Introduction

Gitta Kutyniok and Demetrio Labate

Scientists frequently refer to the 21st century as the edatd. In fact, since tech-
nological advances make data acquisition easier and Iggnsive, we are facing
today a deluge of data, including, for instance, astronammedical, seismic, me-
teorological and surveillance data, which require efficemalysis and processing.
The enormity of the challenge this poses is evidenced ngtlonthe sheer amount
of data, but also by the diversity of data types and the wanéprocessing tasks
which are required. To efficiently handle tasks ranging fifeature analysis over
classification to compression, highly sophisticated nratitecal and computational
methodologies are needed. From a mathematical standpaiatcan be modeled,
for example, as functions, distributions, point cloudsg@phs. Moreover, data can
be classified by membership in one of the two categories:i€ikplgiven data,
such as imaging or measurement data, and implicitly givea, dach as solutions
of differential or integral equations.

A fundamental property of virtually all data found in praeti applications is
that the relevant information which needs to be extractedemtified is sparse, i.e.,
data are typically highly correlated and the essentialrmétion lies on low dimen-
sional manifolds. This information can thus be capturegrinciple, using just few
terms in an appropriate dictionary. This observation iialunot only for tasks
such as data storage and transmission, but also for featieeton, classification,
and other high-level tasks. Indeed, finding a dictionaryolitgparsely represents a
certain data class entails the intimate understanding afdtinant features, which
are typically associated with singularities and other gewim properties. Related
to this is the observation that virtually all multivariatatd are typically dominated
by anisotropic features such as singularities on lower dsiomal embedded man-
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ifolds. This is exemplified, for instance, by edges in ndtimages or shock fronts
in the solutions of transport equations. Hence, to effitjeahalyze and process
these data, it is of fundamental importance to discover ang tinderstand their
geometric structures

The subject of this volume is a recently introduced multiséa@amework, called
shearlets which allows optimal encoding of several classes of mattate data
through its ability to sparsely represent anisotropicifezg. As will be illustrated in
the following, shearlets emerged as part of an extensiearehk activity developed
during the last 10 years to create a new generation of asaysl processing tools
for massive and higher dimensional data, which could go beéybe limitations
of traditional Fourier and wavelet systems. One of the famaers of this area of
research is David L. Donoho, who observed that, in higheredisions, traditional
multiscale systems and wavelets ought to be replaced ®gametric Multiscale
Analysiswhere multiscale analysis is adapted to intermediate-déo@al singular-
ities. It is important to remark that many of the ideas whioh at the core of this
approach can be traced back to key results in harmonic asdigsn the 1990's,
such as Hart Smith’s Hardy space for Fourier Integral Opesadnd Peter Jones’
Analyst’s Traveling Salesman theorem. Both results cantter higher-dimensional
setting, where geometric ideas are brought into play toodisc'new architectures
for decomposition, rearrangement and reconstruction efaiprs and functions’
[15].

This broader area of research is currently at the crossicgaptied mathematics,
electrical engineering, and computer science, and hasspsmtacular advances in
recent years, resulting in highly sophisticated and efiicedgorithms for image
analysis and new paradigms for data compression and appatiain. By presenting
the theory and applications of shearlets obtained durisitfilee years, this book is
also a journey into one of the most active and exciting aréassearch in applied
mathematics.

1 The Rise of Shearlets

1.1 The Role of Applied Harmonic Analysis

Applied harmonic analysis has established itself as ther miada in applied math-
ematics focused on the efficient representation, analgsisencoding of data. The
primary object of this discipline is the process of ‘breakinto pieces’ — from the
Greek worldanalysis—, to gain insight into an object. Given a class of datén
L2(RY), say, a collection ofnalyzingfunctions(¢;)ie; € L?(RY) with | being a
countable indexing set is seeked such that, fof &l%’, we have the expansion

f:Zci(f)(pi. (1)
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This formula provides not only a decomposition for any elamk of the class
% into a countable collection of linear measuremeetéf))ici C ¢2(1), hence its
analysis It also illustrates the process synthesiswheref is reconstructed from
the expansion coefficients; (f))ic .

One major goal of applied harmonic analysis is the constncif special classes
of analyzing elements which can best capture the most r@i@v@rmation in a cer-
tain data class. Let us illustrate the two most successpagyf analyzing systems
in the one-dimensional setting. Ti@abor systemare designed to best represent
the joint time-frequency content of data. In this case, thayzing elementsg; )ic|
are obtained as translations and frequency shifts of a géngrfunctiong € L?(R)
as follows:

{ppq=9(-—p) ™ : p,ge Z}.

In contrast to this approactyavelet systemepresent the data as associated with
different location and resolution levels. In this case,dhalyzing element&p; )ic|

are obtained through the action of dilation and transladip@rators on a generating
functiony € L?(R), called avavelet as:

{(Yim=229(2) - —m): j,me Z}. 2)

Given a prescribed class of da#, one major objective is to design an ana-
lyzing system(¢i)ici in such a way that, for each functidne ¢, the coefficient
sequencéci(f))iel in (1) can be chosen to [sparse In the situation of an infinite-
dimensional Hilbert space — which is our focus here — the egif sparsity is
customarily measured as the decay rate of the error ofrbesin approximation.
Loosely speaking, this means that we can approximatef any” with high accu-
racy by using a coefficient sequer(@g f))ic; containing very few non-zero entries.
In the finite-dimensional setting, such a sequence is capadse and this explains
the use of the terraparse approximationsntuitively, if a function can be sparsely
approximated, it is conceivable that ‘important’ featucas be detected by thresh-
olding, i.e., by selecting the indices associated with theyest’ coefficients in ab-
solute values, or that high compression rates can be achigystoring only few
‘large’ coefficientsi (), see [18].

There is another fundamental phenomenon to observe hefg.)ilf; is an or-
thonormal basis, the coefficient sequelGéf))ici in (1) is certainly uniquely de-
termined. However, if we allow more freedom in the sense @osing(¢i)ic to
form a frame — a redundant, yet stable system (see Subs@c8pr the sequences
(ci(f))ier might be chosen significantly sparser for edch 4. Thus, methodolo-
gies fromframe theorywill come into play, see Subsection 2.3 and [7, 5].

We can observe a close connection to yet another highlydbaiea. During the
last four years, sparse recovery methodologies such agriicydar, Compressed
Sensing have revolutionized the areas of applied mathespatbmputer science,
and electrical engineering by beating the traditional dargptheory limits, see
[3, 22]. They exploit the fact that many types of signals carrépresented using
only a few non-vanishing coefficients when choosing a siéthhsis or, more gen-
erally, a frame. Nonlinear optimization methods, sucli;asinimization, can then
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be employed to recover such signals from ‘very few measerg@sunder appro-
priate assumptions on the signal and on the basis or franeseTiesults can often
be generalized to data which are merely sparsely approgahiat a frame, thereby
enabling Compressed Sensing methodologies for the situa#t discussed above.

1.2 Wavelets and Beyond

Historically, the introduction ofvaveletsabout 20 years ago represents a milestone
in the development of efficient encoding of piecewise regsignals. The major
reason for the spectacular success of wavelets consistafyoin their ability to
provide optimally sparse approximations of a large clasf&erfuently occurring
signals and to represent singularities much more effigightln traditional Fourier
methods, but also in the existence of fast algorithmic im@etations which pre-
cisely digitalize the continuum domain transforms. The geyperty enabling such
a unified treatment of the continuum and digital settingNdudtiresolution Analysis
which allows a direct transition between the realms of reaiable functions and
digital signals. This framework also combines very natyraith the theory of filter
banks developed in the digital signal processing commuitadditional aspect of
the theory of wavelets which has contributed to its succe#s rich mathematical
structure, which allows one to design families of waveletthwarious desirable
properties expressed in terms of regularity, decay, orsbamg moments. As a con-
sequence of all these properties, wavelets have literallglutionized image and
signal processing, and produced a large number of very ssftd@pplications, in-
cluding the algorithm of JPEG2000, the current standardm@ge compression.
We refer the interested reader to [60] for more details ab@velets and their ap-
plications.

Despite their success, wavelets are not very effective vadeating with multi-
variate data. In fact, wavelet representations are opfonalpproximating data with
pointwise singularities only, and cannot handle equallyf distributed singularities
such as singularities along curves. The intuitive reasotthfis is that wavelets are
isotropic objects, being generated by isotropically dilating a @ngl finite set of
generators. However, in dimensions two and higher, digii discontinuities such
as edges of surface boundaries are usually present or eveimad, and — as a
result — wavelets are far from optimal in dealing with mudtixate data.

The limitations of wavelets and traditional multiscaletsyss have stimulated
a flurry of activity involving mathematicians, engineersdapplied scientists. In-
deed, the need to increase the directional sensitivity okleds was already recog-
nized in the early filter bank literature, and several varsiof ‘directional’ wavelets
were introduced, including theteerable pyramidby Simoncelli et al. [62], theli-
rectional filter bankdy Bamberger and Smith [2], and tB® directional wavelets
by Antoine et al. [1]. A more sophisticated approach was psep more recently
with the introduction otomplex waveletglO, 41]. However, even though they fre-
quently outperform standard wavelets in applicationsséhraethods do not provide
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optimally sparse approximations of multivariate data goeed by anisotropic fea-
tures. The fundamental reason for this failure is that tlaggeoaches are not truly
multidimensional extensions of the wavelet approach.

The real breakthrough occurred with the introductiooaiveletdy Candés and
Donoho [4] in 2004, which was the first system providing opatitnsparse approx-
imations for a class of bivariate functions exhibiting atispic features. Curvelets
form a pyramid of analyzing functions defined not only at @as scales and loca-
tions, as wavelets do, but also at various orientationd) thi¢ number of orienta-
tions increasing at finer scales. Another fundamental ptgjgethat their supports
are highly anisotropic and become increasingly elongéatédex scales. Due to this
anisotropy, curvelets are essentially as good as an adagfiresentation system
from the point of view of the ability to sparsely approximateages with edges.
The two main drawbacks of the curvelet approach are thatyfitisis system is not
singly generated, i.e., it is not derived from the actionaiitably many operators
applied to a single (or finite set) of generating functiore;adly, since its con-
struction involves rotations and this operator does nosgme the digital lattice,
which prevents a direct transition from the continuum todlggtal setting.

Contourletswere introduced in 2005 by Do and Vetterli [13] as a purelydige
filter-bank version of the curvelet framework. This appioaffers the advantage of
allowing a tree-structured filter bank implementation &mito the wavelet imple-
mentation, which was exploited to obtain remarkable nucaériesults. However,
the directional selectivity is artificially imposed by thpegial sampling rule of a
filter bank and a proper continuum theory is missing.

In the same yeasghearletsnvere introduced by Guo, Kutyniok, Labate, Lim, and
Weiss in [57, 28]. This approach was derived within a lardaesg of affine-like
systems — the so-callesbmposite wavelef85, 37, 36] — as a truly multivariate
extension of the wavelet framework. One of the distinctiwatfires of shearlets is
the use of shearing to control directional selectivity, antrast to rotation used
by curvelets. This is a fundamentally different conceptcsiit allows to derive
shearlet systems as singly generated systems, and it ascesra unified treatment
of the continuum and digital world due to the fact that theaghmaatrix preserves
the integer lattice. Indeed, as will be extensively disedss the remainder of this
volume, the shearlet representation offers a unique caatibmof the following list
of desiderata:

A single or a finite set of generating functions.

Optimally sparse approximations of anisotropic featunesultivariate data.
Compactly supported analyzing elements.

Fast algorithmic implementations.

A unified treatment of the continuum and digital realms.

Association with classical approximation spaces.

In the following, we will present a self-contained overviefihe key results from
the theory and applications of shearlets, focused prignarilthe 2D setting. These
results will be elaborated in much more detail in the varickhiapters of this vol-
ume, which will discuss both the continuum and digital aspe€shearlets. Before
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starting our overview, it will be useful to establish theatain adopted throughout
this volume and to present some background material frommduaic analysis and
wavelet theory.

2 Notation and Background Material

2.1 Fourier Analysis

The Fourier transform is the most fundamental tool in harimanalysis. Before
stating the definition, we notice that, in the following, t@s in RY or C? will
always be understood as column vectors, and their inneuptedas also the inner
productinL?(RY) — shall be denoted by, -). For a functionf € L1(RY), theFourier
transformof f is defined by

(&) = [ 1002l

and f is called aband-limitedfunction if its Fourier transform is compactly sup-
ported. Thenverse Fourier transfornof a functiong € L1(RY) is given as

604 = [ 9(&)@m e,

If feLL(RY) with f e L1(RY), we havef = ()", hence in this case — which is by
far not the only possible case — the inverse Fourier transferthe ‘true’ inverse.
It is well known that this definition can be extended.®{RY) and, as usual, also
these extensions will be denoted byandg. By using this definition of the Fourier
transform, thePlancherel formuldor f,g € L2(R") reads

<fvg> = <]€,Q>,
and, in particular, A
[1fll2= 1]l
We refer to [24] for additional background information onuFer analysis.

2.2 Modeling of Signal Classes

In the continuum setting, the standard modetlafimensional signals is the space
of square-integrable functiorsn RY, denoted by ?(RY). However, this space also
contains objects which are very far from ‘natural’ imagesl aata. Hence, it is
convenient to introduce subclasses and subspaces whidiettan model the types
of data encountered in applications. One approach for difiisgconsists in im-
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posing some degree of regularity. Therefore, we considecdhtinuous functions
C(RY), thek-times continuously differentiable functio@¥(R%), and the infinitely
many times continuously differentiable functio®®(RY), which are also referred

to assmooth functionsSince images are compactly supported in nature, a notion
for compactly supported functioisalso required which will be indicated with the
subscript 0, e.gCg (RY).

Sometimes it is useful to consider curvilinear singulastisuch as edges in
images as singularities of distributions, which requitesdpace of distributions
2'(RY) as a model. For a distributian we say thak € RY is aregular pointof u, if
there exists a functiop € Cg (Ux) with ¢(x) # 0 andUy being a neighborhood of
This impliespu € CJ(RY), which is equivalent tgpu)” being rapidly decreasing.
The complement of the set of regular pointsuok called thesingular supporiof
u and is denoted by sing sufap. Notice that the singular support ofis a closed
subset of supfu).

The anisotropic nature of singularities on one- or multirdihsional embedded
manifolds becomes apparent through the notion of a wavesetn For simplicity,
we illustrate the 2-dimensional case only. For a distrinuti, a point(x, s) € R? x R
is aregular directed pointif there exist neighborhoods; of x andVs of s as well
as a functionp € C3 (R?) satisfyingg|u, = 1 such that, for eacN > 0, there exists
a constanCy with

(U@ (n)| <Cn(L1+[n)~™ foralln e R? with 2 € Vs,

The complement iik? x R of the regular directed points afis called thevavefront
setof u and is denoted bW F(u). Thus, the singular support describes the location
of the set of singularities af, and the wavefront set describes both the location and
local perpendicular orientation of the singularity set.

U] lli n

Fig. 1 Natural images are governed by anisotropic structures.

A class of functions, which is of particular interest in inrag sciences, is the
class of so-calledartoon-like imagesThis class was introduced in [14] to provide
a simplified model of natural images, which emphasizes &migiw features, most
notably edges, and is consistent with many models of the hwisaal system.
Consider, for example, the photo displayed in Figure 1. &the image basically
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Fig. 2 Example of a cartoon-like image.

consists of smooth regions separated by edges, it is siggasuse a model con-
sisting of piecewise regular functions, such as the onstithted in Figure 2. For
simplicity, the domain is set to K6, 1]? and the regularity can be chosen toQre
leading to the following definition.

Definition 1. Theclass€?(IR?) of cartoon-like imagés the set of function$ : R? —
C of the form
f =fo+ fixs,

whereB C [0,1]? is a set withdB being a close€?-curve with bounded curvature
andf; € C2(R?) are functions with supfy C [0, 1] and|| fi||c2 < 1 for eachi = 0, 1.

Let us finally mention that, in the digital setting, the usmabdels ford-
dimensional signals are either functions @A such as¢?(Z9) or functions on
{0,...,N —1}9 sometimes denoted 5.

2.3 Frame Theory

When designing representation systems of functions, tnsedimes advantageous
or unavoidable to go beyond the setting of orthonormal basesconsider redun-
dant systems. The notion offieame originally introduced by Duffin and Schaeffer
in [19] and later revived by Daubechies in [12], guarantéakikty while allowing
non-unique decompositions. Let us recall the basic dedimstirom frame theory in
the setting of a general (real or complex) Hilbert spa€e

A sequencé;)ic in 7 is called aframefor .27, if there exist constants @
A < B < o such that

AlX|2 < Z (x, ¢i)|2 < B|[x|? forallxe 2.
IS

The frame constants andB are calledower andupper frame boundespectively.
The supremun over all and the infimum over aB such that the frame inequalities
hold are theptimal frame bounddf AandB can be chosen as= B, then the frame
is calledA-tight, and if A= B = 1 is possible, theri¢;)ic| is aParseval frameA
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frame is callecequal-normif there exists some > 0 such that|¢;|| = cforalli €,
and it isunit-normif c = 1.

Apart from providing redundant expansions, frames senanamalysis tool. In
fact, they allow the analysis of data by studying the assedifiame coefficients
({x, ¢i))ier, Wwhere the operatdr defined by

T =21, x= ((%0))iel

is called theanalysis operatarThe adjoinfT * of the analysis operator is referred to
as thesynthesis operatand satisfies

T () = 2, ((Giel) — Zciqbi.

The main operator associated with a frame, which providéaldesreconstruction
process, is théame operator

S=T'T .20 — 3, X+ Z(x, i) .

The operatoSis a positive, self-adjoint invertible operator o#f with A-Id_» <
S<B-ld », where Id, denotes the identity operator off. In the case of a Parseval
frame, this reduces 6= 1d ..
In general, a signal € # can be recovered from its frame coefficients through
the reconstruction formula
X= Z<X, ¢i>S_l¢i.
le

The sequenc(aS“l(pi)iE., which can be shown to form a frame itself, is referred to
as thecanonical dual frameTaking a different viewpoint and regarding a frame as a
means for expansion in the systéf)ic|, we observe that, for each vectoe 57,

X= Z<Xas_l¢i>¢i~

If the frame does not constitute a basis, i.e., it is redutydiae coefficient sequence
((x,S71¢i))icr Of this expansion is certainly not unique. It is this progesthich
then enables to derive much sparser expansions. It shcaddbal noted that the
sequencé(x,S 1¢;))ic| has the distinct property of being the smallest3morm
of all expansion coefficient sequences.

For more details on frame theory, we refer the interestederc® [5, 7].

2.4 \Wavelets

Wavelet analysis plays a central role in this volume sinseyil be made more pre-
cise in the following, shearlets arise naturally from théngral framework. Hence



10 Gitta Kutyniok and Demetrio Labate

a full understanding of shearlets can only be derived thin@gound understanding
of wavelet theory.

We start by rewriting the definition of discrete wavelet systeim L?(R), stated
at the beginning of the introductionin (2), as

{Yim=D)Tmy =222 —m): jmeZ}, 3)

wherey € L%(R), D, is the dyadidilation operatoron L?(R) defined by

Day(x) = 272y (27x), (4)
andT; is thetranslation operatoon L?(R), defined by
TP (X) = P(x—t), fort e R. (5)
The associateDiscrete Wavelet Transforia then defined to be the mapping
L2(R) > f s #yf(j,m) = (f,¢jm), j,meZ.

If the system (3) is an orthonormal basislG{R), it is called anorthonormal
wavelet systejrand ¢ is called awavelet Being a wavelet is by no means very
restrictive and plenty of choices exist. In fact, it is pb#sito construct wavelets
W, which arewell localizedin the sense that they have rapid decay both in the spa-
tial and frequency domain, or which satisfy other regwanitdecay requirements.
Among the classical constructions, let us highlight the most well-known: the
Daubechies waveletg/hich have compact support and can be chosen to have high
regularity, leading to good decay in the frequency domaid, theLemarge-Meyer
wavelets which are band-limited an@” in the frequency domain, forcing rapid
decay in the spatial domain. It should be emphasized thdbttadization proper-
ties of wavelet bases are among the major differences wsfteict to Fourier bases,
and play a fundamental role in their approximation propsrttas we will be shown
below.

In fact, there is a general machinery to construct discreteelet systems, called
Multiresolution AnalysigMRA). In dimensiond = 1, this is defined as a sequence
of closed subspace¥);cz in L?(R) which satisfies the following properties:

(i) {0}c...cVocVicVocViCcVoC...CL2(R).
(if) NjezVi ={0} and UjezVj =L%(R).
(iii) feV; ifandonlyif Dof eVj,1.

(iv) There exists @ € L2(R), calledscaling functionsuch thaf Tng : me Z} is an
orthonormal basi$ for V. is then

This approach enables the decomposition of functions iifterdnt resolutionlev-
els associated with the so-calledvelet spaces Vj € Z. These spaces are defined

1 This assumption can be replaced by the weaker assumptiofifth@: m € Z} is Riesz basis for
Vo
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by considering the orthogonal complements
W :=Vj118V], j €Z.

That is, a functionfj ; € Vj, is decomposed a1 = fj +g; € V; ©W, where

f; contains, roughly, the lower frequency componentjaf; andg; its higher fre-
quency component. It follows thaf(R) can be broken up as a direct sum of wavelet
spaces. Thus, given an MRA, there always exists a fungienL?(R) such that
{@jm: j,me Z} is an orthonormal basis fdr?(R). In fact, the MRA approach
allows to introduce an alternative orthonormal basis imvig both the wavelet and
the scaling function, of the form

{n=Tmo=0(—m):meZU{Yjm: j=0,meZ}.

In this case, the translates of the scaling function take ocathe low frequency re-
gion —the subspadg C L?(R) —and the wavelet terms of the high frequency region
— the complementary spat8(R) \ Vo. We refer to [60] for additional information
about the theory of MRA.

The extension of wavelet theory to higher dimensions reghe introduction of
some group theoretic tools. For this, it is useful to staitiypducing the continuous
affine systemsf L2(RY), which are defined by

{Yms =TiDmy = [detM| Y2PM7I( —1)): (M,t) eGx R (6)

In this definition,y € L2(RY), G is a subset oGL4(R), the group ofi-dimensional
invertible matricesDy is the dilation operator oh?(RY), defined by

Dm(x) = [detM|["Y2p(M~1x),  forM € GL4(R), (7)
andT; is thetranslation operatoon L?(RY), defined by
TYX) = Yx—t), forteRY. (8)

We now aim to derive conditions apsuch that any € L?(R%) can be recovered
from its coefficient(f, Ym+))my. For this, we first equip the parameter set of (6)
with a group structure by setting

(M,t)- (M,t) = (MM',t + Mt').

The resulting group, typically denoted by, is the so-calleaffine group orR¢.
The mathematical structure of the affine systems becomdsmby observing that
(6) can be generated by the action of the unitary represensat, ) = DuT; of
oy acting onL?(RY) (cf. [38] for details on the theory of group representatjons
Then the following result on reproducibility of functionsli?(RY) can be proven.

Theorem 1 ([27, 58]).Retaining the notations introduced in this subsectionplet
be a left-invariant Haar measure on G GLy(RR), and dA be a left Haar measure
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of «7y. Further, suppose thap € L?(RY) satisfies the admissibility condition
L I#TE)2 det|apu() = 1

Then any function & L?(RY) can be recovered via the reproducing formula
= [ (0 e dA (M),

When the conditions of the above theorem are satisfled,L?(RY), it is called a
continuous waveletd he associate@ontinuous Wavelet Transforisidefined to be
the mapping

L2RY) 5 f s #p T (M) = (f,¢my),  (M,t) € 4.

One interesting special case is obtained, when the dilgtionpG has the form
G = {alq : a> 0}, which corresponds to the caseisdtropic dilations In this case,
the admissibility condition foy becomes

2da

| p@e)]

and the(isotropic) Continuous Wavelet Transfoiisithe mapping off € L?(RY)
into
Wi t( -d/Z/ fPEIx—t)dx a>0teR. )

Notice that the discrete wavelet systems (3) are obtainetidayetizing the contin-
uous affine systems (6) for= 1, when choosing isotropic dilations wih= {2! :
j €Z}.

2.5 Waveletsfor Multivariate Data and their Limitations

The traditional theory of wavelets, which is based on theaissotropic dilations,
is essentially a one-dimensional theory. This can be ithtstl by looking at the be-
havior of the isotropic Continuous Wavelet Transform ofdtions containing sin-
gularities. Indeed, consider a function or distributigrwhich is regular everywhere
except for a point singularity ab, and let us examine the behaviour#j, f (a,t),
given by (9). Provided is smooth, a direct computations shows thatf (a,t) has
rapid asymptotic decay, as— 0, for all values ot, unlesg = xo. In this sense, the
Continuous Wavelet Transform dfsignals the location of the singularity through
its asymptotic decay at fine scales. More generally, usiisgtfoperty, the Continu-
ous Wavelet Transform can be used to characterize the singupport of a function
or distribution [39].
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However, due to its isotropic nature, the Continuous Wavirknsform is unable
to provide additional information about the geometry of sle¢ of singularities of
a function or distribution in terms of resolving the waveftget. The key problem
is that, although the isotropic wavelet transform has theathge of simplicity, it
lacks directional sensitivity and the ability to detect depmetry off. The same
phenomenon showing the limitation of the traditional wavdtamework can be
illustrated using the Discrete Wavelet Transform.

Before doing this, let us recall the definitionmdn-linear approximatiomand, in
particular, besN-term approximation, which is the proper notion of approaiion
in the context of wavelet bases. For a functibre L?(R?), the best N-term ap-
proximation § of f with respect to a wavelet basis is obtained by reconstrgdtin
from theN largest wavelet coefficients in magnitude — rather than fitoarifirst N’,
which is the standard approach in linear Fourier approxonat Hence, denoting
by An the index set corresponding to tNdargest wavelet coefficientéf, g, )| as-
sociated with some wavelet basi) ), <4, thebest N-term approximatioof some
f € L2(R?)in () )acn is defined as

=3 (L)

AENN

If a function is expanded in a frame instead of a basis, theNs¢erm approxima-
tion can usually not be explicitly determined. A more detditliscussion of non-
linear approximation theory, encompassing the expansifraimes, is contained in
Chapter [69].

We can now present a simple heuristic argument, which tggtdithe limitations
of traditional wavelet approximations with respect to meophisticated multiscale
methods — such as the shearlet framework — when aiming ahalbyi sparse ap-
proximations of piecewise functions ®? and, in particular, cartoon-like images.
Let f be a cartoon-like image (see Definition 1) containing a demgty along a
smooth curve andy; m} be a standard wavelet basislgf(R?). For j sufficiently
large, the only significant wavelet coefficier{ts, () m) are those associated with
the singularity. Since at scale § each wavelety; m is supported or essentially sup-
ported inside a box of size 2 x 271, there exist abouti2elements of the wavelet
basis overlapping the singularity curve. The associateglgacoefficients can be
controlled by

[(Fgm)] < (1o 1 mll 2 < C- 270
It follows that theN-th largest wavelet coefficient in magnitude, which we denot
by (f, ¥jm)(n), is bounded byO(N~1). Thus, if f is approximated by its be$i-
term approximatiorfy, theL?—error obeys

If— a2 < §N|<f,wj,m><e>|2§CN‘l.
>

Indeed, this estimate can be proved rigorously and can berstmbe tight in the
sense that there exist cartoon-like images for which theyleate is of the order
O(N~1), see [60].
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However, the approximation ra® N 1) obtained using wavelet approximations
is far from optimal for the class of cartoon-like imag&gR?). Indeed, the follow-
ing optimality result was proved in [14].

Theorem 2 ([14]).Let f € €2(R?). There exists a constant C such that, for any N,
a triangulation of[0, 1]2 with N triangles can be constructed so that the piecewise
linear interpolation f{; of these triangles satisfies

If—fN3<C:N"2 N-—o.

This result provides the optimal asymptotic decay rate efrtbnlinear approxima-
tion error for objects ir€2(IR?), in the sense that no other polynomial depth search
algorithm can yield a better rate. In fact, it shows that tbepive triangle-based
approximation of the image is as good as as if the image hathgalarities.

The approximation result from Theorem 2 provides a benchrfwaroptimally
sparse approximation of 2-dimensional data. Furtherntloeesargumentin the proof
of Theorem 2, which uses adapted triangulations, sugdestahalyzing elements
with elongated and orientable supports are required teegetaptimally sparse ap-
proximations of piecewise smooth bivariate functions.eled, this observation is
at the core of the construction of curvelets and shearlesic&l however that, un-
like the triangulation approximations in Theorem 2, cuetend shearlet systems
are non-adaptive. It is a remarkable fact that, even thohgi are nonadaptive,
curvelet and shearlet representations are able to actéeserttially) the same opti-
mal approximation rate of Theorem 2. This result will be disged below, and, in
more detail, in Chapter [69].

3 Continuous Shearlet Systems

After discussing the limitations of wavelet systems in leigdimensions, we will
now introduce shearlet systems as a general framework tcawe these limita-
tions. We will first focus orcontinuousshearlet systems; discrete shearlet systems
will be discussed next. As mentioned above, we restrictaues to the 2D case.

Before defining the system of shearlets in a formal way, leintreduce intu-
itively the ideas which are at the core of its constructionr Gbservations from the
previous section suggest that, in order to achieve optynsplarse approximations
of signals exhibiting anisotropic singularities such agamn-like images, the ana-
lyzing elements must consist of waveforms ranging overrsggeales, orientations,
and locations with the ability to become very elongatedsTeguires a combina-
tion of an appropriate scaling operator to generate elesrendifferent scales, an
orthogonal operator to change their orientations, andreskation operator to dis-
place these elements over the 2D plane.

Since the scaling operator is required to generate wavefovith anisotropic
support, we utilize the family of dilation operatdps,, a > 0, based omparabolic
scaling matrices Aof the form
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a o0
Aa: (O al/Z) )

where the dilation operator is given by (7). This type of tiilas correspond to
the so-callegparabolic scaling which has a long history in the harmonic analysis
literature and can be traced back to the ‘second dyadic dgasition’ from the the-
ory of oscillatory integrals [23, 64] (see also the more neagork by Smith [63]
on the decomposition of Fourier integral operators). ltudtide mentioned that,
rather tham,, the more general matrices diaga®) with the parametesr € (0,1)
controlling the ‘degree of anisotropy’ could be used. Hoarethe valuex = 1/2
plays a special role in the discrete setting, i.e., when Hrarpeters of the shearlet
system are discretized. In fact, parabolic scaling is meglin order to obtain opti-
mally sparse approximations of cartoon-like images, sinibest adapted to the
C?-regularity of the discontinuity curves in this model claBer simplicity, in the
remainder of this chapter, we will only consider the case 1/2, which is required
for the sparsity results discussed below. For generadizataind extensions, we refer
to Chapters [68] and [69].

Next, we require an orthogonal transformation to changettentations of the
waveforms. The most obvious choice seems to be the rotatierator. However,
rotations destroy the structure of the integer latiéewhenever the rotation angle
is different from 0+ Z, + . This issue becomes a serious problem for the transition
from the continuum to the digital setting. As an alternativihogonal transforma-
tion, we choose the shearing operdgy, s € R, where theshearing matrix Sis

given by
1s
s (o3)

The shearing matrix parameterizes the orientations usiagyariables associated
with the slopes rather than the angles, and has the advamitéggring the integer
lattice invariant, providedis an integer.

Finally, for the translation operator we use the standaetaiprT; given by (8).

Combining these three operators, we define continuouslshegstems as fol-
lows.

Definition 2. For s € L?(R?), thecontinuous shearlet system 8} is defined by
SH(Y) = {Wast = T Do, Ds. W : a> 0,5€ R,t € R?}.

The next section will answer the question of how to choosetalde generating
functiony so that the systerBH() satisfies a reproducing formula fof(R?).

3.1 Continuous Shearlet Systems and the Shearlet Group

One important structural property of the systems introduneDefinition 2 is their
membership in the class of affine systems. Similar to th¢ioglaf wavelet systems
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to group representation theory discussed in Subsectigth24heory of continuous
shearlet systems can also be developed within the theomitafry representations
of the affine group and its generalizations [9].

To state this relation precisely, we define the so-cadleglarlet groupdenoted
by S, as the semi-direct product

(Rt xR) x R?,
equipped with group multiplication given by
(a,st)-(d,s,t') = (ad,s+Svat + SAat').
A left-invariant Haar measure of this group%a’l%dsdt Letting the unitary represen-
tationo : S — % (L?(R?)) be defined by
o(ast)y =TiDa,Ds ¥,

where7 (L?(R?)) denotes the group of unitary operatorslgiiR?), a continuous
shearlet systerS8H(() can be written as

SH(y) = {o(ast)y: (ast) €S}

The representation is unitary, but not irreducible. If this additional propgis
desired, the shearlet group needs to be extendé®toc R) x R?, whereR* =
R\ {0}, yielding the continuous shearlet system

SH(Y)={o(ast)y:acR*,seR,t € R?}.

This point of view and its generalizations to higher dimensiwill be examined in
detail in Chapter [67].

In the following, we provide an overview of the main resultsledefinitions
related to continuous shearlet systemsLfoiR?).

3.2 The Continuous Shearlet Transform

Similar to the Continuous Wavelet Transform, the ContiraiShearlet Transform
defines a mapping of € L?(R?) to the components of associated with the ele-
ments ofS.

Definition 3. For ¢y € L?(R?), theContinuous Shearlet Transforafi f € L?(R?) is
the mapping

L2(R?) 5 f — sy f(ast) = (f,o(ast)y), (ast)es.
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Thus,.7Z¢ y maps the functiorf to the coefficients”7’ f (a,s,t) associated with
the scale variablea > 0, the orientation variable € R, and the location variable
t € R?

Of particular importance are the conditions gnunder which the Continuous
Shearlet Transform is an isometry, since this is automigtiaasociated with a re-
construction formula. For this, we define the notion ofa@imissibleshearlet, also
calledcontinuous shearlet

Definition 4. If g € L2(R?) satisfies

P8, E)2 .
/]R S dadn <,

it is called amadmissible shearlet

Notice that it is very easy to construct examples of admisshearlets, including
examples of admissible shearlets which are well localiEs$entially any func-
tion g such thaty is compactly supported away from the origin is an admissible
shearlet. Of particular importance is the following exaempthich is callectlas-
sical shearlet This was originally introduced in [35], and later slightiyodified

in [28, 57].

Definition 5. Let g € L?(R?) be defined by

D) = P&, &) = Ya(&1) P2,

where i € L?(R) is a discrete wavelet in the sense that it satisfies the déscre
Calder6n condition, given by

%m(z-if)lz =1 foraeécR, (10)
je

with ¢ € C*(R) and supply C [—3,— ] U [, 3], and ¢, € L2(R) is a ‘bump
function’ in the sense that

1

S |@(E+K[P=1 foraefe[-11], (11)
k=—1

satisfying, € C*(R) and suppl, C [—1,1]. Theny is called aclassical shearlet

Thus, a classical shearlgtis a function which is wavelet-like in one direction and
bump-like in the orthogonal one. The frequency support daasical shearlet is il-
lustrated in Figure 3a. Notice that there exist severalagwofy, andy, satisfying
conditions (10) and (11). One possible choice is toygeto be a Lemarie—Meyer
wavelet andj;, to be a spline, see [29].

The notion of admissible shearlets allows us to state sefficGonditions for a
reconstruction formula ih?(R?).
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(a) Support of the Fourier transform of a (b) Fourier domain support of several el-
classical shearlet. ements of the shearlet system, for differ-
ent values ohands.

Fig. 3 Classical shearlets.

Theorem 3 ([9]).Let ¢ € L?(R?) be an admissible shearlet, and define

L2 PELE)P O (6,82
ci=[ [ et dedn and G = I R dade,

IfC, =Cj, = 1, then”2¢’y is an isometry.

Proof. By the Plancherel theorem, we obtain
/|5@fwf(a,s,t)|2@dsdt
_/|f*‘~l’aso |2dtdS—

da

:/ / (&)l |w§30(5)|zdfd5—
R2
‘/ /Rz/lf 23| (a1, Va(& + S1)|2ds d da,

where we used the notatiapr (x) = @(—x). By appropriate changes of variables,
d
[17ut@s S asd
:/R/O /o A|f(5)|2a_251_1|¢’(a51’a>2)|2da)2dadfld52
O © ~
_/R/_oo/o /R|f(€)|2a_251_1|$(aflv‘*’2)|2dw2dad51dfz
o0 ~ 00 2
LG Y e

+/R/_Z|f“<£)|2déld52/_1/RWd@dan.

The claim follows from here. O
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The classical shearlets, given in Definition 5, satisfy tlgpdihesis of admis-
sibility, as the following result shows. The proof is stiaiprward, wherefore we
omit it.

Lemma 1 ([9]). Let ¢ € L?(R?) be a classical shearlet. Retaining the notations
from Theorem 3, we havgC=Cj, = 1.

3.3 Cone-Adapted Continuous Shearlet Systems

Although the continuous shearlet systems defined abovéiexdn elegant group
structure, they do have a directional bias, which is alreadpgnizable in Figure
3b. To illustrate the impact of this directional bias, calesia function or distri-
bution which is mostly concentrated along t&e axis in the frequency domain.
Then the energy of is more and more concentrated in the shearlet components
Sy f(a,st) ass— . Hence, in the limiting case in whichis a delta distribu-
tion supported along th& axis, — this typically serves as a model for an edge along
the x; axis in spatial domain + can only be ‘detected’ in the shearlet domain as
s— oo, Itis clear that this behavior can be a serious limitatiarsfume applications.

One way to address this problem is to partition the Fourienaa into four
cones, while separating the low-frequency region by cgttint a square centered
around the origin. This yields a partition of the frequentgne as illustrated in
Figure 4. Notice that, within each cone, the shearing végials only allowed to
vary over afinite range, hence producing elements whosetatiens are distributed
more uniformly.

Fig. 4 Resolving the problem of biased treatment of directions dmytiouous shearlet systems.
The frequency plane is partitioned into four corgsi = 1,...,4, and the low frequency box

Z ={(¢1,&2) 1 |&1],1&2 < 1}.

Thus, we define the following variant of continuous sheaystems.

Definition 6. For ¢, , € L?(R?), the cone-adapted continuous shearlet system
SH(o, Y, D) is defined by
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SH(@. g, B) = @(9) LW (W) LP(),

where

®(p) = {@=0(—t): teR?},
W) = {Yase = a TYATIS(- 1) 1ae (0,1, s < 1+aY2 teR?,
(@) = {Past =a 1PAST(- 1) 12 (0,1], |9 < L1+aY2 t e R2),

andA, =diaga'/2 a).

In the following, the functionp will be chosen to have compact frequency support
near the origin, which ensures that the syst®(w) is associated with the low fre-
quency regioZ = {(&1,&2) : |€1],|&2| < 1}. By choosing to satisfy the conditions
of Definition 5, the systert¥ (y) is associated with the horizontal corgg 3 =
{(&1,&2) : |&2/&1| < 1,|&1| > 1}. The shearlefl can be chosen likewise with the
roles of &, and &, reversed, i.e.J(é1,&2) = Y(&2,&1). Then the systen () is
associated with the vertical congsU %, = {(1,&2) 1 |&2/&1] > 1,1&2] > 1}.

3.4 The Cone-Adapted Continuous Shearlet Transform
Similar as in the situation of continuous shearlet systeatss) for cone-adapted
continuous shearlet systems an associated transform aafibed.

Definition 7. Set
Scone= {(a,5t) :a€ (0,1],|s| < 1+ a2 t € R?}.

Then, for, , § € L2(R?), the Cone-Adapted Continuous Shearlet Transfaim
f € L2(R?) is the mapping

f— y'%pwvwvlﬁf(t/?(a7svt)a(~7§7~)) = (<fa(n’>7<f7wa,s,t>a <falp5,§,f>)7

where
(t,(ast),(@80) e R?x SZ e

Similar to the situation above, conditions ¢n J and @ can be formulated for
which the mapping7Z# y y. ¢ is an isometry. In fact, a similar argument to the one
used in the proof of Theorem 3, yields the following result.

Theorem 4 ([48]). Retaining the notation of Theorem 3, gt { € L?(R?) be ad-
missible shearlets satisfyingj(‘; Cy=1land qp* = C@ = 1, respectively, and let

@ € L?(R?) be such that, for a.& = (&1, &) € R?,

~ 1 d 1 d
|¢’(5)|2+X%1u%3(5)/0 |¢1(a51)|2§+X%2u%4(5)/0 |ll’1(a52)|2€a: 1
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Then, for each & L2(R?),

¢ da
HfHZ = /]R|<f7Tt ¢’>|2dt+/s |<(fX‘Klu%g)vaWa,stHz?det
- da .
+ |<(fozs’2um)v,$a,§,f>|2§dsd".

In this result, the functiong, @, and { can in fact be chosen to be @ (R?). In
addition, the cone-adapted shearlet system can be desigtleat the low frequency
and high frequency parts are smoothly combined.

A more detailed analysis of the (Cone-Adapted) Continudwesa8et Transform
and its generalizations can be found in [26] and in Chap#]r [6

3.5 Microlocal Properties and Characterization of Singularities

As observed in Subsection 2.5, the Continuous Wavelet Toanss able to pre-
cisely characterize the singular support functions orithistions. However, due to
its isotropic nature, this approach fails to provide addiéil information about the
geometry of the set of singularities in the sense of resglthie wavefront set.

In contrast to this behavior, the anisotropic shape of efeémef a cone-adapted
continuous shearlet system enables the Continuous Sh&eatesform to very pre-
cisely characterize the geometric properties of the sargidet. For illustration pur-
poses, let us examine the linear delta distribufip(x, x2) = §(x+ pX2), p € R,
defined by

(kp, T) :/Rf(*pXZ;XZ)dXZa

as a simple model for a distributed singularity. For simpliave assume thap| <

1. Letting @ be a scaling function ang, / be classical shearlets, the asymptotic
analysis of its Cone-Adapted Continuous Shearlet Transte? , y g 1tp Shows
that this transform precisely determines both the posiéind the orientation of
the linear singularity by its decay behavior at fine scalgec8ically, we have the
following result.

Proposition 1 ([48]).Lett € R? and(&,§ ) € Sconebe a fixed value. Fort= —pt,
and s= p, we have

y%¢7w7¢up(t/7 (a7 S7t)a (~a§7f)) ~ aii_L1 asa— 0.

In all other cases, ¢ y y g p(t’, (a,S,1), (4,5,f)) decays rapidly as a> 0.

In fact, it can be proven that the Cone-Adapted Continuoea8ét Transform pre-
cisely resolves the wavefront set for more general distidos [48, 25]. Further-
more, it can be used to provide a precise characterizati@ugé-discontinuities
of functions of two variables. In particular, consider adtion f = xg C L?(R?),
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whereB C R? is a planar region with piecewise smooth boundary. Th&ff ¢ ¢, g f
characterizes both the location and orientation of the HannedgedB by its de-
cay at fine scales [30, 34]. This property is very useful inliggions which require
the analysis or detection of edge discontinuities. For gtanusing on these obser-
vations, a shearlet-based algorithm for edge detectioraaatysis was developed
in [65], and related ideas were exploited to develop alpord for the regularized
inversion of the Radon transform in [6].

A more detailed discussion of these issues, including thensions to higher
dimensions, will be the content of Chapters [66] and [68].

4 Discrete Shearlet Systems

Starting from continuous shearlet systems defined in Defin, several discrete
versions of discrete shearlet systems can be constructaad agpropriate sampling
of the continuous parameter $ebr Scone Various approaches have been suggested,
aiming for discrete shearlet systems which preferably famerthonormal basis or
a tight frame foriL?(R?).

One approach proposed in [8] and continued in [10] and [1f]iep a powerful
methodology calledoorbit theory which is used to derive different discretizations
while ensuring frame properties. In fact, the regular sle¢dirame which will be
introduced in the next subsection can be derived using thshmery, and this ap-
proach will be further discussed in Chapter [67]. A differpath, which also relies
on the group properties of continuous shearlet systenakéntin [46]. In this paper,
a quantitative density measure for discrete subsets oftibarket grou is intro-
duced, adapted to the group multiplication, which is inspiby the well-known
Beurling density for subsets of the Abelian grdRfh These measures are shown to
provide necessary conditions on the density of the samphndpr the existence of
shearlet generators which yield a frame; thereby linkingngetric properties of the
sampling set to the frame properties of the resulting sheaylstem. Notice, how-
ever, that the conditions derived using this approach aressary but not sufficient.
In a third approach [47], sufficient conditions are derivgdsbudying the classi-
caltg-equationdrom the theory of wavelets. Recall that these equationpaireof
the sufficient conditions needed for an affine system to fomaeelet orthonormal
basis or a tight frame (see [43] for a detailed discussiorh@ntopic). Due to the
close relationship between shearlet systems and affinersgstiscussed in Subsec-
tion 3.1, this ansatz can be transferred to the situatioronéeadapted continuous
shearlet systems [45]. This will be further discussed inpZéE[69].
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4.1 Discrete Shearlet Systems and Transforms

Discrete shearlet systems are formally defined by samptingrmuous shearlet sys-
tems on a discrete subset of the shearlet gibufhis leads to the following defini-
tion.

Definition 8. Let ¢ € L?(R?) andA C S. Aniirregular discrete shearlet systeas-
sociated withyy andA, denoted bySH((/,A), is defined by

SHWA) = {Wast =@ TPAIS (- —1)) 1 (a,st) €A

A (regular) discrete shearlet systemssociate withy, denoted bySH(y), is defined
by
SH(Y) = {Wjm =21 Y(Schyi - —m) : ke Z,me 72},

Notice that the regular versions of discrete shearlet systare derived from the
irregular systems by choosirg= {(21, —k,S_yA,m) : j,k € Z,me Z?}. We also
remark that, in the definition of a regular discrete sheaystem, the translation
parameter is sometimes chosen to belong @ x c,Z for some(cy, cp) € (RY)2.
This provides some additional flexibility which is usefut &bme constructions.

Our goal is to apply shearlet systems as analysis and sysitioeds. Hence, it
is of particular interest to examine the situation in whiatigcrete shearlet system
SH(y) forms a basis or, more generally, a frame. Similar to the Vedease, we are
particularly interested not only in finding generic generdtinctionsy, but also in
selecting a generatq@r with special properties, e.g., regularity, vanishing matag
compact support, so that the corresponding basis or franshedrlets has satis-
factory approximation properties. A particularly usefubmple are the classical
shearlets from Definition 5. As the following result showsede shearlets generate
shearlet Parseval frames fiof(R?).

Proposition 2. Let ¢ € L?(R?) be a classical shearlet. Then $#) is a Parseval
frame for 1?(R?).

Proof. Using the properties of classical shearlets as stated imibefi 5, a direct
computations gives that, fece.& € R?,

S S S AR =S T 0127 &) 32(2/2 2 — k)2

JEZKEZL JEZKEZL

- ng“z’l(z_j 51)|2kgzl$z(2”2§—i+ K)[2 = 1.

The claim follows immediately from this observation and faet that supi
[~3.31% O
Since a classical shearlgtis a well localized function, Proposition 2 implies

that there exit Parseval fram8si(y) of well localized discrete shearlets. The well-
localization property is critical for deriving superior @pximation properties of
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shearlet systems, and will be required for deriving optiyspharse approximations
of cartoon-like images (cf. Subsection 4.4).

By removing the assumption thgt is well localized in Definition 5, one can
construct a discrete shearlet systems which form not oglyt tirames, but also
orthonormal basis, as indicated in [35, 37]. This naturadiges the question about
whether well localized shearlet orthonormal bases dogxitortunately, the answer
seems to be negative, according to the recent work in [44iiwirtually excludes
this possibility. Thus, loosely speaking, a well localiziscrete shearlet system can
form a frame or a tight frame, but not an orthonormal basis.

To achieve spatial domain localization, compactly summbdiscrete shearlet
systems are required. It was recently shown that one canufatensufficient con-
ditions ony to generate a discrete shearlet frame of compactly sugpnetions
with controllable frame bounds. This will be discussed ithv&action 4.3.

Finally, similar to the continuous case, we define a DiscBitearlet Transform
as follows. We state this definition only for the regular ¢cagi¢h obvious extension
to the irregular shearlet systems.

Definition 9. For ¢ € L?(R?), theDiscrete Shearlet Transforof f € L?(R?) is the
mapping defined by

f— 24t km) = (f,Wkm)s (J,km) €ZxZx7Z%

Thus, ¢y, maps the functiorf to the coefficients”7¢ f (j,k, m) associate with
the scale indey, the orientation indek, and the position indem.

4.2 Cone-Adapted Discrete Shearlet Systems and Transforms

Similar to the situation of continuous shearlet systenss discrete shearlet systems
suffer from a biased treatment of the directions. As expkdtés problem can be
addressed by dividing the frequency plane into cones situl§ubsection 3.3. For
the sake of generality, let us start by defining cone-adatisetete shearlet systems
with respect to an irregular parameter set.

Definition 10. Let @, ¢, € L2(R2), A C R2 andA, A C Scone Then theirregular
cone-adapted discrete shearlet system(@hy, 1; A, A, A) is defined by

SH(@, W, B;4,A,A) = &(g;4) UW(P; A) U ([ A),
where
(@A) ={@=0(—t):teA},
W(WiA) = {Yast —a WA — 1) (ast) €AY,
P(GA) = {Jast —a 1 PAIST(- —1): (ast) €AY
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The regular variant of the cone-adapted discrete shegd&gras is much more
frequently used. To allow more flexibility and enable to ojathe density of the
translation grid, we introduce a sampling factes (c;,¢;) € (R )? in the transla-
tion index. Hence we have the following definition.

Definition 11. For @, y, I € L?(R?) andc = (cy,¢,) € (R, )?, the(regular) cone-
adapted discrete shearlet system(@tty, §; c) is defined by

SH(o, @, I5;¢) = (i) UW(W;c) UP(; ),
where

®(¢;¢1) = {@n= @(- —c1m) : me Z?},
W(i0) = {Yikm= 20 Y(SAy - —Mem) : | > 0,|K| < [2//2],me 2%},
B(F;0) = {Pikm= 2T P(S A - —Nicm) : | > 0, |K| < [2/2],me 72},

_(c1 O ~ (c20
MC_(OCZ) and MC_(Ocl)'

If c=(1,1), the parameteris omitted in the formulae above.

with

The generating functiong will be referred to asshearlet scaling functions
and the generating functiong,  asshearlet generatorsNotice that the system
®(@;c1) is associated with the low frequency region, and the syst(s c) and
Y(;c) are associated with the conic regighU %3 and%, U ¢;, respectively (cf.
Figure 4).

g’

\4

>

— ]
—

Fig. 5 Tiling of the frequency plane induced by cone-adapted Rat$eme of shearlets.

We already discussed the difficulties — or even the impdggikito construct a
discrete shearlet orthonormal basis. Hence, one aims teed®arseval frames. A
first step towards this goal is the observation that a claksleearlet, according to
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Definition 5, is a shearlet generator of a Parseval framehi@stibspace df?(RR?)
of function whose frequency support lies in the union of two&ss; U 5.

Theorem 5 ([28]).Lety € L?(R?) be a classical shearlet. Then the shearlet system
3 . i
W) = {Wikm=21Y(SAz - —m) 1 | > 0, K| < [21/7], me 7%}
is a Parseval frame for(41 U%3)" = { f € L3(R?) : suppf C €1 U%3}.
Proof. Let ( be a classical shearlet. Then equation (11) implies thagrigj > 0O,

@(228 +K)P=1, [E|<L
[k|<[21/2]

Thus, using this observation together with equation (18)ect computations gives
that, fora.ef = (&1,&) € 1 U %3,

2 2 |¢’(SL<A2—J5)IZ=ZO Y 10a(27 &P |Ba(2/2 2 — k)2
So<T22

120 <21/

20y @22k =1.
k| <[2/2]

= ZOI%(Z*" &1)|
is

The claim follows immediately from this observation and faet that supify C
[_%7 %]2 O

Itis clear that, ify is a replaced byJ, a result very similar to Theorem 5 holds
for the subspace & (%> U%,)". This strongly suggests that one can build up a Par-
seval frame for the whole spaté(R?) by piecing together Parseval frames associ-
ated with different cones on the frequency domain. Howeties, piecing together’
needs to be performed with care, in particular, by projectire shearlet elements
on the respective cones. Then we have the following result.

Theorem 6 ([28]).Let ¢ € L2(R?) be a classical shearlet, and lgtc L?(R?) be
chosen so that, for a.é. € R2,

|¢(E)|2+ZD )3 |¢<sIkAzfjf>|2xC+zO > WS i8)Pre =1
120 <212 120 k<2172

Let RY¥(y) denote the set of elements W(y) after projecting their Fourier
transform onto C= {(&1,&) € R? : |&/&| < 1} with a similar definition for
PGLP(LZJ) with C = R?\ C. Then the modified cone-adapted discrete shearlet system
(@) URW() UPP() is a Parseval frame for {(R?).

The tiling of the frequency plane induced by this Parseate of shearlets is
illustrated in Figure 5. The shearlet transform associtdegtgular cone-adapted
discrete shearlet systems is defined as follows.
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Definition 12. SetA = Ng x {—[21/2],...,[2}/2]} x Z2. For @, ¢, € L?(R?), the
Cone-Adapted Discrete Shearlet Transfavif € L?(R?) is the mapping defined
by

f— y%wﬁwﬁmf(m’(j7k7m)7(j7kﬂ m)) = (<fa(n"r'(>v<f7wj,k,m>a <fa"pj~,kr”n>)v

where .
(i, (j,k,m), (J,k, M) € Z2 x A x A.

4.3 Compactly Supported Shearlets

The shearlet systems generated by classical shearletsaadelimited, i.e., they
have compact support in the frequency domain, and, hennaptée compactly
supported in the spatial domain. Thus, a different apprégcieeded for the con-
struction of compactly supported shearlet systems.

We start our discussion by examining sufficient conditiamsthe existence of
cone-adapted discrete shearlet systems which are compagported and form
a frame forL?(R?). These conditions can be derived by extending the classical
tg-equations from the theory of wavelets to this situationfoBe stating the main
result, let us first introduce the following notation.

For functionsp, @, € L?(R?), we define® : R? x R — R by

O(&,w) = |Q(&)]|P(€ + w)| +Ou(&,w) + Oa(&, ),

where

Ol(fvw)zzo Y |B(ESA O] [B(STA € + )]

20<2i/21

and

©2(¢,w) = ZO > | P(SA-18)]|P(SAy-i1€ + w)|.
Sop<2i2

Also, forc = (c1,¢p) € (R)?, let

Nl

1
2

R(c) = Z (No(cr*m)o(—cytm)) 2 + (M(Mc *m) i (—Mg *m)
meZ2\ {0}

+ (R(Mg ) F(—Nig tm)) 2,

where

No(w) = esssupp(&)||@(& + w)| and [(w) =esssu® (&,w) fori=1,2.
EcR? EcR?

Using this notation, we can now state the following theoreomf[45].
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Theorem 7 ([45]).Let @, ¢ € L?(R?) be such that

@(&1,&) <Cr-min{1,|&|"}-min{1,|&| 7Y}

and

[P(é1,&2)] < Co-min{1, &7} -min{1, || Y} min{1,|&[ 7},

for some positive constantg ©; < « anda > y > 3. Definei(x1,%2) = Y(x2,X1),
and let Linf, Lsup be defined by

Lint = essini®(£,0) and Lsyp=esssu®(¢,0).
EeR? £cR2

Then there exists a sampling parametet ¢c1,¢;) € (R*)? with ¢; = ¢, such that
SH(@, Y, I; c) forms a frame for B(R?) with frame bounds A and B satisfying

0 Linf —R(C)] SA<B< ———

1
= TdetMq|

It can be easily verified that the conditions imposedgand ¢ by Theorem 7
are satisfied by many suitably chosen scaling functions #assical shearlets. In
addition, one can construct various compactly suppostgghrableshearlets that
satisfy these conditions.

The difficulty however arises when aiming for compactly soped separable
functions@ andy which ensure that the corresponding cone adapted distrete-s
let system is a tight or almost tight frame. Separability $eful to achieve fast
algorithmic implementations. In fact, it was shown in [4Bat there exists a class
of functions generating almost tight frames, which havedasally) the form

B(&) = m(48)p(81)P(28,), & = (&1,&) € R,

wheremy is a carefully chosen bandpass filter apdn adaptively chosen scaling
function. The proof of this fact is of highly technical nagland will be omitted. We
refer the reader to Chapter [69] and to the survey paper pthbre details.

4.4 Sparse Approximations by Shearlets

One of the main motivations for the introduction of the shetaramework is the
derivation of optimally sparse approximations for multia#ée functions. In Sub-
section 2.5, we presented a heuristic argument to justify tréditional wavelets
are unable to take advantage of the geometry of typical fomef two variables.
In fact, since traditional wavelets are not very efficientlaaling with anisotropic
features, they do not provide optimally sparse approxiomatdf images containing
edges. As discussed above, shearlet systems are able tomeethese limitations.
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Before stating the main results, it is enlightening to pnés@& heuristic argument
similar to the one used in Subsection 2.5, in order to desdrdw shearlet expan-
sions are able to achieve optimally sparse approximatiboartoon-like images.

For this, consider a cartoon-like functidn and letSH(¢g, @, §/; c) be a shearlet
system. Since the elements 8H(¢, Y, /;c) are essentially or — in case of com-
pactly supported elements — exactly supported inside a beize 271/2 x 271, it
follows that, at scale 2, there exist aboud(2!/2) such waveforms whose support
is tangent to the discontinuity curve. Similar to the wavekse, forj sufficiently
large, the shearlet elements associated with the smooitmref f, as well as the
elements whose overlap with the discontinuity curve is teorgential, yield negli-
gible shearlet coefficientsf, g xm) (or (f,Jjkm)). Each shearlet coefficient can
be controlled by

[, @aem) | < Il || @) semlln < C2730/%,

similarly for (f, {j xm). Using this estimate and the observation that there exist at
mostO(21/2) significant coefficients, we can conclude that h¢h largest shearlet
coefficient, which we denote Hgy ()|, is bounded byd(N~3/2). This implies that

I — iz < Z\‘ISe(f)l2 <CN?

>

where fy denotes theN-term shearlet approximation using thelargest coeffi-
cients in the shearlets expansion. This is exactly the @tapproximation error
rate of Theorem 2. Even though this is simple heuristic amntyit provides an er-
ror rate which — up to a log-like factor — coincides exactlyhwivhat can be proved
using a rigorous argument.

Indeed, the following result holds.

Theorem 8 ([29]). Let ®(¢) URW(y) UP:¥({) be a Parseval frame ford(R?)
as defined in Theorem 6, whagec L%(R?) is a classical shearlet ang € CZ (R?).

Let f € £2(R?) and fy be its nonlinear N-term approximation obtained by se-
lecting the N largest coefficients in the expansion of f watpect to this shearlet
system. Then there exists a constant G, independent of f and N, such that

|f—fn)3<C-N72.(logN)®  asN— .

Since a log-like factor is negligible with respect to theestkerms for largeN, the
optimal error decay rate is essentially achieved. It is madale that, by using a
non-adaptive system, an approximation rate which is eisdlgras good as the one
obtained using an adaptive construction can be achievezisaime approximation
rate — with the same additional log-like factor — is obtainsthg a Parseval frame
of curvelets, see [4].

Interestingly, the same error decay rate is also achievied) @pproximations
based on compactly supported shearlet frames, as statagl bel
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Theorem 9 ([51]). Let SH @, Y, §;c) be a frame for B(R?), where ¢> 0, and
o, ¥, ¥ € L?(R?) are compactly supported functions such that, foéa (&1, &) €
RR?, the shearletp satisfies

() |@(&)] gCl-min{1,|El|"}-min_{y1,|El|*V}-min{1,|Ez|*V} and
(i) | 0| < Il (1+1)

wherea > 5,y >4, hc L}(R), C; is a constant, and the shearl@tsatisfies (i) and
(ii) with the roles ofé; and &, reversed.

Let f € €2(R?) and fy be its nonlinear N-term approximation obtained by se-
lecting the N largest coefficients in the expansion of f wétspect to the shearlet
frame SHe, Y, ¥;c). Then there exists a constant€0, independent of f and N,
such that

|f —fn]3<C-N"2.(logN)®>  asN-— o,

Conditions (i) and (ii) are rather mild conditions and mi¢etregarded as a weak
version of directional vanishing moment conditions.

The topic of sparse shearlet approximations, includingresions to higher di-
mensions, will be the main topic of Chapter [69].

4.5 Shearlet Function Spaces

As already mentioned in Subsection 1.2, the study of the §megs spaces as-
sociated with shearlet coefficients is particularly useéuthoroughly understand
and take advantage of the approximation properties of Eteapresentations. Intu-
itively, shearlet systems can be described as directi@ralans of wavelet systems.
Hence, since wavelets are known to be naturally associatbdBgsov spaces (in
the sense that Besov spaces are characterized by the degayedét coefficients),
it seems conceivable that shearlet systems could be &#etcharacterizing some
anisotropic version of Besov spaces.

The theory of coorbit spaces was applied as a systematioagptowards the
construction of ‘shearlet spaces’ in the series of paperBJ811]. This ansatz leads
to the so-calledhearlet coorbit spacesvhich are associated to decay properties of
shearlet coefficients of discrete shearlet frames. The wfzfienge then consists
in relating these spaces to known function spaces such sateopic Besov spaces
and deriving embedding results. Chapter [67] provides aotigh introduction to
this topic and a survey of recent results.

4.6 Extensions and Generalizations

A number of recent studies have focused on the construcfishearlet systems,
which are tailored to specific tasks or applications.
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e Shearlet on bounded domairf®me applications such as, for example, the con-
struction of numerical solvers of certain partial diffetiahequations require sys-
tems defined on bounded domains. This could be a rectangteooe, generally,
a polygonal-shaped domain. When shearlets are used foxplamsion of func-
tions — explicitly or implicitly given — defined on a boundedmain, the treat-
ment of the boundary is crucial. One typical challenge isebzero boundary
conditions without destroying necessary (directionabishing moment condi-
tions. A first attemptin this direction was undertaken in][B8t many challenges
are still open.

e Multidimensional extensiondany current high-impact applications such as,
for example, the analysis of seismic or biological data ieqgto deal with 3-
dimensional data. The computational challenges in thiingeare much more
demanding than in two dimensions, and sparse approxinsagimnin great de-
mand. Due to the simplicity of the mathematical structurstedarlets, their ex-
tensions to higher dimensions is very natural. Indeed, sbasic ideas were
already introduced in [37], where it was observed that tlesist several ways
to extend the shearing matrix to higher dimensions. Add#@i@bservations and
results have more recently appeared, including resultparse approximations
and detection of singularities [10, 31, 32, 33, 50].

In 3-dimensional data, different types of anisotropicdeas occur, namely, sin-
gularities on 1-dimensional and 2-dimensional manifoldss situation is there-
fore very different from the situation in 2 dimensions, gramisotropic features
of two different dimensions are involved. This is reflectadhe following two
main approaches to extend the parabolic scaling matrix:

200 0 200 0
02/20]| or [02/2 0
00 2 0 0 272

The first choice leads to ‘needle-like’ shearlets, whichiagtively better suited
to capture 1-dimensional singularities. The second chieiads to ‘plate-like’
shearlets, which are more suited to 2-dimensional singigisrintriguingly, both
systems are needed if the goal is to distinguish these twestgpsingularities.
However, for the construction of (nearly) optimally spaap@roximations which
extend the results of Subsection 4.4, it turns out that tleeegike’ shearlets are
the right approach [32, 33, 50].

These topics will be further discussed in the Chapters [638], and [69].

5 Algorithmic Implementations of the Shearlet Transform

One major feature of the shearlet approach is a unified tez@tof the continuum
and digital setting. The numerical implementations, whielkie been developed in
the literature, aim —and succeed — to faithfully digitalize continuum domain Dis-
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crete Shearlet Transform. This ensures that microlocadppdoximation properties
of shearlet expansions, which are provenin the continuainrecan be carried over
to the digital setting.

To date, several distinct numerical implementations of Ehiscrete Shearlet
Transform exist [21, 59, 54, 42, 56] and some additional @m@ntations are de-
signed to address specific applications such as, for examgte detection [65].
Furthermore, several attempts were made to develop a prdtirtion analysis sim-
ilar to the one associated with wavelets, in an effort to tgv®IRA-based im-
plementations [37, 42, 54]. It is useful to mention that thealet algorithms
associated with [59] and [56] are available and downloasl&ioim the webpage
www. Shear Lab. or g.

Let us next briefly describe the different approaches d@esiso far, by group-
ing these into two categories: The approaches which arddfedmmain based and
those which are spatial-domain based. All these topicsheiltiscussed in much
more detail in Chapters [72] and [70].

5.1 Fourier Based | mplementations

The Cone-adapted Discrete Shearlet Transform providediaydar decomposition
of the frequency plane into frequency regions associatéll different scales and
orientations, as illustrated in Figure 5. Hence, a veryraand direct approach to a
digitalization of the Discrete Shearlet Transform Roairier-based approachvhich
aims to directly produce the same frequency tiling. Thisrapph was adopted in
the following two contributions.

e One such algorithmic realization was introduced in [21] eascade of a subband
decomposition, based on the Laplacian Pyramid filter folldwy a directional
filtering stage which applied the Pseudo-Polar DiscreteaiEoliransform.

e A different approach, which was introduced in [55, 56], detssof a carefully
weighted Pseudo-Polar transform ensuring isometry fabbtw windowing and
inverse FFT. This transform is associated with band-lidhiight shearlet frames,
thereby allowing the adjoint frame operator for recondtourc

5.2 Spatial Domain Based | mplementations

A spatial domain approacts a method where the filters associated with the trans-
form are implemented by a convolution in the spatial domainis approach is
exploited from different viewpoints in the following foupntributions.

e In [21], a numerical algorithm implementing the Discretee8het Transform
is introduced, in which the directional filters are approations of the inverse
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Fourier transforms of digitalized band-limited window fifions in Fourier do-
main. With respect to the corresponding Fourier-basedémphtation, this ap-
proach ensures that the filters have good spatial locadizati

e In contrast to the method in [21], separable window funcietthereby allowing
compactly supported shearlets — are exploited in [59]. Blgerithm enables
the application of fast transforms ‘along both axes’, evethé corresponding
transform is not associated with a tight frame.

e Yetanother approach is adopted in [54], which explorestiberty of subdivision
schemes, leading to an associated multiresolution asalykie main idea here
is to adapt the construction of a Multiresolution analysis Wavelets, which
can also be regarded as being generated by subdivision esh&inis approach
comprises the possibility to obtain scaling functions rejdhe way’.

e Related to in [54], the approach developed in [42] introdugeeneral unitary
extension principle, which — applied to the shearlet sgttimetermines the con-
ditions on the filters needed for deriving a shearlet frame.

6 Shearlets in Applications

Shearlets were introduced to tackle a number of challemgteeirepresentation and
processing of multivariate data, and they have been sucigsmployed in several
numerical applications. Let us briefly summarized the maeas of application
below, and refer to Chapter [71] for a detailed overview.

e Imaging ApplicationsThe sparsity of shearlet expansions can be exploited for
various problems of data regularization and feature etittacOne class of imag-
ing applications in which shearlets succeeded are demgopsimblems. For this,
several shearlet-based image denoising algorithms wénediced, including
those in [21, 59], which adapt wavelet thresholding to theaslet setting, and
the method in [20], which combines thresholding with mirdation of bounded
variation. Another class of imaging applications, for whtbe microlocal prop-
erties of shearlets have been found useful is the analydisietection of edges
[65].

e Data Separationln several practical applications, it is important to separ
data in their subcomponents. In astronomical imaging, Vel useful to sep-
arate stars from galaxies, or in neurobiological imagipines from dendrites.
In both cases, the goal is the separation of point- and clikeestructures. Us-
ing methodologies from sparse approximation and combiwanglet and shear-
let expansions, a very effective method for data separatias developed in
[16, 17, 52].

e Inverse ProblemsShearlet-based methods have also been applied to construct
a regularized inversion algorithm for the Radon transfofims transform is at
the basis of computerized tomography [6]. Similar ideasevatso shown to be
useful when dealing with more general classes of inversklgnas, such as de-
blurring and deconvolution [61].
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