|−1/2ψ(M−1x), for M ∈ GLd(R), (7)

andTt is thetranslation operatoronL2(Rd), defined by

Ttψ(x) = ψ(x− t), for t ∈ Rd. (8)

We now aim to derive conditions onψ such that anyf ∈ L2(Rd) can be recovered
from its coefficients(〈 f ,ψM,t 〉)M,t . For this, we first equip the parameter set of (6)
with a group structure by setting

(M, t) · (M′, t ′) = (MM′, t +Mt ′).

The resulting group, typically denoted byAd, is the so-calledaffine group onRd.
The mathematical structure of the affine systems becomes evident by observing that
(6) can be generated by the action of the unitary representationsπ(M,t) = DMTt of
Ad acting onL2(Rd) (cf. [38] for details on the theory of group representations).
Then the following result on reproducibility of functions in L2(Rd) can be proven.

Theorem 1 ([27, 58]).Retaining the notations introduced in this subsection, letµ
be a left-invariant Haar measure on G⊂ GLd(R), and dλ be a left Haar measure
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of Ad. Further, suppose thatψ ∈ L2(Rd) satisfies the admissibility condition
∫

G
|ψ̂(MTξ )|2 |detM|dµ(M) = 1.

Then any function f∈ L2(Rd) can be recovered via the reproducing formula

f =
∫

Ad

〈 f ,ψM,t 〉ψM,t dλ (M, t).

When the conditions of the above theorem are satisfied,ψ ∈ L2(Rd), it is called a
continuous wavelets. The associatedContinuous Wavelet Transformis defined to be
the mapping

L2(Rd) ∋ f 7→ Wψ f (M, t) = 〈 f ,ψM,t 〉, (M, t) ∈ Ad.

One interesting special case is obtained, when the dilationgroupG has the form
G= {aId : a> 0}, which corresponds to the case ofisotropic dilations. In this case,
the admissibility condition forψ becomes

∫

a>0
|ψ̂(aξ )|2 da

a
= 1,

and the(isotropic) Continuous Wavelet Transformis the mapping off ∈ L2(Rd)
into

Wψ f (a, t) = a−d/2
∫

Rd
f (x)ψ(a−1(x− t))dx, a> 0, t ∈ Rd. (9)

Notice that the discrete wavelet systems (3) are obtained bydiscretizing the contin-
uous affine systems (6) ford = 1, when choosing isotropic dilations withG= {2 j :
j ∈ Z}.

2.5 Wavelets for Multivariate Data and their Limitations

The traditional theory of wavelets, which is based on the useof isotropic dilations,
is essentially a one-dimensional theory. This can be illustrated by looking at the be-
havior of the isotropic Continuous Wavelet Transform of functions containing sin-
gularities. Indeed, consider a function or distributionf , which is regular everywhere
except for a point singularity atx0, and let us examine the behaviour ofWψ f (a, t),
given by (9). Providedψ is smooth, a direct computations shows thatWψ f (a, t) has
rapid asymptotic decay, asa→ 0, for all values oft, unlesst = x0. In this sense, the
Continuous Wavelet Transform off signals the location of the singularity through
its asymptotic decay at fine scales. More generally, using this property, the Continu-
ous Wavelet Transform can be used to characterize the singular support of a function
or distribution [39].
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However, due to its isotropic nature, the Continuous Wavelet Transform is unable
to provide additional information about the geometry of theset of singularities of
a function or distribution in terms of resolving the wavefront set. The key problem
is that, although the isotropic wavelet transform has the advantage of simplicity, it
lacks directional sensitivity and the ability to detect thegeometry off . The same
phenomenon showing the limitation of the traditional wavelet framework can be
illustrated using the Discrete Wavelet Transform.

Before doing this, let us recall the definition ofnon-linear approximationand, in
particular, bestN-term approximation, which is the proper notion of approximation
in the context of wavelet bases. For a functionf ∈ L2(R2), the best N-term ap-
proximation fN of f with respect to a wavelet basis is obtained by reconstructing f
from theN largest wavelet coefficients in magnitude – rather than fromthe ‘firstN’,
which is the standard approach in linear Fourier approximations. Hence, denoting
by ΛN the index set corresponding to theN largest wavelet coefficients|〈 f ,ψλ 〉| as-
sociated with some wavelet basis(ψλ )λ∈Λ , thebest N-term approximationof some
f ∈ L2(R2) in (ψλ )λ∈Λ is defined as

fN = ∑
λ∈ΛN

〈 f ,ψλ 〉ψλ .

If a function is expanded in a frame instead of a basis, the best N-term approxima-
tion can usually not be explicitly determined. A more detailed discussion of non-
linear approximation theory, encompassing the expansion in frames, is contained in
Chapter [69].

We can now present a simple heuristic argument, which highlights the limitations
of traditional wavelet approximations with respect to moresophisticated multiscale
methods – such as the shearlet framework – when aiming at optimally sparse ap-
proximations of piecewise functions onR2 and, in particular, cartoon-like images.
Let f be a cartoon-like image (see Definition 1) containing a singularity along a
smooth curve and{ψ j ,m} be a standard wavelet basis ofL2(R2). For j sufficiently
large, the only significant wavelet coefficients〈 f ,ψ j ,m〉 are those associated with
the singularity. Since at scale 2− j , each waveletψ j ,m is supported or essentially sup-
ported inside a box of size 2− j ×2− j , there exist about 2j elements of the wavelet
basis overlapping the singularity curve. The associated wavelet coefficients can be
controlled by

|〈 f ,ψ j ,m〉| ≤ ‖ f‖∞ ‖ψ j ,m‖L1 ≤C ·2− j .

It follows that theN-th largest wavelet coefficient in magnitude, which we denote
by 〈 f ,ψ j ,m〉(N), is bounded byO(N−1). Thus, if f is approximated by its best-N
term approximationfN, theL2–error obeys

‖ f − fN‖2
L2 ≤ ∑

ℓ>N

|〈 f ,ψ j ,m〉(ℓ)|2 ≤CN−1.

Indeed, this estimate can be proved rigorously and can be shown to be tight in the
sense that there exist cartoon-like images for which the decay rate is of the order
O(N−1), see [60].
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However, the approximation rateO(N−1) obtained using wavelet approximations
is far from optimal for the class of cartoon-like imagesE

2
ν (R

2). Indeed, the follow-
ing optimality result was proved in [14].

Theorem 2 ([14]).Let f ∈ E
2(R2). There exists a constant C such that, for any N,

a triangulation of[0,1]2 with N triangles can be constructed so that the piecewise
linear interpolation fN of these triangles satisfies

‖ f − fN‖2
2 ≤C ·N−2, N → ∞.

This result provides the optimal asymptotic decay rate of the nonlinear approxima-
tion error for objects inE2(R2), in the sense that no other polynomial depth search
algorithm can yield a better rate. In fact, it shows that the adaptive triangle-based
approximation of the image is as good as as if the image had no singularities.

The approximation result from Theorem 2 provides a benchmark for optimally
sparse approximation of 2-dimensional data. Furthermore,the argument in the proof
of Theorem 2, which uses adapted triangulations, suggests that analyzing elements
with elongated and orientable supports are required to achieve optimally sparse ap-
proximations of piecewise smooth bivariate functions. Indeed, this observation is
at the core of the construction of curvelets and shearlets. Notice however that, un-
like the triangulation approximations in Theorem 2, curvelet and shearlet systems
are non-adaptive. It is a remarkable fact that, even though they are nonadaptive,
curvelet and shearlet representations are able to achieve (essentially) the same opti-
mal approximation rate of Theorem 2. This result will be discussed below, and, in
more detail, in Chapter [69].

3 Continuous Shearlet Systems

After discussing the limitations of wavelet systems in higher dimensions, we will
now introduce shearlet systems as a general framework to overcome these limita-
tions. We will first focus oncontinuousshearlet systems; discrete shearlet systems
will be discussed next. As mentioned above, we restrict ourselves to the 2D case.

Before defining the system of shearlets in a formal way, let usintroduce intu-
itively the ideas which are at the core of its construction. Our observations from the
previous section suggest that, in order to achieve optimally sparse approximations
of signals exhibiting anisotropic singularities such as cartoon-like images, the ana-
lyzing elements must consist of waveforms ranging over several scales, orientations,
and locations with the ability to become very elongated. This requires a combina-
tion of an appropriate scaling operator to generate elements at different scales, an
orthogonal operator to change their orientations, and a translation operator to dis-
place these elements over the 2D plane.

Since the scaling operator is required to generate waveforms with anisotropic
support, we utilize the family of dilation operatorsDAa, a> 0, based onparabolic
scaling matrices Aa of the form
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Aa =

(
a 0
0 a1/2

)
,

where the dilation operator is given by (7). This type of dilations correspond to
the so-calledparabolic scaling, which has a long history in the harmonic analysis
literature and can be traced back to the ‘second dyadic decomposition’ from the the-
ory of oscillatory integrals [23, 64] (see also the more recent work by Smith [63]
on the decomposition of Fourier integral operators). It should be mentioned that,
rather thanAa, the more general matrices diag(a,aα) with the parameterα ∈ (0,1)
controlling the ‘degree of anisotropy’ could be used. However, the valueα = 1/2
plays a special role in the discrete setting, i.e., when the parameters of the shearlet
system are discretized. In fact, parabolic scaling is required in order to obtain opti-
mally sparse approximations of cartoon-like images, sinceit is best adapted to the
C2-regularity of the discontinuity curves in this model class. For simplicity, in the
remainder of this chapter, we will only consider the caseα = 1/2, which is required
for the sparsity results discussed below. For generalizations and extensions, we refer
to Chapters [68] and [69].

Next, we require an orthogonal transformation to change theorientations of the
waveforms. The most obvious choice seems to be the rotation operator. However,
rotations destroy the structure of the integer latticeZ2, whenever the rotation angle
is different from 0,± π

2 ,±π . This issue becomes a serious problem for the transition
from the continuum to the digital setting. As an alternativeorthogonal transforma-
tion, we choose the shearing operatorDSs, s∈ R, where theshearing matrix Ss is
given by

Ss =

(
1 s
0 1

)
.

The shearing matrix parameterizes the orientations using the variables associated
with the slopes rather than the angles, and has the advantageof leaving the integer
lattice invariant, provideds is an integer.

Finally, for the translation operator we use the standard operatorTt given by (8).

Combining these three operators, we define continuous shearlet systems as fol-
lows.

Definition 2. Forψ ∈ L2(R2), thecontinuous shearlet system SH(ψ) is defined by

SH(ψ) = {ψa,s,t = Tt DAa DSsψ : a> 0,s∈ R, t ∈ R2}.

The next section will answer the question of how to choose a suitable generating
functionψ so that the systemSH(ψ) satisfies a reproducing formula forL2(R2).

3.1 Continuous Shearlet Systems and the Shearlet Group

One important structural property of the systems introduced in Definition 2 is their
membership in the class of affine systems. Similar to the relation of wavelet systems
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to group representation theory discussed in Subsection 2.4, the theory of continuous
shearlet systems can also be developed within the theory of unitary representations
of the affine group and its generalizations [9].

To state this relation precisely, we define the so-calledshearlet group, denoted
by S, as the semi-direct product

(R+×R)⋉R2,

equipped with group multiplication given by

(a,s, t) · (a′,s′, t ′) = (aa′,s+ s′
√

a, t +SsAat
′).

A left-invariant Haar measure of this group isda
a3 dsdt. Letting the unitary represen-

tationσ : S→ U (L2(R2)) be defined by

σ(a,s, t)ψ = Tt DAa DSsψ ,

whereU (L2(R2)) denotes the group of unitary operators onL2(R2), a continuous
shearlet systemSH(ψ) can be written as

SH(ψ) = {σ(a,s, t)ψ : (a,s, t) ∈ S}.

The representationσ is unitary, but not irreducible. If this additional property is
desired, the shearlet group needs to be extended to(R∗ ×R)⋉R2, whereR∗ =
R\ {0}, yielding the continuous shearlet system

SH(ψ) = {σ(a,s, t)ψ : a∈R∗,s∈ R, t ∈ R2}.

This point of view and its generalizations to higher dimensions will be examined in
detail in Chapter [67].

In the following, we provide an overview of the main results and definitions
related to continuous shearlet systems forL2(R2).

3.2 The Continuous Shearlet Transform

Similar to the Continuous Wavelet Transform, the Continuous Shearlet Transform
defines a mapping off ∈ L2(R2) to the components off associated with the ele-
ments ofS.

Definition 3. Forψ ∈ L2(R2), theContinuous Shearlet Transformof f ∈ L2(R2) is
the mapping

L2(R2) ∋ f → SH ψ f (a,s, t) = 〈 f ,σ(a,s, t)ψ〉, (a,s, t) ∈ S.
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Thus,SH ψ maps the functionf to the coefficientsSH ψ f (a,s, t) associated with
the scale variablea > 0, the orientation variables∈ R, and the location variable
t ∈ R2.

Of particular importance are the conditions onψ under which the Continuous
Shearlet Transform is an isometry, since this is automatically associated with a re-
construction formula. For this, we define the notion of anadmissibleshearlet, also
calledcontinuous shearlet.

Definition 4. If ψ ∈ L2(R2) satisfies

∫

R2

|ψ̂(ξ1,ξ2)|2
ξ 2

1

dξ2dξ1 < ∞,

it is called anadmissible shearlet.

Notice that it is very easy to construct examples of admissible shearlets, including
examples of admissible shearlets which are well localized.Essentially any func-
tion ψ such thatψ̂ is compactly supported away from the origin is an admissible
shearlet. Of particular importance is the following example, which is calledclas-
sical shearlet. This was originally introduced in [35], and later slightlymodified
in [28, 57].

Definition 5. Let ψ ∈ L2(R2) be defined by

ψ̂(ξ ) = ψ̂(ξ1,ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1
),

whereψ1 ∈ L2(R) is a discrete wavelet in the sense that it satisfies the discrete
Calderón condition, given by

∑
j∈Z

|ψ̂1(2
− jξ )|2 = 1 for a.e.ξ ∈R, (10)

with ψ̂1 ∈ C∞(R) and supp̂ψ1 ⊆ [− 1
2,− 1

16]∪ [ 1
16,

1
2], andψ2 ∈ L2(R) is a ‘bump

function’ in the sense that

1

∑
k=−1

|ψ̂2(ξ + k)|2 = 1 for a.e.ξ ∈ [−1,1], (11)

satisfyingψ̂2 ∈C∞(R) and supp̂ψ2 ⊆ [−1,1]. Thenψ is called aclassical shearlet.

Thus, a classical shearletψ is a function which is wavelet-like in one direction and
bump-like in the orthogonal one. The frequency support of a classical shearlet is il-
lustrated in Figure 3a. Notice that there exist several choices ofψ1 andψ2 satisfying
conditions (10) and (11). One possible choice is to setψ1 to be a Lemariè–Meyer
wavelet andψ2 to be a spline, see [29].

The notion of admissible shearlets allows us to state sufficient conditions for a
reconstruction formula inL2(R2).
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(a) Support of the Fourier transform of a
classical shearlet.

(b) Fourier domain support of several el-
ements of the shearlet system, for differ-
ent values ofa ands.

Fig. 3 Classical shearlets.

Theorem 3 ([9]).Let ψ ∈ L2(R2) be an admissible shearlet, and define

C+
ψ =

∫ ∞

0

∫

R

|ψ̂(ξ1,ξ2)|2
ξ 2

1

dξ2dξ1 and C−ψ =

∫ 0

−∞

∫

R

|ψ̂(ξ1,ξ2)|2
ξ 2

1

dξ2dξ1.

If C−
ψ =C+

ψ = 1, thenSH ψ is an isometry.

Proof. By the Plancherel theorem, we obtain

∫

S
|SH ψ f (a,s, t)|2 da

a3 dsdt

=

∫

S
| f ∗ψ∗

a,s,0(t)|2dt ds
da
a3

=

∫ ∞

0

∫

R

∫

R2
| f̂ (ξ )|2|ψ̂∗

a,s,0(ξ )|2dξ ds
da
a3

=

∫ ∞

0

∫

R2

∫

R
| f̂ (ξ )|2a−

3
2 |ψ̂(aξ1,

√
a(ξ2+ sξ1))|2dsdξ da,

where we used the notationψ∗(x) = ψ(−x). By appropriate changes of variables,

∫

S
|SH ψ f (a,s, t)|2 da

a3 dsdt

=

∫

R

∫ ∞

0

∫ ∞

0

∫

R
| f̂ (ξ )|2a−2ξ−1

1 |ψ̂(aξ1,ω2)|2dω2dadξ1dξ2

−
∫

R

∫ 0

−∞

∫ ∞

0

∫

R
| f̂ (ξ )|2a−2ξ−1

1 |ψ̂(aξ1,ω2)|2dω2dadξ1dξ2

=

∫

R

∫ ∞

0
| f̂ (ξ )|2dξ1dξ2

∫ ∞

0

∫

R

|ψ̂(ω1,ω2)|2
ω2

1

dω2dω1

+

∫

R

∫ 0

−∞
| f̂ (ξ )|2dξ1dξ2

∫ 0

−∞

∫

R

|ψ̂(ω1,ω2)|2
ω2

1

dω2dω1.

The claim follows from here. ⊓⊔



Introduction 19

The classical shearlets, given in Definition 5, satisfy the hypothesis of admis-
sibility, as the following result shows. The proof is straightforward, wherefore we
omit it.

Lemma 1 ([9]). Let ψ ∈ L2(R2) be a classical shearlet. Retaining the notations
from Theorem 3, we have C−ψ =C+

ψ = 1.

3.3 Cone-Adapted Continuous Shearlet Systems

Although the continuous shearlet systems defined above exhibit an elegant group
structure, they do have a directional bias, which is alreadyrecognizable in Figure
3b. To illustrate the impact of this directional bias, consider a function or distri-
bution which is mostly concentrated along theξ2 axis in the frequency domain.
Then the energy off is more and more concentrated in the shearlet components
SH ψ f (a,s, t) ass→ ∞. Hence, in the limiting case in whichf is a delta distribu-
tion supported along theξ2 axis, – this typically serves as a model for an edge along
the x1 axis in spatial domain –f can only be ‘detected’ in the shearlet domain as
s→ ∞. It is clear that this behavior can be a serious limitation for some applications.

One way to address this problem is to partition the Fourier domain into four
cones, while separating the low-frequency region by cutting out a square centered
around the origin. This yields a partition of the frequency plane as illustrated in
Figure 4. Notice that, within each cone, the shearing variable s is only allowed to
vary over a finite range, hence producing elements whose orientations are distributed
more uniformly.

C1

C2

C3

R

C4

Fig. 4 Resolving the problem of biased treatment of directions by continuous shearlet systems.
The frequency plane is partitioned into four conesCi , i = 1, . . . ,4, and the low frequency box
R = {(ξ1,ξ2) : |ξ1|, |ξ2| ≤ 1}.

Thus, we define the following variant of continuous shearletsystems.

Definition 6. For φ ,ψ , ψ̃ ∈ L2(R2), the cone-adapted continuous shearlet system
SH(φ ,ψ , ψ̃) is defined by
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SH(φ ,ψ , ψ̃) = Φ(φ)∪Ψ (ψ)∪Ψ̃(ψ̃),

where

Φ(φ) = {φt = φ(·− t) : t ∈R2},
Ψ (ψ) = {ψa,s,t = a−

3
4 ψ(A−1

a S−1
s ( · − t)) : a∈ (0,1], |s| ≤ 1+a1/2, t ∈ R2},

Ψ̃ (ψ̃) = {ψ̃a,s,t = a−
3
4 ψ̃(Ã−1

a S−T
s ( · − t)) : a∈ (0,1], |s| ≤ 1+a1/2, t ∈ R2},

andÃa =diag(a1/2,a).

In the following, the functionφ will be chosen to have compact frequency support
near the origin, which ensures that the systemΦ(φ) is associated with the low fre-
quency regionR = {(ξ1,ξ2) : |ξ1|, |ξ2| ≤ 1}. By choosingψ to satisfy the conditions
of Definition 5, the systemΨ(ψ) is associated with the horizontal conesC1∪C3 =
{(ξ1,ξ2) : |ξ2/ξ1| ≤ 1, |ξ1| > 1}. The shearlet̃ψ can be chosen likewise with the
roles ofξ1 andξ2 reversed, i.e.,̃ψ(ξ1,ξ2) = ψ(ξ2,ξ1). Then the system̃Ψ (ψ̃) is
associated with the vertical conesC2∪C4 = {(ξ1,ξ2) : |ξ2/ξ1|> 1, |ξ2|> 1}.

3.4 The Cone-Adapted Continuous Shearlet Transform

Similar as in the situation of continuous shearlet systems,also for cone-adapted
continuous shearlet systems an associated transform can bedefined.

Definition 7. Set

Scone= {(a,s, t) : a∈ (0,1], |s| ≤ 1+a1/2, t ∈ R2}.

Then, forφ ,ψ , ψ̃ ∈ L2(R2), theCone-Adapted Continuous Shearlet Transformof
f ∈ L2(R2) is the mapping

f → SH φ ,ψ,ψ̃ f (t ′,(a,s, t),(ã, s̃, t̃)) = (〈 f ,φt′ 〉,〈 f ,ψa,s,t 〉,〈 f , ψ̃ã,s̃,t̃〉),

where
(t,(a,s, t),(ã, s̃, t̃)) ∈R2×S2

cone.

Similar to the situation above, conditions onψ , ψ̃ andφ can be formulated for
which the mappingSH φ ,ψ,ψ̃ is an isometry. In fact, a similar argument to the one
used in the proof of Theorem 3, yields the following result.

Theorem 4 ([48]).Retaining the notation of Theorem 3, letψ , ψ̃ ∈ L2(R2) be ad-
missible shearlets satisfying C+ψ = C−

ψ = 1 and C+ψ̃ = C−
ψ̃ = 1, respectively, and let

φ ∈ L2(R2) be such that, for a.e.ξ = (ξ1,ξ2) ∈ R2,

|φ̂ (ξ )|2+ χC1∪C3(ξ )
∫ 1

0
|ψ̂1(aξ1)|2

da
a

+ χC2∪C4(ξ )
∫ 1

0
|ψ̂1(aξ2)|2

da
a

= 1.
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Then, for each f∈ L2(R2),

‖ f‖2 =

∫

R
|〈 f ,Tt φ〉|2 dt+

∫

Scone

|〈( f̂ χC1∪C3)
∨,ψa,s,t〉|2

da
a3 dsdt

+
∫

Scone

|〈( f̂ χC2∪C4)
∨, ψ̃ã,s̃,t̃〉|2

dã
ã3 ds̃dt̃.

In this result, the functionsφ ,ψ , andψ̃ can in fact be chosen to be inC∞
c (R

2). In
addition, the cone-adapted shearlet system can be designedso that the low frequency
and high frequency parts are smoothly combined.

A more detailed analysis of the (Cone-Adapted) Continuous Shearlet Transform
and its generalizations can be found in [26] and in Chapter [66].

3.5 Microlocal Properties and Characterization of Singularities

As observed in Subsection 2.5, the Continuous Wavelet Transform is able to pre-
cisely characterize the singular support functions or distributions. However, due to
its isotropic nature, this approach fails to provide additional information about the
geometry of the set of singularities in the sense of resolving the wavefront set.

In contrast to this behavior, the anisotropic shape of elements of a cone-adapted
continuous shearlet system enables the Continuous Shearlet Transform to very pre-
cisely characterize the geometric properties of the singulary set. For illustration pur-
poses, let us examine the linear delta distributionµp(x1,x2) = δ (x1+ px2), p∈ R,
defined by

〈µp, f 〉=
∫

R
f (−px2,x2)dx2,

as a simple model for a distributed singularity. For simplicity, we assume that|p| ≤
1. Letting φ be a scaling function andψ , ψ̃ be classical shearlets, the asymptotic
analysis of its Cone-Adapted Continuous Shearlet Transform SH φ ,ψ,ψ̃ µp shows
that this transform precisely determines both the positionand the orientation of
the linear singularity by its decay behavior at fine scales. Specifically, we have the
following result.

Proposition 1 ([48]).Let t′ ∈R2 and(ã, s̃, t̃) ∈ Sconebe a fixed value. For t1 =−pt2
and s= p, we have

SH φ ,ψ,ψ̃ µp(t
′,(a,s, t),(ã, s̃, t̃))∼ a−

1
4 as a→ 0.

In all other cases,SH φ ,ψ,ψ̃ µp(t ′,(a,s, t),(ã, s̃, t̃)) decays rapidly as a→ 0.

In fact, it can be proven that the Cone-Adapted Continuous Shearlet Transform pre-
cisely resolves the wavefront set for more general distributions [48, 25]. Further-
more, it can be used to provide a precise characterization ofedge-discontinuities
of functions of two variables. In particular, consider a function f = χB ⊂ L2(R2),
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whereB⊂R2 is a planar region with piecewise smooth boundary. ThenSH φ ,ψ,ψ̃ f
characterizes both the location and orientation of the boundary edge∂B by its de-
cay at fine scales [30, 34]. This property is very useful in applications which require
the analysis or detection of edge discontinuities. For example, using on these obser-
vations, a shearlet-based algorithm for edge detection andanalysis was developed
in [65], and related ideas were exploited to develop algorithms for the regularized
inversion of the Radon transform in [6].

A more detailed discussion of these issues, including the extensions to higher
dimensions, will be the content of Chapters [66] and [68].

4 Discrete Shearlet Systems

Starting from continuous shearlet systems defined in Definition 2, several discrete
versions of discrete shearlet systems can be constructed byan appropriate sampling
of the continuous parameter setS orScone. Various approaches have been suggested,
aiming for discrete shearlet systems which preferably forman orthonormal basis or
a tight frame forL2(R2).

One approach proposed in [8] and continued in [10] and [11] applies a powerful
methodology calledcoorbit theory, which is used to derive different discretizations
while ensuring frame properties. In fact, the regular shearlet frame which will be
introduced in the next subsection can be derived using this machinery, and this ap-
proach will be further discussed in Chapter [67]. A different path, which also relies
on the group properties of continuous shearlet systems, is taken in [46]. In this paper,
a quantitative density measure for discrete subsets of the shearlet groupS is intro-
duced, adapted to the group multiplication, which is inspired by the well-known
Beurling density for subsets of the Abelian groupR2. These measures are shown to
provide necessary conditions on the density of the samplingset for the existence of
shearlet generators which yield a frame; thereby linking geometric properties of the
sampling set to the frame properties of the resulting shearlet system. Notice, how-
ever, that the conditions derived using this approach are necessary but not sufficient.
In a third approach [47], sufficient conditions are derived by studying the classi-
cal tq-equationsfrom the theory of wavelets. Recall that these equations arepart of
the sufficient conditions needed for an affine system to form awavelet orthonormal
basis or a tight frame (see [43] for a detailed discussion on this topic). Due to the
close relationship between shearlet systems and affine systems discussed in Subsec-
tion 3.1, this ansatz can be transferred to the situation of cone-adapted continuous
shearlet systems [45]. This will be further discussed in Chapter [69].
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4.1 Discrete Shearlet Systems and Transforms

Discrete shearlet systems are formally defined by sampling continuous shearlet sys-
tems on a discrete subset of the shearlet groupS. This leads to the following defini-
tion.

Definition 8. Let ψ ∈ L2(R2) andΛ ⊆ S. An irregular discrete shearlet systemas-
sociated withψ andΛ , denoted bySH(ψ ,Λ), is defined by

SH(ψ ,Λ) = {ψa,s,t = a−
3
4 ψ(A−1

a S−1
s ( · − t)) : (a,s, t) ∈ Λ}.

A (regular) discrete shearlet systemassociate withψ , denoted bySH(ψ), is defined
by

SH(ψ) = {ψ j ,k,m = 2
3
4 jψ(SkA2 j · −m) : j,k∈ Z,m∈ Z2}.

Notice that the regular versions of discrete shearlet systems are derived from the
irregular systems by choosingΛ = {(2− j ,−k,S−kA2 j m) : j,k∈Z,m∈Z2}. We also
remark that, in the definition of a regular discrete shearletsystem, the translation
parameter is sometimes chosen to belong toc1Z× c2Z for some(c1,c2) ∈ (R+)2.
This provides some additional flexibility which is useful for some constructions.

Our goal is to apply shearlet systems as analysis and synthesis tools. Hence, it
is of particular interest to examine the situation in which adiscrete shearlet system
SH(ψ) forms a basis or, more generally, a frame. Similar to the wavelet case, we are
particularly interested not only in finding generic generator functionsψ , but also in
selecting a generatorψ with special properties, e.g., regularity, vanishing moments,
compact support, so that the corresponding basis or frame ofshearlets has satis-
factory approximation properties. A particularly useful example are the classical
shearlets from Definition 5. As the following result shows, these shearlets generate
shearlet Parseval frames forL2(R2).

Proposition 2. Let ψ ∈ L2(R2) be a classical shearlet. Then SH(ψ) is a Parseval
frame for L2(R2).

Proof. Using the properties of classical shearlets as stated in Definition 5, a direct
computations gives that, fora.e.ξ ∈R2,

∑
j∈Z

∑
k∈Z

|ψ̂(ST
−kA2− j ξ )|2 = ∑

j∈Z
∑
k∈Z

|ψ̂1(2
− j ξ1)|2 |ψ̂2(2

j/2 ξ2
ξ1
− k)|2

= ∑
j∈Z

|ψ̂1(2
− j ξ1)|2 ∑

k∈Z
|ψ̂2(2

j/2 ξ2
ξ1
+ k)|2 = 1.

The claim follows immediately from this observation and thefact that supp̂ψ ⊂
[− 1

2,
1
2]

2. ⊓⊔
Since a classical shearletψ is a well localized function, Proposition 2 implies

that there exit Parseval framesSH(ψ) of well localized discrete shearlets. The well-
localization property is critical for deriving superior approximation properties of
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shearlet systems, and will be required for deriving optimally sparse approximations
of cartoon-like images (cf. Subsection 4.4).

By removing the assumption thatψ is well localized in Definition 5, one can
construct a discrete shearlet systems which form not only tight frames, but also
orthonormal basis, as indicated in [35, 37]. This naturallyraises the question about
whether well localized shearlet orthonormal bases do exit.Unfortunately, the answer
seems to be negative, according to the recent work in [44], which virtually excludes
this possibility. Thus, loosely speaking, a well localizeddiscrete shearlet system can
form a frame or a tight frame, but not an orthonormal basis.

To achieve spatial domain localization, compactly supported discrete shearlet
systems are required. It was recently shown that one can formulate sufficient con-
ditions onψ to generate a discrete shearlet frame of compactly supported functions
with controllable frame bounds. This will be discussed in Subsection 4.3.

Finally, similar to the continuous case, we define a DiscreteShearlet Transform
as follows. We state this definition only for the regular case, with obvious extension
to the irregular shearlet systems.

Definition 9. Forψ ∈ L2(R2), theDiscrete Shearlet Transformof f ∈ L2(R2) is the
mapping defined by

f → SH ψ f ( j,k,m) = 〈 f ,ψ j ,k,m〉, ( j,k,m) ∈ Z×Z×Z2.

Thus,SH ψ maps the functionf to the coefficientsSH ψ f ( j,k,m) associate with
the scale indexj, the orientation indexk, and the position indexm.

4.2 Cone-Adapted Discrete Shearlet Systems and Transforms

Similar to the situation of continuous shearlet systems, also discrete shearlet systems
suffer from a biased treatment of the directions. As expected, this problem can be
addressed by dividing the frequency plane into cones similar to Subsection 3.3. For
the sake of generality, let us start by defining cone-adapteddiscrete shearlet systems
with respect to an irregular parameter set.

Definition 10. Let φ ,ψ , ψ̃ ∈ L2(R2), ∆ ⊂ R2 andΛ ,Λ̃ ⊂ Scone. Then theirregular
cone-adapted discrete shearlet system SH(φ ,ψ , ψ̃;∆ ,Λ ,Λ̃ ) is defined by

SH(φ ,ψ , ψ̃ ;∆ ,Λ ,Λ̃ ) = Φ(φ ;∆)∪Ψ (ψ ;Λ)∪Ψ̃(ψ̃ ;Λ̃ ),

where

Φ(φ ;∆) = {φt = φ(·− t) : t ∈ ∆},
Ψ(ψ ;Λ) = {ψa,s,t = a−

3
4 ψ(A−1

a S−1
s ( · − t)) : (a,s, t) ∈ Λ},

Ψ̃(ψ̃ ;Λ̃ ) = {ψ̃a,s,t = a−
3
4 ψ̃(Ã−1

a S−T
s ( · − t)) : (a,s, t) ∈ Λ̃}.
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The regular variant of the cone-adapted discrete shearlet systems is much more
frequently used. To allow more flexibility and enable to change the density of the
translation grid, we introduce a sampling factorc= (c1,c2) ∈ (R+)

2 in the transla-
tion index. Hence we have the following definition.

Definition 11. For φ ,ψ , ψ̃ ∈ L2(R2) andc = (c1,c2) ∈ (R+)
2, the(regular) cone-

adapted discrete shearlet system SH(φ ,ψ , ψ̃ ;c) is defined by

SH(φ ,ψ , ψ̃ ;c) = Φ(φ ;c1)∪Ψ(ψ ;c)∪Ψ̃(ψ̃ ;c),

where

Φ(φ ;c1) = {φm = φ(·− c1m) : m∈ Z2},
Ψ(ψ ;c) = {ψ j ,k,m = 2

3
4 jψ(SkA2 j ·−Mcm) : j ≥ 0, |k| ≤ ⌈2 j/2⌉,m∈ Z2},

Ψ̃(ψ̃ ;c) = {ψ̃ j ,k,m = 2
3
4 j ψ̃(ST

k Ã2 j ·−M̃cm) : j ≥ 0, |k| ≤ ⌈2 j/2⌉,m∈ Z2},

with

Mc =

(
c1 0
0 c2

)
and M̃c =

(
c2 0
0 c1

)
.

If c= (1,1), the parameterc is omitted in the formulae above.

The generating functionsφ will be referred to asshearlet scaling functions
and the generating functionsψ , ψ̃ asshearlet generators. Notice that the system
Φ(φ ;c1) is associated with the low frequency region, and the systemsΨ(ψ ;c) and
Ψ̃(ψ̃ ;c) are associated with the conic regionC1∪C3 andC2∪C4, respectively (cf.
Figure 4).

Fig. 5 Tiling of the frequency plane induced by cone-adapted Parseval frame of shearlets.

We already discussed the difficulties – or even the impossibility – to construct a
discrete shearlet orthonormal basis. Hence, one aims to derive Parseval frames. A
first step towards this goal is the observation that a classical shearlet, according to
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Definition 5, is a shearlet generator of a Parseval frame for the subspace ofL2(R2)
of function whose frequency support lies in the union of two conesC1∪C3.

Theorem 5 ([28]).Letψ ∈ L2(R2) be a classical shearlet. Then the shearlet system

Ψ(ψ) = {ψ j ,k,m = 2
3
4 jψ(SkA2 j ·−m) : j ≥ 0, |k| ≤ ⌈2 j/2⌉,m∈ Z2}

is a Parseval frame for L2(C1∪C3)
∨ = { f ∈ L2(R2) : suppf̂ ⊂ C1∪C3}.

Proof. Let ψ be a classical shearlet. Then equation (11) implies that, for any j ≥ 0,

∑
|k|≤⌈2 j/2⌉

|ψ̂2(2
j/2ξ + k)|2 = 1, |ξ | ≤ 1.

Thus, using this observation together with equation (10), adirect computations gives
that, for a.e.ξ = (ξ1,ξ2) ∈ C1∪C3,

∑
j≥0

∑
|k|≤⌈2 j/2⌉

|ψ̂(ST
−kA2− j ξ )|2 = ∑

j≥0
∑

|k|≤⌈2 j/2⌉
|ψ̂1(2

− j ξ1)|2 |ψ̂2(2
j/2 ξ2

ξ1
− k)|2

= ∑
j≥0

|ψ̂1(2
− j ξ1)|2 ∑

|k|≤⌈2 j/2⌉
|ψ̂2(2

j/2 ξ2
ξ1
+ k)|2 = 1.

The claim follows immediately from this observation and thefact that supp̂ψ ⊂
[− 1

2,
1
2]

2. ⊓⊔

It is clear that, ifψ is a replaced bỹψ , a result very similar to Theorem 5 holds
for the subspace ofL2(C2∪C4)

∨. This strongly suggests that one can build up a Par-
seval frame for the whole spaceL2(R2) by piecing together Parseval frames associ-
ated with different cones on the frequency domain. However,this ‘piecing together’
needs to be performed with care, in particular, by projecting the shearlet elements
on the respective cones. Then we have the following result.

Theorem 6 ([28]).Let ψ ∈ L2(R2) be a classical shearlet, and letφ ∈ L2(R2) be
chosen so that, for a.e.ξ ∈ R2,

|φ̂(ξ )|2+ ∑
j≥0

∑
|k|≤⌈2 j/2⌉

|ψ̂(ST
−kA2− j ξ )|2χC+ ∑

j≥0
∑

|k|≤⌈2 j/2⌉
| ˆ̃ψ(S−kÃ2− j ξ )|2χC̃ = 1.

Let PCΨ(ψ) denote the set of elements inΨ(ψ) after projecting their Fourier
transform onto C= {(ξ1,ξ2) ∈ R2 : |ξ2/ξ1| ≤ 1} with a similar definition for
PC̃Ψ̃(ψ̃) with C̃= R2 \C. Then the modified cone-adapted discrete shearlet system
Φ(φ)∪PCΨ(ψ)∪PC̃Ψ̃ (ψ̃) is a Parseval frame for L2(R2).

The tiling of the frequency plane induced by this Parseval frame of shearlets is
illustrated in Figure 5. The shearlet transform associatedto regular cone-adapted
discrete shearlet systems is defined as follows.
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Definition 12. SetΛ =N0×{−⌈2 j/2⌉, . . . ,⌈2 j/2⌉}×Z2. Forφ ,ψ , ψ̃ ∈ L2(R2), the
Cone-Adapted Discrete Shearlet Transformof f ∈ L2(R2) is the mapping defined
by

f → SH φ ,ψ,ψ̃ f (m′,( j,k,m),( j̃ , k̃,m̃)) = (〈 f ,φm′ 〉,〈 f ,ψ j ,k,m〉,〈 f , ψ̃ j̃ ,k̃,m̃〉),

where
(m′,( j,k,m),( j̃ , k̃,m̃)) ∈ Z2×Λ ×Λ .

4.3 Compactly Supported Shearlets

The shearlet systems generated by classical shearlets are band-limited, i.e., they
have compact support in the frequency domain, and, hence, cannot be compactly
supported in the spatial domain. Thus, a different approachis needed for the con-
struction of compactly supported shearlet systems.

We start our discussion by examining sufficient conditions for the existence of
cone-adapted discrete shearlet systems which are compactly supported and form
a frame forL2(R2). These conditions can be derived by extending the classical
tq-equations from the theory of wavelets to this situation. Before stating the main
result, let us first introduce the following notation.

For functionsφ ,ψ , ψ̃ ∈ L2(R2), we defineΘ : R2×R2 →R by

Θ(ξ ,ω) = |φ̂(ξ )||φ̂ (ξ +ω)|+Θ1(ξ ,ω)+Θ2(ξ ,ω),

where
Θ1(ξ ,ω) = ∑

j≥0
∑

|k|≤⌈2 j/2⌉

∣∣ψ̂(ST
k A2− j ξ )

∣∣ ∣∣ψ̂(Sk
TA2− j ξ +ω)

∣∣

and
Θ2(ξ ,ω) = ∑

j≥0
∑

|k|≤⌈2 j/2⌉

∣∣ ˆ̃ψ(SkÃ2− j ξ )
∣∣ ∣∣ ˆ̃ψ(SkÃ2− j ξ +ω)

∣∣ .

Also, for c= (c1,c2) ∈ (R+)
2, let

R(c) = ∑
m∈Z2\{0}

(
Γ0(c

−1
1 m)Γ0(−c−1

1 m)
) 1

2 +
(
Γ1(M

−1
c m)Γ1(−M−1

c m)
) 1

2

+(Γ2(M̃
−1
c m)Γ2(−M̃−1

c m))
1
2 ,

where

Γ0(ω) = esssup
ξ∈R2

|φ̂(ξ )||φ̂ (ξ +ω)| and Γi(ω) = esssup
ξ∈R2

Θi(ξ ,ω) for i = 1,2.

Using this notation, we can now state the following theorem from [45].
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Theorem 7 ([45]).Letφ ,ψ ∈ L2(R2) be such that

φ̂(ξ1,ξ2)≤C1 ·min{1, |ξ1|−γ} ·min{1, |ξ2|−γ}

and
|ψ̂(ξ1,ξ2)| ≤C2 ·min{1, |ξ1|α} ·min{1, |ξ1|−γ} ·min{1, |ξ2|−γ},

for some positive constants C1,C2 <∞ andα > γ > 3. Defineψ̃(x1,x2) =ψ(x2,x1),
and let Linf ,Lsup be defined by

Linf = essinf
ξ∈R2

Θ(ξ ,0) and Lsup= esssup
ξ∈R2

Θ(ξ ,0).

Then there exists a sampling parameter c= (c1,c2) ∈ (R+)2 with c1 = c2 such that
SH(φ ,ψ , ψ̃ ;c) forms a frame for L2(R2) with frame bounds A and B satisfying

0<
1

|detMc|
[Lin f −R(c)]≤ A≤ B≤ 1

|detMc|
[Lsup+R(c)]< ∞.

It can be easily verified that the conditions imposed onφ andψ by Theorem 7
are satisfied by many suitably chosen scaling functions and classical shearlets. In
addition, one can construct various compactly supportedseparableshearlets that
satisfy these conditions.

The difficulty however arises when aiming for compactly supportedseparable
functionsφ andψ which ensure that the corresponding cone adapted discrete shear-
let system is a tight or almost tight frame. Separability is useful to achieve fast
algorithmic implementations. In fact, it was shown in [45] that there exists a class
of functions generating almost tight frames, which have (essentially) the form

ψ̂(ξ ) = m1(4ξ1)φ̂ (ξ1)φ̂(2ξ2), ξ = (ξ1,ξ2) ∈ R2,

wherem1 is a carefully chosen bandpass filter andφ an adaptively chosen scaling
function. The proof of this fact is of highly technical nature and will be omitted. We
refer the reader to Chapter [69] and to the survey paper [49] for more details.

4.4 Sparse Approximations by Shearlets

One of the main motivations for the introduction of the shearlet framework is the
derivation of optimally sparse approximations for multivariate functions. In Sub-
section 2.5, we presented a heuristic argument to justify why traditional wavelets
are unable to take advantage of the geometry of typical functions of two variables.
In fact, since traditional wavelets are not very efficient atdealing with anisotropic
features, they do not provide optimally sparse approximations of images containing
edges. As discussed above, shearlet systems are able to overcome these limitations.
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Before stating the main results, it is enlightening to present an heuristic argument
similar to the one used in Subsection 2.5, in order to describe how shearlet expan-
sions are able to achieve optimally sparse approximations of cartoon-like images.

For this, consider a cartoon-like functionf , and letSH(φ ,ψ , ψ̃ ;c) be a shearlet
system. Since the elements ofSH(φ ,ψ , ψ̃ ;c) are essentially or – in case of com-
pactly supported elements – exactly supported inside a box of size 2− j/2×2− j , it
follows that, at scale 2− j , there exist aboutO(2 j/2) such waveforms whose support
is tangent to the discontinuity curve. Similar to the wavelet case, forj sufficiently
large, the shearlet elements associated with the smooth region of f , as well as the
elements whose overlap with the discontinuity curve is non-tangential, yield negli-
gible shearlet coefficients〈 f ,ψ j ,k,m〉 (or 〈 f , ψ̃ j ,k,m〉). Each shearlet coefficient can
be controlled by

|〈 f ,ψ j ,k,m〉| ≤ ‖ f‖∞ ‖ψ j ,k,m‖L1 ≤C2−3 j/4,

similarly for 〈 f , ψ̃ j ,k,m〉. Using this estimate and the observation that there exist at
mostO(2 j/2) significant coefficients, we can conclude that theN-th largest shearlet
coefficient, which we denote by|sN( f )|, is bounded byO(N−3/2). This implies that

‖ f − fN‖2
L2 ≤ ∑

ℓ>N

|sℓ( f )|2 ≤CN−2,

where fN denotes theN-term shearlet approximation using theN largest coeffi-
cients in the shearlets expansion. This is exactly the optimal approximation error
rate of Theorem 2. Even though this is simple heuristic argument, it provides an er-
ror rate which – up to a log-like factor – coincides exactly with what can be proved
using a rigorous argument.

Indeed, the following result holds.

Theorem 8 ([29]).Let Φ(φ)∪PCΨ(ψ)∪PC̃Ψ̃(ψ̃) be a Parseval frame for L2(R2)

as defined in Theorem 6, whereψ ∈ L2(R2) is a classical shearlet and̂φ ∈C∞
0 (R

2).
Let f ∈ E

2(R2) and fN be its nonlinear N-term approximation obtained by se-
lecting the N largest coefficients in the expansion of f with respect to this shearlet
system. Then there exists a constant C> 0, independent of f and N, such that

‖ f − fN‖2
2 ≤C ·N−2 · (logN)3 as N→ ∞.

Since a log-like factor is negligible with respect to the other terms for largeN, the
optimal error decay rate is essentially achieved. It is remarkable that, by using a
non-adaptive system, an approximation rate which is essentially as good as the one
obtained using an adaptive construction can be achieved. The same approximation
rate – with the same additional log-like factor – is obtainedusing a Parseval frame
of curvelets, see [4].

Interestingly, the same error decay rate is also achieved using approximations
based on compactly supported shearlet frames, as stated below.
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Theorem 9 ([51]). Let SH(φ ,ψ , ψ̃ ;c) be a frame for L2(R2), where c> 0, and
φ ,ψ , ψ̃ ∈ L2(R2) are compactly supported functions such that, for allξ = (ξ1,ξ2)∈
R2, the shearletψ satisfies

(i) |ψ̂(ξ )| ≤C1 ·min{1, |ξ1|α} ·min{1, |ξ1|−γ} ·min{1, |ξ2|−γ} and

(ii)
∣∣∣ ∂

∂ξ2
ψ̂(ξ )

∣∣∣≤ |h(ξ1)| ·
(

1+ |ξ2|
|ξ1|

)−γ
,

whereα > 5, γ ≥ 4, h∈ L1(R), C1 is a constant, and the shearletψ̃ satisfies (i) and
(ii) with the roles ofξ1 andξ2 reversed.

Let f ∈ E
2(R2) and fN be its nonlinear N-term approximation obtained by se-

lecting the N largest coefficients in the expansion of f with respect to the shearlet
frame SH(φ ,ψ , ψ̃ ;c). Then there exists a constant C> 0, independent of f and N,
such that

‖ f − fN‖2
2 ≤C ·N−2 · (logN)3 as N→ ∞.

Conditions (i) and (ii) are rather mild conditions and mightbe regarded as a weak
version of directional vanishing moment conditions.

The topic of sparse shearlet approximations, including extensions to higher di-
mensions, will be the main topic of Chapter [69].

4.5 Shearlet Function Spaces

As already mentioned in Subsection 1.2, the study of the smoothness spaces as-
sociated with shearlet coefficients is particularly usefulto thoroughly understand
and take advantage of the approximation properties of shearlet representations. Intu-
itively, shearlet systems can be described as directional versions of wavelet systems.
Hence, since wavelets are known to be naturally associated with Besov spaces (in
the sense that Besov spaces are characterized by the decay ofwavelet coefficients),
it seems conceivable that shearlet systems could be effective at characterizing some
anisotropic version of Besov spaces.

The theory of coorbit spaces was applied as a systematic approach towards the
construction of ‘shearlet spaces’ in the series of papers [8, 10, 11]. This ansatz leads
to the so-calledshearlet coorbit spaces, which are associated to decay properties of
shearlet coefficients of discrete shearlet frames. The mainchallenge then consists
in relating these spaces to known function spaces such as anisotropic Besov spaces
and deriving embedding results. Chapter [67] provides a thorough introduction to
this topic and a survey of recent results.

4.6 Extensions and Generalizations

A number of recent studies have focused on the construction of shearlet systems,
which are tailored to specific tasks or applications.
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• Shearlet on bounded domains.Some applications such as, for example, the con-
struction of numerical solvers of certain partial differential equations require sys-
tems defined on bounded domains. This could be a rectangle or,more generally,
a polygonal-shaped domain. When shearlets are used for the expansion of func-
tions – explicitly or implicitly given – defined on a bounded domain, the treat-
ment of the boundary is crucial. One typical challenge is to set zero boundary
conditions without destroying necessary (directional) vanishing moment condi-
tions. A first attempt in this direction was undertaken in [53], but many challenges
are still open.

• Multidimensional extensions.Many current high-impact applications such as,
for example, the analysis of seismic or biological data require to deal with 3-
dimensional data. The computational challenges in this setting are much more
demanding than in two dimensions, and sparse approximations are in great de-
mand. Due to the simplicity of the mathematical structure ofshearlets, their ex-
tensions to higher dimensions is very natural. Indeed, somebasic ideas were
already introduced in [37], where it was observed that thereexist several ways
to extend the shearing matrix to higher dimensions. Additional observations and
results have more recently appeared, including results on sparse approximations
and detection of singularities [10, 31, 32, 33, 50].
In 3-dimensional data, different types of anisotropic features occur, namely, sin-
gularities on 1-dimensional and 2-dimensional manifolds.This situation is there-
fore very different from the situation in 2 dimensions, since anisotropic features
of two different dimensions are involved. This is reflected in the following two
main approaches to extend the parabolic scaling matrix:




2 j 0 0
0 2j/2 0
0 0 2j


 or




2 j 0 0
0 2j/2 0
0 0 2j/2


 .

The first choice leads to ‘needle-like’ shearlets, which areintuitively better suited
to capture 1-dimensional singularities. The second choiceleads to ‘plate-like’
shearlets, which are more suited to 2-dimensional singularities. Intriguingly, both
systems are needed if the goal is to distinguish these two types of singularities.
However, for the construction of (nearly) optimally sparseapproximations which
extend the results of Subsection 4.4, it turns out that the ‘plate-like’ shearlets are
the right approach [32, 33, 50].

These topics will be further discussed in the Chapters [67],[68], and [69].

5 Algorithmic Implementations of the Shearlet Transform

One major feature of the shearlet approach is a unified treatment of the continuum
and digital setting. The numerical implementations, whichhave been developed in
the literature, aim – and succeed – to faithfully digitalizethe continuum domain Dis-
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crete Shearlet Transform. This ensures that microlocal andapproximation properties
of shearlet expansions, which are proven in the continuum realm, can be carried over
to the digital setting.

To date, several distinct numerical implementations of theDiscrete Shearlet
Transform exist [21, 59, 54, 42, 56] and some additional implementations are de-
signed to address specific applications such as, for example, edge detection [65].
Furthermore, several attempts were made to develop a multiresolution analysis sim-
ilar to the one associated with wavelets, in an effort to develop MRA-based im-
plementations [37, 42, 54]. It is useful to mention that the shearlet algorithms
associated with [59] and [56] are available and downloadable from the webpage
www.ShearLab.org.

Let us next briefly describe the different approaches developed so far, by group-
ing these into two categories: The approaches which are Fourier-domain based and
those which are spatial-domain based. All these topics willbe discussed in much
more detail in Chapters [72] and [70].

5.1 Fourier Based Implementations

The Cone-adapted Discrete Shearlet Transform provides a particular decomposition
of the frequency plane into frequency regions associated with different scales and
orientations, as illustrated in Figure 5. Hence, a very natural and direct approach to a
digitalization of the Discrete Shearlet Transform is aFourier-based approach, which
aims to directly produce the same frequency tiling. This approach was adopted in
the following two contributions.

• One such algorithmic realization was introduced in [21] as acascade of a subband
decomposition, based on the Laplacian Pyramid filter followed by a directional
filtering stage which applied the Pseudo-Polar Discrete Fourier Transform.

• A different approach, which was introduced in [55, 56], consists of a carefully
weighted Pseudo-Polar transform ensuring isometry followed by windowing and
inverse FFT. This transform is associated with band-limited tight shearlet frames,
thereby allowing the adjoint frame operator for reconstruction.

5.2 Spatial Domain Based Implementations

A spatial domain approachis a method where the filters associated with the trans-
form are implemented by a convolution in the spatial domain.This approach is
exploited from different viewpoints in the following four contributions.

• In [21], a numerical algorithm implementing the Discrete Shearlet Transform
is introduced, in which the directional filters are approximations of the inverse
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Fourier transforms of digitalized band-limited window functions in Fourier do-
main. With respect to the corresponding Fourier-based implementation, this ap-
proach ensures that the filters have good spatial localization.

• In contrast to the method in [21], separable window functions – thereby allowing
compactly supported shearlets – are exploited in [59]. Thisalgorithm enables
the application of fast transforms ‘along both axes’, even if the corresponding
transform is not associated with a tight frame.

• Yet another approach is adopted in [54], which explores the theory of subdivision
schemes, leading to an associated multiresolution analysis. The main idea here
is to adapt the construction of a Multiresolution analysis for wavelets, which
can also be regarded as being generated by subdivision schemes. This approach
comprises the possibility to obtain scaling functions ‘along the way’.

• Related to in [54], the approach developed in [42] introduces a general unitary
extension principle, which – applied to the shearlet setting – determines the con-
ditions on the filters needed for deriving a shearlet frame.

6 Shearlets in Applications

Shearlets were introduced to tackle a number of challenges in the representation and
processing of multivariate data, and they have been successfully employed in several
numerical applications. Let us briefly summarized the main areas of application
below, and refer to Chapter [71] for a detailed overview.

• Imaging Applications.The sparsity of shearlet expansions can be exploited for
various problems of data regularization and feature extraction. One class of imag-
ing applications in which shearlets succeeded are denoising problems. For this,
several shearlet-based image denoising algorithms were introduced, including
those in [21, 59], which adapt wavelet thresholding to the shearlet setting, and
the method in [20], which combines thresholding with minimization of bounded
variation. Another class of imaging applications, for which the microlocal prop-
erties of shearlets have been found useful is the analysis and detection of edges
[65].

• Data Separation.In several practical applications, it is important to separate
data in their subcomponents. In astronomical imaging, it isvery useful to sep-
arate stars from galaxies, or in neurobiological imaging, spines from dendrites.
In both cases, the goal is the separation of point- and curve-like structures. Us-
ing methodologies from sparse approximation and combiningwavelet and shear-
let expansions, a very effective method for data separationwas developed in
[16, 17, 52].

• Inverse Problems.Shearlet-based methods have also been applied to construct
a regularized inversion algorithm for the Radon transform.This transform is at
the basis of computerized tomography [6]. Similar ideas were also shown to be
useful when dealing with more general classes of inverse problems, such as de-
blurring and deconvolution [61].
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