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A Survey of Compressed Sensing

Holger Boche, Robert Calderbank, Gitta Kutyniok, and Jan Vybı́ral

Abstract Compressed sensing was introduced some ten years ago as an effective

way of acquiring signals, which possess a sparse or nearly sparse representation in a

suitable basis or dictionary.Due to its solid mathematical backgrounds, it quickly at-

tracted the attention of mathematicians from several different areas, so that the most

important aspects of the theory are nowadays very well understood. In recent years,

its applications started to spread out through applied mathematics, signal process-

ing, and electrical engineering. The aim of this chapter is to provide an introduction

into the basic concepts of compressed sensing. In the first part of this chapter, we

present the basic mathematical concepts of compressed sensing, including the Null

Space Property, Restricted Isometry Property, their connection to basis pursuit and

sparse recovery, and construction of matrices with small restricted isometry con-

stants. This presentation is easily accessible, largely self-contained, and includes

proofs of the most important theorems. The second part gives an overview of the

most important extensions of these ideas, including recovery of vectors with sparse

representation in frames and dictionaries, discussion of (in)coherence and its im-

plications for compressed sensing, and presentation of other algorithms of sparse

recovery.
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1.1 Introduction

Compressed sensing is a novel method of signal processing, which was introduced

in [25] and [14] and which profited from its very beginning from fruitful inter-

play between mathematicians, applied mathematicians, and electrical engineers.

The mathematical concepts are inspired by ideas from a number of different disci-

plines, including numerical analysis, stochastic, combinatorics, and functional anal-

ysis. On the other hand, the applications of compressed sensing range from image

processing [29], medical imaging [51], and radar technology [5] to sampling theory

[55, 68], and statistical learning.

The aim of this chapter is twofold. In Section 1.3 we collect the basic mathe-

matical ideas from numerical analysis, stochastic, and functional analysis used in

the area of compressed sensing to give an overview of basic notions, including the

Null Space Property and the Restricted Isometry Property, and the relations between

them. Most of the material in this section is presented with a self-contained proof,

using only few simple notions from approximation theory and stochastic recalled in

Section 1.2. We hope that this presentation will make the mathematical concepts of

compressed sensing appealing and understandable both to applied mathematicians

and electrical engineers. Although it can also be used as a basis for a lecture on

compressed sensing for a wide variety of students, depending on circumstances, it

would have to be complemented by other subjects of the lecturers choice to make a

full one-semester course. Let us stress that the material presented in this section is by

no means new or original, actually it is nowadays considered classical, or “common

wisdom” throughout the community.

The second aim of this Chapter is to give (without proof) an overview of the most

important extensions (Section 1.4).In this part, we refer to original research papers

or to more extensive summaries of compressed sensing [23, 35, 40] for more details

and further references.

1.2 Preliminaries

As the mathematical concepts of compressed sensing rely on the interplay of ideas

from linear algebra, numerical analysis, stochastic, and functional analysis, we start

with an overview of basic notions from these fields. We shall restrict ourselves to

the minimum needed in the sequel.

1.2.1 Norms and quasi-norms

In the most simple setting of discrete signals on finite domain, signals are modeled

as (column) vectors in then n-dimensional Euclidean space, denoted by Rn. We

shall use different ways how to measure the size of such a vector. The most typical
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way, however, is to consider its ℓnp-norm, which is defined for x = (x1, . . . ,xn)
T and

p ∈ (0,∞] as

‖x‖p =















( n

∑
j=1

|x j|p
)1/p

, p ∈ (0,∞);

max
j=1,...,n

|x j|, p= ∞.
(1.1)

If p < 1, this expression does not satisfy the triangle inequality. Instead of that the

following inequalities hold

‖x+ z‖p≤ 21/p−1
(

‖x‖p+ ‖z‖p
)

,

‖x+ z‖pp≤ ‖x‖pp+ ‖z‖pp

for all x ∈ Rn and all z ∈ Rn. If p = 2, ℓn2 is a (real) Hilbert space with the scalar
product

〈x,z〉= zT x=
n

∑
i= j

x jz j.

If x∈Rn, we can always find a permutation σ : {1, . . . ,n}→ {1, . . . ,n}, such that
the nonincreasing rearrangement x∗ ∈ [0,∞)n of x, defined by x∗j = |xσ( j)

| satisfies

x∗1 ≥ x∗2 ≥ ·· · ≥ x∗n ≥ 0.

If T ⊂ {1, . . . ,n} is a set of indices, we denote by |T | the number of its elements.
We shall complement this notation by denoting the size of the support of x ∈ Rn by

‖x‖0 = |supp (x)|= |{ j : x j 6= 0}|.

Note, that this expression is not even a quasinorm. The notation is justified by the

observation, that

lim
p→0

‖x‖pp = ‖x‖0 for all x ∈R
n.

Let k be a natural number at most equal to n. A vector x ∈ Rn is called k-sparse, if

‖x‖0 ≤ k and the set of all k-sparse vectors is denoted by

Σk = {x ∈ R
n : ‖x‖0 ≤ k}.

Finally, if k< n, the best k-term approximationσk(x)p of x∈Rn describes, howwell

can x be approximated by k-sparse vectors in the ℓnp-norm. This can be expressed by
the formula

σk(x)p = inf
z∈Σ

k

‖x− z‖p =











( n

∑
j=k+1

(x∗j)
p
)1/p

, p ∈ (0,∞);

x∗k+1, p= ∞.

(1.2)

The notions introduced so far, can be easily transferred to n-dimensional complex

spaces. Especially, the scalar product of x,y ∈Cn is defined by
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〈x,y〉=
n

∑
j=1

x jy j,

where z is the complex conjugate of z ∈ C.
Linear operators between finite-dimensional spaces Rn and Rm can be repre-

sented with the help of matrices A ∈ Rm×n. The entries of A are denoted by ai j,

i = 1, . . . ,m and j = 1, . . . ,n. The transpose of a matrix A ∈ Rm×n is a matrix

AT ∈ R
n×m with entries (AT )i j = a ji. The identity matrix in R

n×n or Cn×n will

be denoted by I.

1.2.2 Random Variables

As several important constructions from the field of compressed sensing rely on

randomness, we recall the basic notions from probability theory.

We denote by (Ω ,Σ ,P) a probability space. Here stands Ω for the sample space,

Σ for a σ -algebra of subsets of Ω and P is a probability measure on (Ω ,Σ). The
sets B ∈ Σ are called events, and their probability is denoted by

P(B) =
∫

B
dP(ω).

A random variable X is a measurable function X : Ω → R and we denote by

µ = EX =
∫

Ω
X(ω)dP(ω)

its expected value, or mean, and by σ2 =E[(X−µ)2] =E(X2)−(EX)2 its variance.
We recall Markov’s inequality, which states

P(|X | ≥ t)≤ E|X |
t

for all t > 0. (1.3)

A random variable X is called normal (or Gaussian), if it has a density function

f (t) =
1√
2πσ2

exp
(

− (t− µ)2

2σ2

)

, t ∈R

for some real µ and positive σ2, i.e. if P(a< X ≤ b) =
∫ b
a f (t)dt for all real a< b. In

that case, the expected value of X is equal to µ and its variance to σ2 and we often

write X ∼N (µ ,σ2). If µ = 0 and σ2 = 1, the normal variable is called standard

and its density function is

f (t) =
1√
2π

exp
(

− t2

2

)

, t ∈R.
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A random variable X is called Rademacher if

P(X = 1) = P(X =−1) = 1/2. (1.4)

Random variables X1, . . . ,XN are called independent, if for every real t1, . . . , tN
the following formula holds

P(X1 ≤ t1, . . . ,XN ≤ tN) =
N

∏
j=1

P(X j ≤ t j).

In that case,

E

[ N

∏
j=1

X j

]

=
N

∏
j=1

E(X j). (1.5)

If the random variables X1, . . . ,XN are independent and have the same distribution,

we call them independent identically distributed, which is usually abbreviated as

i.i.d.

1.3 Basic ideas of compressed sensing

There is a number of ways how to discover the landscape of compressed sensing.

The point of view, which we shall follow in this section, is that we are looking for

sparse solutions x∈Rn of a system of linear equations Ax= y, where y∈Rm and the

m× n matrix A are known. We shall be interested in underdetermined systems, i.e.

in the case m≤ n. Intuitively, this corresponds to solving the following optimization

problem

min
z
‖z‖0 subject to y= Az. (P0)

We will first show that this problem is numerically intractable if m and n are

getting larger. Then we introduce the basic notions of compressed sensing, showing

that for specific matrices A and measurement vectors y, one can recover the solution

of (P0) in a much more effective way.

1.3.1 Basis pursuit

The minimization problem (P0) can obviously be solved by considering first all in-

dex sets T ⊂ {1, . . . ,n} with one element and employing the methods of linear al-
gebra to decide if there is a solution x to the system with support included in T .

If this fails for all such index sets, we continue with all index sets with two, three,

and more elements. The obvious drawback is the rapidly increasing number of these

index sets. Indeed, there is
(

n
k

)

index sets T ⊂ {1, . . . ,n} with k elements and this

quantity grows (in some sense) exponentially with k and n.
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We shall start our tour through compressed sensing by showing that even every

other algorithm solving (P0) suffers from this drawback. This will be formulated in

the language of complexity theory as the statement, that the (P0) problem is NP-

hard. Before we come to that, we introduce the basic terms used in the sequel. We

refer for example to [2] for an introduction to computational complexity.

The P-class (“polynomial time”) consists of all decision problems that can be

solved in polynomial time, i.e. with an algorithm, whose running time is bounded

from above by a polynomial expression in the size of the input.

TheNP-class (“nondeterministic polynomial time”) consists of all decision prob-

lems, for which there is a polynomial-time algorithm V (called verifier), with the

following property. If, given an input α , the right answer to the decision problem is

“yes”, then there is a proof β , such thatV (α,β ) = yes. Roughly speaking, when the

answer to the decision problem is positive, then the proof of this statement can be

verified with a polynomial-time algorithm.

Let us reformulate (P0) as a decision problem. Namely, if the natural numbers

k,m,n, m× n matrix A and y ∈ Rm are given, decide if there is a k-sparse solution x

of the equation Ax = y. It is easy to see that this version of (P0) is in the NP-class.
Indeed, if the answer to the problem is “yes” and a certificate x ∈ Rn is given, then

it can be verified in polynomial time if x is k-sparse and Ax= y.
A problem is called NP-hard if any of its solving algorithms can be transformed

in polynomial time into a solving algorithm of any other NP-problem. We shall rely

on a statement from complexity theory, that the following problem is both NP and

NP-hard.

Exact cover problem

Given as the input a natural number m divisible by 3 and a system {Tj : j =
1, . . . ,n} of subsets of {1, . . . ,m} with |Tj| = 3 for all j = 1, . . . ,n, decide, if
there is a subsystem of mutually disjoint sets {Tj : j ∈ J}, such that ⋃ j∈J Tj =
{1, . . . ,m}. Such a subsystem is frequently referred to as exact cover.

Let us observe, that for any subsystem {Tj : j ∈ J} it is easy to verify (in poly-
nomial time) if it is an exact cover or not. So the problem is in the NP-class. The

non-trivial statement from computational complexity is that this problem is also

NP-hard. The exact formulation of (P0) looks as follows.

ℓ0-minimization problem
Given natural numbers m,n, an m× n matrix A and a vector y ∈ Rm as input,

find the solution of

min
z
‖z‖0 s.t. y= Az.

Theorem 1.1. The ℓ0-minimization problem is NP-hard.

Proof. It is sufficient to show that any algorithm solving the ℓ0-minimization prob-
lem can be transferred in polynomial time into an algorithm solving the exact cover
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problem. Let therefore {Tj : j = 1, . . . ,n} be a system of subsets of {1, . . . ,m} with
|Tj|= 3 for all j = 1, . . . ,n. Then we construct a matrix A ∈ Rm×n by putting

ai j :=

{

1 if i ∈ Tj,

0 if i 6∈ Tj,

i.e. the jth column of A is the indicator function of Tj (denoted by χTj
∈ {0,1}m)

and

Ax=
n

∑
j=1

x jχTj
. (1.6)

The construction of A can of course be done in polynomial time.

Let now x be the solution to the ℓ0-minimization problem with the matrix A and

the vector y= (1, . . . ,1)T . It follows by (1.6), that m= ‖y‖0 = ‖Ax‖0 ≤ 3‖x‖0, i.e.
that ‖x‖0 ≥ m/3.We will show that the exact cover problem has a positive solution

if, and only if, ‖x‖0 = m/3.
Indeed, if the exact cover problem has a positive solution, then there is a set

J ⊂ {1, . . . ,n} with |J|= m/3 and

χ{1,...,m} = ∑
j∈J

χTj
.

Hence y = Ax for x = χJ and ‖x‖0 = |J| = m/3. If, on the other hand, y = Ax and

‖x‖0 = m/3, then {Tj : j ∈ supp (x)} solves the exact cover problem. �

The ℓ0-minimization problem is NP-hard, if all matrices A and all measurement

vectors y are allowed as inputs. The theory of compressed sensing shows neverthe-

less, that for special matrices A and for y = Ax for some sparse x, the problem can

be solved efficiently.

We shall discuss later on, under which conditions the solution to (P0) coincides

with the solution of the following convex optimization problem called basis pursuit

min
z
‖z‖1 s.t. y= Az, (P1)

which was introduced in [19]. But beforewe come to that, let us show, that in the real

case this problem may be reformulated as a linear optimization problem, i.e. as the

search for the minimizer of a linear function over a set given by linear constraints,

whose number depends polynomially on the dimension. We refer to [42] for an

introduction to linear programming.

Indeed, let us assume that (P1) has a unique solution, which we denote by x∈Rn.

Then the pair (u,v) with u= x+ and v= x−, i.e. with

u j =

{

x j, x j ≥ 0,

0, x j < 0,
and v j =

{

0, x j ≥ 0,

−x j, x j < 0,

is the unique solution of
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min
u,v∈Rn

n

∑
j=1

(u j+ v j) s.t. Au−Av= y and u j ≥ 0 and v j ≥ 0 for all j = 1, . . . ,n. (1.7)

If namely (u′,v′) is another pair of vectors admissible in (1.7), then x′ = u′− v′

satisfies Ax′ = y and x′ is therefore admissible in (P1). As x is the solution of (P1),
we get

n

∑
j=1

(u j+ v j) = ‖x‖1 < ‖x′‖1 =
n

∑
j=1

|u′j− v′j| ≤
n

∑
j=1

(u′j+ v′j).

If, on the other hand, the pair (u,v) is the unique solution of (1.7), then x = u− v

is the unique solution of (P1). If namely z is another admissible vector in (P1), then

u′ = z+ and v′ = z− are admissible in (1.7) and we obtain

‖x‖1 =
n

∑
j=1

|u j− v j| ≤
n

∑
j=1

(u j+ v j)<
n

∑
j=1

(u′j+ v′j) = ‖z‖1.

Very similar argument works also in the case when (P1) has multiple solutions.

1.3.2 Null Space Property

If T ⊂ {1, . . . ,n}, then we denote by T c = {1, . . . ,n} \ T the complement of T in

{1, . . . ,n}. If furthermore v ∈ Rn, then we denote by vT either the vector in R|T |,
which contains the coordinates of v on T , or the vector in Rn, which equals v on T

and is zero on T c. It will be always clear from the context, which notation is being

used.

Finally, if A∈R
m×n is a matrix, we denote by AT them×|T | sub-matrix contain-

ing the columns of A indexed by T . Let us observe, that if x∈Rn with T = supp (x),
that Ax= ATxT .

We start the discussion of the properties of basis pursuit by introducing the notion

of Null Space Property, which first appeared in [20].

Definition 1.1. Let A ∈ Rm×n and let k ∈ {1, . . . ,n}. Then A is said to have the Null

Space Property (NSP) of order k if

‖vT‖1 < ‖vT c‖1 for all v ∈ ker A\{0} and all T ⊂ {1, . . . ,n} with |T | ≤ k. (1.8)

Remark 1.1. (i) The condition (1.8) states that vectors from the kernel of A are well

spread, i.e. not supported on a set of small size. Indeed, if v ∈ Rn \ {0} is k-sparse
and T = supp (v), then (1.8) shows immediately, that v can not lie in the kernel of
A.

(ii) If we add ‖vT c‖1 to both sides of (1.8), we obtain ‖v‖1 < 2‖vT c‖1. If then T

are the indices of the k largest coordinates of v taken in the absolute value, this

inequality becomes ‖v‖1 < 2σk(v)1.
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Theorem 1.2. Let A ∈ Rm×n and let k ∈ {1, . . . ,n}. Then every k-sparse vector x is

the unique solution of (P1) with y= Ax if, and only if, A has the NSP of order k.

Proof. Let us assume that every k-sparse vector x is the unique solution of (P1) with
y= Ax. Let v ∈ ker A\{0} and let T ⊂ {1, . . . ,n} with |T | ≤ k be arbitrary. Then vT
is k-sparse, and is therefore the unique solution of

min
z
‖z‖1, s.t. Az= AvT . (1.9)

As A(−vT c) = A(v− vT c) = A(vT ), this gives especially ‖vT‖1 < ‖vT c‖1 and A has

the NSP of order k.

Let us on the other hand assume that A has the NSP of order k. Let x ∈ Rn be a

k-sparse vector and let T = supp (x). We have to show that ‖x‖1 < ‖z‖1 for every
z ∈ Rn different from x with Az= Ax. But this follows easily by using (1.8) for the
vector (x− z) ∈ ker A\ {0}

‖x‖1 ≤ ‖x− zT‖1+ ‖zT‖1 = ‖(x− z)T‖1+ ‖zT‖1 < ‖(x− z)T c‖1+ ‖zT‖1
= ‖zT c‖1+ ‖zT‖1 = ‖z‖1.

�

Remark 1.2. Theorem 1.2 states that the solutions of (P0) may be found by (P1), if

A has the NSP of order k and if y ∈ Rm is such that, there exists a k-sparse solution

x of the equation Ax = y. Indeed, if in such a case, x̂ is a solution of (P0), then

‖x̂‖0 ≤ ‖x‖0 ≤ k. Finally, it follows by Theorem 1.2, that x̂ is also a solution of (P1)

and that x= x̂.
In the language of complexity theory, if we restrict the inputs of the ℓ0-minimization

problem to matrices with the NSP of order k and to vectors y, for which there is a

k-sparse solution of the equation Ax= y, the problem belongs to the P-class and the

solving algorithm with polynomial running time is any standard algorithm solving

(P1), or the corresponding linear problem (1.7).

1.3.3 Restricted Isometry Property

Although the Null Space Property is equivalent to the recovery of sparse solutions

of underdetermined linear systems by basis pursuit in the sense just described, it is

somehow difficult to construct matrices satisfying this property. We shall therefore

present a sufficient condition called Restricted Isometry Property, which was first

introduced in [14], and which ensures that the Null Space Property is satisfied.

Definition 1.2. Let A ∈ Rm×n and let k ∈ {1, . . . ,n}. Then the restricted isometry

constant δk = δk(A) of A of order k is the smallest δ ≥ 0, such that

(1− δ )‖x‖22 ≤ ‖Ax‖22 ≤ (1+ δ )‖x‖22 for all x ∈ Σk. (1.10)
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Furthermore, we say that A satisfies the Restricted Isometry Property (RIP) of order

k with the constant δk if δk > 0.

Remark 1.3. The condition (1.10) states that A acts nearly isometrically when re-

stricted to vectors from Σk. Of course, the smaller the constant δk(A) is, the closer is
the matrix A to isometry on Σk. We will be therefore later interested in constructing

matrices with small RIP constants. Finally, the inequality δ1(A) ≤ δ2(A) ≤ ·· · ≤
δk(A) follows trivially.

The following theorem shows that RIP of sufficiently high order with a constant

small enough is indeed a sufficient condition for NSP.

Theorem 1.3. Let A∈Rm×n and let k be a natural number with k≤ n/2. If δ2k(A)<
1/3, then A has the NSP of order k.

Proof. Let v ∈ ker A and let T ⊂ {1, . . . ,n} with |T | ≤ k.We shall show, that

‖vT‖2 ≤
δ2k

1− δk
· ‖v‖1√

k
. (1.11)

If δk ≤ δ2k < 1/3, then Hölder’s inequality gives immediately ‖vT‖1 ≤
√
k‖vT‖2 <

‖v‖1/2 and the NSP of A of order k follows.

Before we come to the proof of (1.11), let us make the following observation. If

x,z∈ Σk are two vectors with disjoint supports and ‖x‖2= ‖z‖2 = 1, then x±z∈Σ2k

and ‖x± z‖22 = 2. If we now combine the RIP of A

2(1− δ2k)≤ ‖A(x± z)‖22 ≤ 2(1+ δ2k)

with the polarization identity, we get

|〈Ax,Az〉|= 1

4

∣

∣

∣‖Ax+Az‖22−‖Ax−Az‖22
∣

∣

∣≤ δ2k.

Hence if A has the RIP of order 2k and x,z ∈ Σk have disjoint supports, then

|〈Ax,Az〉| ≤ δ2k‖x‖2‖z‖2. (1.12)

To show (1.11), let us assume that v ∈ ker A is fixed. It is enough to consider

T = T0 the set of the k largest entries of v taken in the absolute value. Furthermore,

we denote by T1 the set of k largest entries of vT c
0
in the absolute value, by T2 the set

of k largest entries of v(T0∪T1)c
in the absolute value, etc. Using 0 = Av = A(vT0

+

vT1
+ vT2

+ . . .) and (1.12), we arrive at

‖vT0‖
2
2 ≤

1

1− δk
‖AvT0‖

2
2 =

1

1− δk
〈AvT0 ,A(−vT1)+A(−vT2)+ . . .〉

≤ 1

1− δk
∑
j≥1
|〈AvT0 ,AvTj 〉| ≤

δ2k
1− δk

∑
j≥1
‖vT0‖2 · ‖vTj‖2.
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We divide this inequality by ‖vT0‖2 6= 0 and obtain

‖vT0‖2 ≤
δ2k

1− δk
∑
j≥1
‖vTj‖2.

The proof is then completed by the following simple chain of inequalities, which

involve only the definition of the sets Tj, j ≥ 0.

∑
j≥1
‖vTj‖2 = ∑

j≥1

(

∑
l∈Tj
|vl |2

)1/2
≤ ∑

j≥1

(

kmax
l∈Tj

|vl |2
)1/2

= ∑
j≥1

√
kmax
l∈Tj

|vl | ≤ ∑
j≥1

√
k min
l∈Tj−1

|vl | ≤ ∑
j≥1

√
k ·

∑l∈Tj−1
|vl |

k
(1.13)

= ∑
j≥1

‖vTj−1‖1√
k

=
‖v‖1√

k
.

�

Combining Theorems 1.2 and 1.3, we obtain immediately the following corol-

lary.

Corollary 1.1. Let A∈Rm×n and let k be a natural number with k≤ n/2. If δ2k(A)<
1/3, then every k-sparse vector x is the unique solution of (P1) with y= Ax.

1.3.4 RIP for random matrices

Fromwhat was said up to now, we know that matrices with small restricted isometry

constants fulfill the null space property, and sparse solutions of underdetermined

linear equations involving such matrices can be found by ℓ1-minimization (P1). We

discuss in this chapter a class of matrices with small RIP constants. It turns out

that the most simple way is to construct these matrices by taking its entries to be

independent standard normal variables.

We denote until the end of this section

A=
1√
m







ω1,1 . . . ω1n
...

. . .
...

ωm1 . . . ωmn






, (1.14)

where ωi j, i = 1, . . . ,m, j = 1, . . . ,n, are i.i.d. standard normal variables. We shall

show that such a matrix satisfies the RIP with reasonably small constants with high

probability.



12 Holger Boche, Robert Calderbank, Gitta Kutyniok, and Jan Vybı́ral

1.3.4.1 Concentration inequalities

Before we come to the main result of this chapter, we need some properties of

independent standard normal variables.

Lemma 1.1. (i) Let ω be a standard normal variable. Then E(eλ ω2
) = 1/

√
1− 2λ

for −∞ < λ < 1/2.
(ii) (2-stability of the normal distribution) Let m ∈N, let λ = (λ1, . . . ,λm) ∈Rm and

let ω1, . . . ,ωm be i.i.d. standard normal variables. Then λ1ω1+ · · ·+ λmωm ∼
(∑m

i=1λ 2
i )

1/2 ·N (0,1), i.e. it is equidistributed with a multiple of a standard

normal variable.

Proof. The proof of (i) follows from the substitution s :=
√
1− 2λ · t in the follow-

ing way.

E(eλ ω2
) =

1√
2π

∫ ∞

−∞
eλ t2 · e−t2/2dt = 1√

2π

∫ ∞

−∞
e(λ−1/2)t

2
dt

=
1√
2π

∫ ∞

−∞
e−s

2/2 · ds√
1− 2λ

=
1√

1− 2λ
.

Although the property (ii) is very well known (and there are several different ways

to prove it), we provide a simple geometric proof for the sake of completeness. It is

enough to consider the case m= 2. The general case then follows by induction.

Let therefore λ = (λ1,λ2) ∈ R2,λ 6= 0, be fixed and let ω1 and ω2 be i.i.d. stan-

dard normal random variables. We put S := λ1ω1+λ2ω2. Let t ≥ 0 be an arbitrary

non-negative real number. We calculate

P(S ≤ t) =
1

2π

∫

(u,v):λ1u+λ2v≤t
e−(u

2+v2)/2dudv=
1

2π

∫

u≤c;v∈R
e−(u

2+v2)/2dudv

=
1√
2π

∫

u≤c
e−u

2/2du.

We have used the rotational invariance of the function (u,v)→ e−(u
2+v2)/2. The

value of c is given by the distance of the origin from the line {(u,v) : λ1u+λ2v= t}.
It follows by elementary geometry and Pythagorean theorem that

c=

∥

∥

∥

∥

(

λ1t
λ 2
1
+λ 2

2

,
λ2t

λ 2
1
+λ 2

2

)∥

∥

∥

∥

2

=
t

√

λ 2
1
+λ 2

2

.

We therefore get

P(S≤ t) =
1√
2π

∫

√
λ 2
1
+λ 2

2
·u≤t

e−u
2/2du= P

(√

λ 2
1
+λ 2

2
·ω ≤ t

)

.

The same estimate holds for negative t’s by symmetry and the proof is finished. �
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If ω1, . . . ,ωm are (possibly dependent) standard normal random variables, then

E(ω2
1 + · · ·+ω2

m) = m. If ω1, . . . ,ωm are even independent, then the value of ω2
1 +

· · ·+ω2
m concentrates very strongly aroundm. This effect is known as concentration

of measure, cf. [48, 49, 54].

Lemma 1.2. Let m ∈ N and let ω1, . . . ,ωm be i.i.d. standard normal variables. Let

0< ε < 1. Then

P(ω2
1 + · · ·+ω2

m ≥ (1+ ε)m)≤ e−
m
2 [ε

2/2−ε3/3]

and

P(ω2
1 + · · ·+ω2

m ≤ (1− ε)m)≤ e−
m
2 [ε

2/2−ε3/3].

Proof. We prove only the first inequality. The second one follows in exactly the

same manner. Let us put β := 1+ ε > 1 and calculate

P(ω2
1 + · · ·+ω2

m ≥ βm) = P(ω2
1 + · · ·+ω2

m−βm≥ 0)

= P(λ (ω2
1 + · · ·+ω2

m−βm)≥ 0)

= P(exp(λ (ω2
1 + · · ·+ω2

m−βm))≥ 1)

≤ Eexp(λ (ω2
1 + · · ·+ω2

m−βm)),

where λ > 0 is a positive real number, which shall be chosen later on. We have used

the Markov’s inequality (1.3) in the last step. Further we use the elementary proper-

ties of exponential function and (1.5) for the independent variables ω1, . . . ,ωm. This

leads to

Eexp(λ (ω2
1 + · · ·+ω2

m−βm)) = e−λ βm · Eeλ ω2
1 · · ·eλ ω2

m = e−λ βm · (Eeλ ω2
1 )m

and with the help of Lemma 1.1 we get finally (for 0< λ < 1/2)

Eexp(λ (ω2
1 + · · ·+ω2

m−βm)) = e−λ βm · (1− 2λ )−m/2.

We now look for the value of 0 < λ < 1/2, which would minimize the last expres-
sion. Therefore, we take the derivative of e−λ βm · (1− 2λ )−m/2 and put it equal to
zero. After a straightforward calculation, we get

λ =
1− 1/β

2
,

which obviously satisfies also 0< λ < 1/2. Using this value of λ we obtain

P(ω2
1 + · · ·+ω2

m ≥ βm)≤ e−
1−1/β

2 ·βm · (1− (1− 1/β ))−m/2= e−
β−1
2 m ·βm/2

= e−
εm
2 · em

2 ln(1+ε).

The result then follows from the inequality
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ln(1+ t)≤ t− t2

2
+

t3

3
, −1< t < 1.

�

Using 2-stability of the normal distribution, Lemma 1.2 shows immediately that

A defined as in (1.14) acts with high probability as isometry on one fixed x ∈ Rn.

Theorem 1.4. Let x ∈ R
n with ‖x‖2 = 1 and let A be as in (1.14). Then

P

(∣

∣

∣‖Ax‖22− 1

∣

∣

∣≥ t
)

≤ 2e−
m
2 [t

2/2−t3/3] ≤ 2e−Cmt
2

(1.15)

for 0< t < 1 with an absolute constant C > 0.

Proof. Let x=(x1,x2, . . . ,xn)
T . Then we get by the 2-stability of normal distribution

and Lemma 1.2

P

(∣

∣

∣‖Ax‖22− 1

∣

∣

∣≥ t
)

= P

(

∣

∣(ω1,1x1+ · · ·+ω1nxn)
2+ · · ·+(ωm1x1+ · · ·+ωmnxn)

2−m
∣

∣≥ mt
)

= P

(

∣

∣ω2
1 + · · ·+ω2

m−m
∣

∣≥ mt
)

= P

(

ω2
1 + · · ·+ω2

m ≥ m(1+ t)
)

+P

(

ω2
1 + · · ·+ω2

m ≤ m(1− t)
)

≤ 2e−
m
2 [t

2/2−t3/3].

This gives the first inequality in (1.15). The second one follows by simple algebraic

manipulations (forC = 1/12). �

Remark 1.4. (i) Observe, that (1.15) may be easily rescaled to

P

(∣

∣

∣‖Ax‖22−‖x‖22
∣

∣

∣≥ t‖x‖22
)

≤ 2e−Cmt
2
, (1.16)

which is true for every x ∈Rn.

(ii) A slightly different proof of (1.15) is based on the rotational invariance of the

distribution underlying the random structure of matrices defined by (1.14). There-

fore, it is enough to prove (1.15) only for one fixed element x ∈ R
n with ‖x‖2 = 1.

Taking x = e1 = (1,0, . . . ,0)T to be the first canonical unit vector allows us to use

Lemma 1.2 without the necessity of applying the 2-stability of normal distribution.

1.3.4.2 RIP for random Gaussian matrices

The proof of restricted isometry property of random matrices generated as in (1.14)

is based on two main ingredients. The first is the concentration of measure phe-

nomenon described in its most simple form in Lemma 1.2, and reformulated in
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Theorem 1.4. The second is the following entropy argument, which allows to ex-

tend Theorem 1.4 and (1.15) from one fixed x ∈ Rn to the set Σk of all k-sparse

vectors.

Lemma 1.3. Let t > 0. Then there is a set N ⊂ Sn−1 = {x ∈ Rn : ‖x‖2 = 1} with
(i) |N | ≤ (1+ 2/t)n and
(ii) for every z ∈ S

n−1, there is a x ∈N with ‖x− z‖2 ≤ t.

Proof. Choose any x1 ∈ Sn−1. If x1, . . . ,x j ∈ Sn−1 were already chosen, take x j+1 ∈
Sn−1 arbitrarily with ‖x j+1− xl‖2 > t for all l = 1, . . . , j. This process is then re-
peated as long as possible, i.e. until we obtain a set N = {x1, . . . ,xN} ⊂ S

n−1, such
that for every z ∈ Sn−1 there is a j ∈ {1, . . . ,N} with ‖x j− z‖2 ≤ t. This gives the
property (ii).

We will use volume arguments to prove (i). It follows by construction, that

‖xi− x j‖2 > t for every i, j ∈ {1, . . . ,N} with i 6= j. By triangle inequality, the balls
B(x j, t/2) are all disjoint and are all included in the ball with the center in the origin
and radius 1+ t/2. By comparing the volumes we get

N · (t/2)n ·V ≤ (1+ t/2)n ·V,

where V is the volume of the unit ball in Rn. Hence, we get N = |N | ≤ (1+2/t)n.
�

With all these tools at hand, we can now state the main theorem of this section,

whose proof follows closely the arguments of [4].

Theorem 1.5. Let n≥m≥ k≥ 1 be natural numbers and let 0< ε < 1 and 0< δ <
1 be real numbers with

m≥Cδ−2
(

k ln(en/k)+ ln(2/ε)
)

, (1.17)

where C > 0 is an absolute constant. Let A be again defined by (1.14). Then

P
(

δk(A)≤ δ
)

≥ 1− ε.

Proof. The proof follows by the concentration inequality of Theorem 1.4 and the

entropy argument described in Lemma 1.3. By this lemma, there is a set

N ⊂ Z := {z ∈ R
n : supp (z)⊂ {1, . . . ,k},‖z‖2 = 1},

such that

(i) |N | ≤ 9k and

(ii) minx∈N
‖z− x‖2 ≤ 1/4 for every z ∈ Z.

We show that if
∣

∣‖Ax‖22− 1
∣

∣≤ δ/2 for all x ∈N , then
∣

∣‖Az‖22− 1
∣

∣ ≤ δ for all

z ∈ Z.

We proceed by the following bootstrap argument. Let γ > 0 be the smallest num-

ber, such that
∣

∣‖Az‖22− 1
∣

∣ ≤ γ for all z ∈ Z. Then
∣

∣‖Au‖22−‖u‖22
∣

∣ ≤ γ‖u‖22 for all
u ∈ Rn with supp (u)⊂ {1, . . . ,k} and, by polarization identity,
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|〈Au,Av〉− 〈u,v〉| ≤ γ‖u‖2‖v‖2 (1.18)

for all u,v ∈ Rn with supp (u)∪ supp (v)⊂ {1, . . . ,k}.
Let now again z∈ Z. Then there is an x∈N , such that ‖z−x‖2≤ 1/4.We obtain

by triangle inequality and (1.18)

∣

∣‖Az‖22− 1
∣

∣=
∣

∣‖Ax‖22− 1+ 〈A(z+ x),A(z− x)〉− 〈z+ x,z− x〉
∣

∣

≤ δ/2+ γ‖z+ x‖2‖z− x‖2 ≤ δ/2+ γ/2.

As the supremum of the left-hand side over all admissible z’s is equal to γ , we obtain
that γ ≤ δ and the statement follows.

Equipped with this tool, the rest of the proof follows by a simple union bound.

P(δk(A)> δ )≤ ∑
T⊂{1,...,n}
|T |≤k

P

(

∃z ∈R
n : supp (z)⊂ T,‖z‖2 = 1 and

∣

∣‖Az‖22− 1
∣

∣> δ
)

=

(

n

k

)

P

(

∃z ∈ Z with
∣

∣‖Az‖22− 1
∣

∣> δ
)

≤
(

n

k

)

P

(

∃x ∈N :
∣

∣‖Ax‖22− 1
∣

∣> δ/2
)

.

By Theorem 1.4, the last probability may be estimated from above by 2e−C
′mδ 2 .

Hence we obtain

P(δk(A)> δ )≤ 9k
(

n

k

)

·2e−C′mδ 2

Hence it is enough to show that the last quantity is at most ε if (1.17) is satisfied.

But this follows by straightforward algebraic manipulations and the well-known

estimate
(

n

k

)

≤ nk

k!
≤

(en

k

)k

.

�

1.3.4.3 Lemma of Johnson and Lindenstrauss

Concentration inequalities similar to (1.15) play an important role in several areas of

mathematics. We shall present their connection to the famous result from functional

analysis called Johnson-Lindenstrauss lemma, cf. [45]. The lemma states that a set

of points in a high-dimensional space can be embedded into a space of much lower

dimension in such a way that the mutual distances between the points are nearly

preserved. The connection between this classical result and compressed sensing was

first highlighted in [4], cf. also [46].

Lemma 1.4. Let 0< ε < 1 and let m,N and n be natural numbers with
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m≥ 4(ε2/2− ε3/3)−1 lnN.

Then for every set {x1, . . . ,xN} ⊂Rn there exists a mapping f :Rn→Rm, such that

(1− ε)‖xi− x j‖22 ≤ ‖ f (xi)− f (x j)‖22 ≤ (1+ ε)‖xi− x j‖22, i, j ∈ {1, . . . ,N}.
(1.19)

Proof. We put f (x) = Ax, where again

Ax=
1√
m







ω1,1 . . . ω1n
...

. . .
...

ωm1 . . . ωmn






x,

and ωi j, i = 1, . . . ,m, j = 1, . . . ,n are i.i.d. standard normal variables. We show that

with this choice f satisfies (1.19) with positive probability. This proves the existence

of such a mapping.

Let i, j ∈ {1, . . . ,N} arbitrary with xi 6= x j. Then we put z= xi−x j
‖xi−x j‖2

and evaluate

the probability that the right hand side inequality in (1.19) does not hold. Theorem

1.4 then implies

P

(∣

∣

∣
‖ f (xi)− f (x j)‖22−‖xi− x j‖22

∣

∣

∣
> ε‖xi− x j‖22

)

= P

(∣

∣

∣
‖Az‖2− 1

∣

∣

∣
> ε

)

≤ e−
m
2 [ε

2/2−ε3/3].

The same estimate is also true for all
(

N
2

)

pairs {i, j} ⊂ {1, . . . ,N} with i 6= j. The
probability, that one of the inequalities in (1.19) is not satisfied is therefore at most

2 ·
(

N

2

)

·e−m
2 [ε

2/2−ε3/3]<N2 ·e−m
2 [ε

2/2−ε3/3]= exp
(

2lnN−m

2
[ε2/2−ε3/3]

)

≤ e0= 1

for m ≥ 4(ε2/2− ε3/3)−1 lnN. Therefore, the probability that (1.19) holds for all
i, j ∈ {1, . . . ,N} is positive and the result follows. �

1.3.5 Stability and Robustness

The ability to recover sparse solutions of underdetermined linear systems by quick

recovery algorithms as ℓ1-minimization is surely a very promising result. On the

other hand, two additional features are obviously necessary to extend this results to

real-life applications, namely

• Stability: We want to be able to recover (or at least approximate) also vectors

x ∈ Rn, which are not exactly sparse. Such vectors are called compressible and

mathematically they are characterized by the assumption that their best k-term

approximation decays rapidly with k. Intuitively, the faster the decay of the best
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k-term approximation of x ∈ Rn is, the better we should be able to approximate

x.

• Robustness: Equally important, we want to recover sparse or compressible vec-

tors from noisy measurements. The basic model here is the assumptions that the

measurement vector y is given by y = Ax+ e, where e is small (in some sense).

Again, the smaller the error e is, the better we should be able to recover an ap-

proximation of x.

We shall show that the methods of compressed sensing can be extended also to

this kind of scenario. There is a number of different estimates in the literature, which

show that the technique of compressed sensing is stable and robust. We will present

only one of them (with more to come in Section 1.4.3). Its proof is a modification

of the proof of Theorem 1.3, and follows closely [11].

Inspired by the form of the noisy measurements just described, we will concen-

trate on the recovery properties of the following slight modification of (P1). Namely,

let η ≥ 0, then we consider the convex optimization problem

min
z∈Rn

‖z‖1 s.t. ‖Az− y‖2 ≤ η . (P1,η)

If η = 0, (P1,η) reduces back to (P1).

Theorem 1.6. Let δ2k <
√
2−1 and ‖e‖2≤ η . Then the solution x̂ of (P1,η ) satisfies

‖x− x̂‖2 ≤
Cσk(x)1√

k
+Dη , (1.20)

where C,D> 0 are two universal positive constants.

Proof. First, let us recall that if A has RIP of order 2k and u,v ∈ Σk are two vectors

with disjoint supports, then we have by (1.12)

|〈Au,Av〉| ≤ δ2k‖u‖2‖v‖2. (1.21)

Let us put h= x̂−x and let us define the index set T0 ⊂ {1, . . . ,n} as the locations of
k largest entries of x taken in the absolute value. Furthermore, we define T1 ⊂ T c

0 to

be the indices of k largest absolute entries of hT c
0
, T2 the indices of k largest absolute

entries of h
(T0∪T1)c

, etc. As x̂ is an admissible point in (P1,η), the triangle inequality

gives

‖Ah‖2 = ‖A(x− x̂)‖2 ≤ ‖Ax− y‖2+ ‖y−Ax̂‖2 ≤ 2η . (1.22)

As x̂ is the minimizer of (P1,η), we get ‖x̂‖1 = ‖x+h‖1 ≤ ‖x‖1, which we use to
show that h must be small outside of T0. Indeed, we obtain
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‖hT c
0
‖1 = ‖(x+ h)Tc

0
− xT c

0
‖1+ ‖(x+ h)T0

− hT0
‖1−‖xT0‖1

≤ ‖(x+ h)Tc
0
‖1+ ‖xT c

0
‖1+ ‖(x+ h)T0

‖1+ ‖hT0‖1−‖xT0‖1
= ‖x+ h‖1+ ‖xTc

0
‖1+ ‖hT0‖1−‖xT0‖1

≤ ‖x‖1+ ‖xT c
0
‖1+ ‖hT0‖1−‖xT0‖1

= ‖hT0‖1+ 2‖xTc
0
‖ ≤ k1/2‖hT0‖2+ 2σk(x)1.

Using this together with the approach applied already in (1.13), we derive

∑
j≥2
‖hTj‖2 ≤ k−1/2‖hT c

0
‖1 ≤ ‖hT0‖2+ 2k−1/2σk(x)1. (1.23)

We use the RIP property of A, (1.21), (1.22), (1.23) and the simple inequality

‖hT0‖2+ ‖hT1‖2 ≤
√
2‖hT0∪T1‖2 and get

(1− δ2k)‖hT0∪T1‖
2
2 ≤ ‖AhT0∪T1‖

2
2 = 〈AhT0∪T1 ,Ah〉− 〈AhT0∪T1 , ∑

j≥2
AhTj

〉

≤ ‖AhT0∪T1‖2‖Ah‖2+ ∑
j≥2
|〈AhT0 ,AhTj 〉|+ ∑

j≥2
|〈AhT1 ,AhTj 〉|

≤ 2η
√

1+ δ2k‖hT0∪T1‖2+ δ2k(‖hT0‖2+ ‖hT1‖2) ∑
j≥2
‖hTj‖2

≤ ‖hT0∪T1‖2
(

2η
√

1+ δ2k+
√
2δ2k‖hT0‖2+ 2

√
2δ2kk

−1/2σk(x)1

)

.

We divide this inequality with (1− δ2k)‖hT0∪T1‖2, replace ‖hT0‖2 with the larger

quantity ‖hT0∪T1‖2 and subtract
√
2δ2k/(1− δ2k)‖hT0∪T1‖2 to arrive at

‖hT0∪T1‖2 ≤ (1−ρ)−1(αη + 2ρk−1/2σk(x)1), (1.24)

where

α =
2
√

1+ δ2k
1− δ2k

and ρ =

√
2δ2k

1− δ2k
. (1.25)

We conclude the proof by using this estimate and (1.23)

‖h‖2 ≤ ‖h(T0∪T1)c‖2+ ‖hT0∪T1‖2 ≤ ∑
j≥2
‖hTj‖2+ ‖hT0∪T1‖2

≤ 2‖hT0∪T1‖2+ 2k−1/2σk(x)1 ≤C
σk(x)1√

k
+Dη

withC = 2(1−ρ)−1α and D= 2(1+ρ)(1−ρ)−1.

We shall give more details on stability and robustness of compressed sensing in

Section 1.4.3.
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1.3.6 Optimality of bounds

When recovering k-sparse vectors one obviously needs at least m ≥ k linear mea-

surements. Even when the support of the unknown vector would be known, this

number of measurements would be necessary to identify the value of the non-zero

coordinates. Therefore, the dependence of the bound (1.17) on k can possibly only

be improved in the logarithmic factor. We shall show that even that is not possible

and that this dependence is already optimal as soon as a stable recovery of k-sparse

vectors is requested. The approach presented here is essentially taken over from

[40].

The proof is based on the following combinatorial lemma.

Lemma 1.5. Let k≤ n be two natural numbers. Then there are N subsets T1, . . . ,TN
of {1, . . . ,n}, such that

(i) N ≥
( n

4k

)k/2
,

(ii) |Ti|= k for all i= 1, . . . ,N and

(iii) |Ti∩Tj|< k/2 for all i 6= j.

Proof. Wemay assume that k≤ n/4, otherwise one can takeN= 1 and the statement

becomes trivial. The main idea of the proof is straightforward (and similar to the

proof of Lemma 1.3). We choose the sets T1,T2, . . . inductively one after another
as long as possible, satisfying (ii) and (iii) on the way, and then we show that this

process will run for at least N steps with N fulfilling (i).

Let T1 ⊂ {1, . . . ,n} be any set with k elements. The number of subsets of

{1, . . . ,n} with exactly k elements, whose intersection with T1 has at least k/2 el-
ements is bounded by the product of 2k (i.e. the number of all subsets of T1) and
(

n−k
⌊k/2⌋

)

, which is the number of all subsets of T c
1 with at most k/2 elements. There-

fore there are at least
(

n

k

)

− 2k
(

n− k

⌊k/2⌋

)

sets T ⊂ {1, . . . ,n} with k elements and |T ∩T1| < k/2. We select T2 to be any of

them. After the jth step, we have selected sets T1, . . . ,Tj with (ii) and (iii) and there

are still
(

n

k

)

− j2k
(

n− k

⌊k/2⌋

)

to choose from. The process stops if this quantity is not positive any more, i.e. after

at least

N ≥
(

n
k

)

2k
(

n−k
⌊k/2⌋

) ≥ 2−k
(

n
k

)

(n−⌈k/2⌉
⌊k/2⌋

)
= 2−k

n!

(n− k)!k!
· (⌊k/2⌋)!(n− k)!

(n−⌈k/2⌉)!

= 2−k
n(n− 1) . . .(n−⌈k/2⌉+ 1)

k(k− 1) . . .(k−⌈k/2⌉+ 1)
≥ 2−k

(n

k

)⌈k/2⌉
≥

( n

4k

)k/2
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steps.

The following theorem shows that any stable recovery of sparse solutions requires

at least m number of measurements, where m is of the order k ln(en/k).

Theorem 1.7. Let k ≤ m ≤ n be natural numbers, let A ∈ R
m×n be a measurement

matrix, and let ∆ : Rm→ Rn be an arbitrary recovery map such that for some con-

stant C > 0

‖x−∆(Ax)‖2 ≤C
σk(x)1√

k
for all x ∈ R

n. (1.26)

Then

m≥C′k ln(en/k) (1.27)

with some other constant C′ depending only on C.

Proof. We may assume that C ≥ 1. Furthermore, if k is proportional to n (say k ≥
n/8), then (1.27) becomes trivial. Hence we may also assume that k ≤ n/8.

By Lemma 1.5, there exists index sets T1, . . . ,TN with N ≥ (n/4k)k/2, |Ti| = k

and |Ti ∩Tj | < k/2 if i 6= j. We put xi = χTi
/
√
k. Then ‖xi‖2 = 1, ‖xi‖1 =

√
k and

‖xi− x j‖2 > 1 for i 6= j.
Let

B =
{

z ∈ R
n : ‖z‖1 ≤

√
k

4C
and ‖z‖2 ≤ 1/4

}

.

Then xi ∈ 4C ·B for all i= 1, . . . ,N.
We claim that the sets A(xi+B) are mutually disjoint. Indeed, let us assume that

this is not the case. Then there is a pair of indices i, j ∈ {1, . . . ,n} and z,z′ ∈B with

i 6= j and A(xi+ z) = A(x j+ z′). It follows that ∆(A(xi+ z)) = ∆(A(x j+ z′)) and we
get a contradiction by

1< ‖xi− x j‖2 = ‖(xi+ z−∆(A(xi+ z))− (x j+ z′−∆(A(x j+ z′))− z+ z′)‖2
≤ ‖(xi+ z−∆(A(xi+ z))‖2+ ‖x j+ z′−∆(A(x j+ z′))‖2+ ‖z‖2+ ‖z′‖2

≤C
σk(xi+ z)1√

k
+C

σk(x j+ z′)1√
k

+ ‖z‖2+ ‖z′‖2

≤C
‖z‖1√

k
+C

‖z′‖1√
k

+ ‖z‖2+ ‖z′‖2 ≤ 1.

Furthermore,

A(xi+B)⊂ A((4C+ 1)B), i= 1, . . . ,N

Let d≤m be the dimension of the range of A. We denote byV 6= 0 the d-dimensional

volume of A(B) and compare the volumes

N

∑
j=1

vol
(

A(x j+B)
)

≤ vol
(

A((4C+ 1)B)
)

.

Using linearity of A, we obtain
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( n

4k

)k/2
V ≤ N ·V ≤ (4C+ 1)dV ≤ (4C+ 1)mV.

We divide by V and take the logarithm to arrive at

k

2
ln
( n

4k

)

≤ m ln(4C+ 1). (1.28)

If k ≤ n/8, then it is easy to check that there is a constant c′ > 0, such that

ln
( n

4k

)

≥ c′ ln
(en

k

)

.

Putting this into (1.28) finishes the proof. �

1.4 Extensions

Section 1.3 gives a detailed overview of the most important features of compressed

sensing. On the other hand, inspired by many questions coming from application

driven research, various additional aspects of the theory were studied in the litera-

ture. We present here few selected extensions of the ideas of compressed sensing,

which turned out to be the most useful in practice. To keep the presentation reason-

able short, we do not give any proofs, and only refer to relevant sources.

1.4.1 Frames and Dictionaries

We have considered in Section 1.3 vectors x ∈ Rn, which are sparse with respect

to the natural canonical basis {e j}nj=1 of Rn. In practice, however, the signal has

a sparse representation with respect to a basis (or, more general, with respect to a

frame or dictionary). Let us first recall some terminology.

A set of vectors {φ j}nj=1 in Rn, which is linearly independent and which spans

the whole space Rn is called a basis. It follows easily that such a set necessarily

has n elements. Furthermore, every x ∈ Rn can be expressed uniquely as a linear

combination of the basis vectors, i.e. there is a unique c= (c1, . . . ,cn)
T ∈ R

n, such

that

x=
n

∑
j=1

c jφ j. (1.29)

A basis is called orthonormal, if it satisfies the orthogonality relations

〈φi,φ j〉=
{

1, i= j,

0, i 6= j.
(1.30)
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If {φ}nj=1 is an orthonormal basis and x ∈ Rn, then the decomposition coefficients

c j in (1.29) are given by c j = 〈x,φ j〉. Furthermore, the relation

‖x‖22 =
n

∑
j=1

|c j|2 (1.31)

holds true.

Equations (1.29)–(1.30) can be written also in matrix notation. If Φ is an n× n

matrix with j-th column equal to φ j, then (1.29) becomes x = Φc and (1.30) reads

ΦTΦ = I, where I denoted the n× n identity matrix. As a consequence, c = ΦT x.
We shall say that x has sparse or compressible representation with respect to the

basis {φ j}nj=1 if the vector c ∈ Rn is sparse or compressible, respectively.

To allow for more flexibility in representation of signals, it is often useful to

drop the condition of linear independence of the set {φ j}Nj=1 ⊂ Rn. As before, we

represent such a system of vectors by a n×N matrix Φ . We say that {φ j}Nj=1 is a
frame, if there are two positive finite constants 0< A≤ B, such that

A‖x‖22 ≤
N

∑
j=1

|〈x,φ j〉|2 ≤ B‖x‖22. (1.32)

From A > 0, it follows that the span of the frame vectors is the whole R
n and,

therefore, that N ≥ n. If one can choose A = B in (1.32), then the frame is called

tight. Dual frame of Φ is any other frame Φ̃ with

ΦΦ̃T = Φ̃ΦT = I. (1.33)

In general, for a given signal x ∈Rn we can find infinitely many coefficients c, such

that x= Φc. Actually, if Φ̃ is a dual frame to Φ , one can take c= Φ̃T x. One is often

interested in finding a vector of coefficients c with x=Φc, which is optimal in some

sense. Especially, we shall say that x has a sparse or compressible representation

with respect to the frame {φ j}Nj=1 if c can be chosen sparse or compressible, cf.

[33].

It can be shown that the smallest coefficient sequence in the ℓN2 sense is obtained

by the choice c= Φ†x, where Φ† is the Penrose pseudoinverse. In this context, Φ†

is also called the canonical dual frame. Finally, let us note that (1.33) implies that

N

∑
j=1

〈x,φ j〉φ̃ j =
N

∑
j=1

〈x, φ̃ j〉φ j = x

for every x ∈ R
n.

The theory of compressed sensing was extended to the setting of sparse repre-

sentations with respect to frames and dictionaries in [59]. The measurements now

take the form y = Ax = AΦc, where c is sparse. Essentially, it turns out that if A

satisfies the concentration inequalities from Section 1.3.4 and the dictionary Φ has
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small coherence, then the matrix AΦ has small RIP constants, and the methods of

compressed sensing can be applied.

1.4.2 Coherence

We have provided in Section 1.3.4 a simple recipe how to construct matrices with

small RIP constants - namely to choose each entry independently at random with

respect to a correctly normalized standard distribution. On the other hand, if the

matrix A is given beforehand, it is quite difficult to check if this matrix really satisfies

the RIP, or to calculate its RIP constants. Another property of A, which is easily

verifiable and which also ensures good recovery guarantees, is the coherence of A.

Definition 1.3. Let A be a m×n matrix and let a1, . . . ,an ∈Rm be its columns. Then

the coherence of A is the number µ(A) defined as

µ(A) = max
1≤i< j≤n

|〈ai,a j〉|
‖ai‖2‖a j‖2

. (1.34)

Due to Cauchy-Schwartz inequality, µ(A) ≤ 1 is always true. If m ≤ n, then

there is a lower bound (known as the Welch bound [70]) on the coherence given by

µ(A)≥
√

n−m
m(n−1) . Let us observe that if n≫ m, then this bound reduces to approx-

imately µ(A) ≥ 1/
√
m. There is a lot of possible ways how to construct matrices

with small coherence. Not surprisingly, one possible option is to consider random

matrices A with each entry generated independently at random, cf. [57, Chapter 11].

Nevertheless the construction of matrices achieving the Welch bound exactly is still

an active area of research, making use of ideas from algebra and number theory. On

the other hand, it is easy to show that the Welch bound can not be achieved if n is

much larger then m. It can be done only if n ≤ m(m+ 1)/2 in the real case, and if
n≤ m2 in the complex case.

The connection of coherence to RIP is given by the following Lemma.

Lemma 1.6. If A has unit-norm columns and coherence µ(A), then it satisfies the

RIP of order k with δk(A)≤ (k− 1)µ(A) for all k < 1/µ(A).

Combining this with Theorem 1.5, it gives recovery guarantees for the number of

measurements m growing quadratically in the sparsity k.

1.4.3 Stability and Robustness

Basic discussion of stability and robustness of the methods of compressed sens-

ing was given already in Section 1.3.5 with Theorem 1.6 being the most important

representative of the variety of noise-aware estimates in the area. Its proof follows
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closely the presentation of [11]. The proof can be easily transformed to the spirit of

Section 1.3.2 and 1.3.3 using the following modification of the Null Space Property.

Definition 1.4. We say that A ∈ Rm×n satisfies the ℓ2-Robust Null Space Property
of order k with constants 0< ρ < 1 and τ > 0 if

‖vT‖2 ≤
ρ‖vT c‖1√

k
+ τ‖Av‖2 (1.35)

for all v ∈Rn and all sets T ⊂ {1, . . . ,n} with |T | ≤ k.

The following theorem (which goes essentially back to [15]), is then the noise-

aware replacement of Theorem 1.2.

Theorem 1.8. Let A ∈ Rm×n with ℓ2-Robust Null Space Property of order k with

constants 0 < ρ < 1 and τ > 0. Then for any x ∈ Rn the solution x̂ of (P1,η) with

y= Ax+ e and ‖e‖2 ≤ η satisfies

‖x− x̂‖2 ≤
C√
k

σk(x)1+Dη (1.36)

with constants C,D> 0 depending only on ρ and τ.

Finally, it turns out that the Restricted Isometry Property is also sufficient to guar-

antee the ℓ2-Robust Null Space Property and Theorem 1.3 can be extended to

Theorem 1.9. Let A∈R
m×n and let k be a natural number with k≤ n/2. If δ2k(A)<

1/3, then A satisfies the ℓ2-Robust Null Space Property of order k with constants

0< ρ < 1 and τ > 0 depending only on δ2k(A).

Let us only point out, that the constant 1/3 is by no means optimal, and that

the same result (with more technical analysis) holds also if δ2k(A) < 4/
√
41, cf.

[9, 10, 38, 39].

Theorems 1.6 and 1.8 are sufficient to analyze the situation, when the noise is

bounded in the ℓ2-norm, no matter what the structure of the noise is. If we assume,
that the noise is Gaussian, i.e. that e= (e1, . . . ,em), where ei’s are independent nor-
mal variables, then the estimate (1.36) suffers from the following drawback. If we

increase the number of measurements m, then also the expected value of ‖e‖2 in-
creases and, therefore, the estimate (1.36) actually becomes worse.

To deal with this issue, the following recovery algorithm, called Dantzig selector

min
z∈Rn

‖z‖1 s.t. ‖A∗(Az− y)‖∞ ≤ τ, (1.37)

was proposed and analyzed in [17]. It deals with the case, when ‖AT e‖2 is small.

Theorem 1.10. Let A be a m×n matrix with RIP of order 2k and δ2k <
√
2−1. Let

the measurements y take the form y= Ax+ e, where ‖AT e‖∞ ≤ τ . Then the solution
x̂ of (1.37) satisfies
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‖x̂− x‖2 ≤
C√
k

σk(x)1+D
√
kτ, (1.38)

where C,D> 0 depend only on δ2k(A).

To see, how this is related to measurements corrupted with Gaussian noise, let us

assume that the components of e ∈ R
m are i.i.d. normal variables with variance σ2.

If A has also unit-norm columns, then the 2-stability of normal variables gives that

each coordinate of AT e is also a normal variable with mean zero and variance σ2.

Then we obtain

P(|[AT e]i| ≥ tσ)≤ 2exp(−t2/2)
and using the union bound this becomes

P
(

‖AT e‖∞ ≥ 2
√
lnnσ

)

≤ 2nexp(−2lnn) = 2

n
. (1.39)

Combining this with Theorem 1.10, we obtain for the case of exactly sparse vectors

the following theorem.

Theorem 1.11. Let A be a m× n matrix with unit-norm columns and with RIP of

order 2k and δ2k <
√
2−1. Let the measurements y take the form y= Ax+e, where

the entries of e are i.i.d. normal variables with variance σ2. Then the solution x̂ of

(1.37) with τ = 2
√
lnnσ satisfies

‖x̂− x‖2 ≤C
√
k lnnσ (1.40)

with probability at least 1− 2/n.

Observe that (1.40) depends only on the sparsity level of x and not on m any more.

1.4.4 Recovery algorithms

Althoughwe concentrated on ℓ1-minimization in the first part of this chapter, there is
a number of different algorithms solving the problem of sparse signal recovery. Sim-

ilarly to ℓ1-minimization, which was used successfully in machine learning much
before the advent of compressed sensing, many of these algorithms also predate the

field of compressed sensing. We give an overview of some of these algorithms and

refer to [40] for more extensive treatment.

1.4.4.1 ℓ1-minimization

The ℓ1-minimization problems (P1) or (P1,η) presented before form a backbone of

the theory of compressed sensing. Their geometrical background allows for theo-

retical recovery guarantees, including corresponding stability and robustness exten-

sions. They are formulated as convex optimization problems, which can be solved
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effectively by any general purpose numerical solver. Furthermore, several imple-

mentations dealing with the specific setting of compressed sensing are available

nowadays.

Sometimes, it is more convenient to work with some of the equivalent reformu-

lations of (P1,η). Let us discuss two most important of them. Let η ≥ 0 be given and

let x̂ be a solution of the optimization problem (P1,η)

x̂= argmin
z∈Rn

‖z‖1 s.t. ‖Az− y‖2 ≤ η . (P1,η)

Then there is a λ ≥ 0, such that x̂ is also a solution of the non-constrained convex

problem

x̂= argmin
z∈Rn

1

2
‖Az− y‖22+λ‖z‖1. (1.41)

This version of ℓ1-minimization is probably the mostly studied one, see, for exam-
ple, [34, 41, 50, 72]. On the other hand, if λ > 0 is given and x̂ is a solution to

(1.41), then there is an η > 0, such that x̂ is also a solution of (P1,η). In the same
sense, (P1,η) and (1.41) is also equivalent to Lasso (least absolute shrinkage and

selection operator, cf. [63])

x̂= argmin
z∈Rn

‖Az− y‖22 s.t. ‖z‖1 ≤ τ. (1.42)

Unfortunately, the values of λ and τ > 0 making these problems equivalent are a-

priori unknown.

The last prominent example of an optimization problem, which takes a form

of ℓ1-minimization is the Dantzig selector (1.37). Let us also point out, that [7]

provides solvers for a variety of ℓ1-minimization problems.

1.4.4.2 Greedy algorithms

Another approach to sparse recovery is based on iterative identification/approximation

of the support of the unknown vector x and of its components. For example, one adds

in each step of the algorithm one index to the support to minimize the mismatch

to the measured data as much as possible. Therefore, such algorithms are usually

referred to as greedy algorithms. For many of them, remarkable theoretical guaran-

tees are available in the literature, sometimes even optimal in the sense of the lower

bounds discussed above. Nevertheless, the techniques necessary to achieve these re-

sults are usually completely different from those needed to analyze ℓ1-minimization.
We will discuss three of these algorithms, Orthogonal Matching Pursuit, Compres-

sive Sampling Matching Pursuit and Iterative Hard Thresholding.

Orthogonal Matching Pursuit(OMP)

OrthogonalMatching Pursuit [52, 64, 66] adds in each iteration exactly one entry

into the support of x̂. After k iterations, it therefore outputs a k-sparse vector x̂.
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The algorithm finds in each step the column of Amost correlatedwith the residual

of the measurements. Its index is then added to the support. Finally, it updates the

target vector x̂i as the vector supported on Ti that best fits the measurements, i.e.

which minimizes ‖y−Az‖2 among all z ∈ Rn with supp (z) ⊂ Ti. It is well known,

that this vector is given as the the product of the Penrose pseudoinverse A† of A and

y.

The formal transcription of this algorithm is given as follows.

Orthogonal Matching Pursuit (OMP)

Input: Compressed sensing matrix A, measurement vector y

Initial values: x̂0 = 0,r = y,T0 = /0, i= 0

Iteration step: Repeat until stopping criterion is met

i := i+ 1

Ti← Ti−1∪ supp H1(A
T r) add largest residual entry to the support

x̂i|Ti ← A†
Ti
y update the estimate of the signal

r← y−Ax̂i update the residual of the measurements
Output: x̂i

It makes use of the hard thresholding operatorHk(x). If x∈Rn and k∈{0,1, . . . ,n},
then Hk : x→ Hk(x) associates to x a vector Hk(x) ∈ Rn, which is equal to x on the

k entries of x with largest magnitude and zero otherwise. The stopping criteria can

either limit the overall number of iteration (limiting also the size of the support of

the output vector x̂), or ensure, that the distance between y and Ax̂ is small in some

norm.

The simplicity of OMP is unfortunately connected with one of its weak points. If

an incorrect index is added to the support in some step (which can happen in general

and depends on the properties of the input parameters), it can not be removed any

more, and stays there until the end of OMP. We refer also to [26] for another variant

of OMP.

Compressive Sampling Matching Pursuit (CoSaMP)

One attempt to overcome this drawback is presented in the following algorithm

called Compressive Sampling Matching Pursuit [56]. It assumes, that an additional

input is given - namely the expected sparsity of the output. At each step it again

enlarges the support, but in contrast to OMP, it will add at least k new entries. After-

wards, it again uses the Penrose pseudo-inverse to find the minimizer of ‖Az− y‖2
among all z ∈ Rn with supp (z) ⊂ Ti, but this time only the k largest of coordinates

of this minimizer are stored.

The formal description is given by the following scheme.
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Compressive Sampling Matching Pursuit (CoSaMP)

Input: Compressed sensing matrix A, measurement vector y, sparsity level k

Initial values: x̂0 = 0,r = y,T0 = /0, i= 0

Iteration step: Repeat until stopping criterion is met

i := i+ 1

Ti← supp (x̂i−1)∪ supp H2k(A
T r) update the support

x̂i|Ti ← Hk(A
†
Ti
y) update the estimate of the signal

r← y−Ax̂i update the residual
Output: x̂i

Iterative Hard Thresholding (IHT)

The last algorithm [8] we shall discuss is also making use of the hard thresholding

operator Hk. The equation Az= y is transformed into ATAz= AT y, which again can

be interpreted as looking for the fixed point of the mapping z→ (I−ATA)z+AT y.

Classical approach is then to iterate this mapping and to put x̂i = (I−ATA)x̂i−1+
AT y= x̂i−1+AT (y−Ax̂i−1). Iterative Hard Thresholding algorithm is doing exactly

this, only combined with the hard thresholding operator Hk.

Iterative Hard Thresholding (IHT)

Input: Compressed sensing matrix A, measurement vector y, sparsity level k

Initial values: x̂0 = 0, i= 0

Iteration step: Repeat until stopping criterion is met

i := i+ 1

x̂i = Hk(x̂i−1+AT (y−Ax̂i−1)) update the estimate of the signal

Output: x̂i

1.4.4.3 Combinatorial algorithms

The last class of algorithms for sparse recovery we shall review, were developed

mainly in the context of theoretical computer science and they are based on clas-

sical ideas from this field, which usually pre-date the area of compressed sensing.

Nevertheless, they were successfully adapted to the setting of compressed sensing.

Let us present the basic idea on the example of Group Testing, which was in-

troduced by Robert Dorfman [27] in 1943. One task of United States Public Health

Service during the Second World War was to identify all syphilitic soldiers. How-

ever, syphilis test in that time was expensive and the naive approach of testing every

soldier independently would have been very costly.

If the portion of infected soldiers would be large (say above 50 percent) then the

method of individual testing would be reasonable (and nearly optimal). A realistic

assumption however is that only a tiny fraction of all the soldiers is infected, say

one in thousand, or one in ten thousand. The main idea of the area of Group Testing

in this setting is that we can combine blood samples and test a combined sample
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to check if at least one soldier in the group has syphilis. Another example of this

technique is the false coin problem from recreational mathematics, in which one is

supposed to identify in a group of n coins a false coin weighting less than a real

coin. We refer to [28] to an overview of the methods of Group Testing.

To relate this problem to compressed sensing, let us consider a vector x =
(x1, . . . ,xn)∈ {0,1}n, where n is the number of soldiers, with xi = 0 if the ith soldier

is healthy, or xi = 1 if he has syphilis. The grouping is then represented by a m× n

matrix A = (ai j), where ai j = 1, if the blood sample of jth soldier was added to

ith combined sample. The methods of Group Testing then allow to design efficient

matrices A, such that the recovery of x can be done in a surprisingly small number

of steps - even linear in the length of the sparse representation of x, i.e. in its sparsity

k, cf. [43, 44].

1.4.5 Structured sparsity

In many applications, one has much more prior knowledge about the signal x, than

just assuming that it possesses a sparse representation with respect to certain basis,

frame, or dictionary.

For example, the image coder JPEG2000 exploits not only the fact that natural

images have compressible representation in the wavelet basis (i.e. that most of their

wavelet coefficients are small) but it also uses the fact that the values and locations

of the large coefficients have a special structure. It turns out that they tend to cluster

into a connected subtree inside the wavelet parent-child tree. Using this additional

information can of course help to improve the properties of the coder and provide

better compression rates [30, 31, 47].

Another model appearing frequently in practice is the model of block-sparse

(or joint-sparse) signals. Assume, that we want to recover N correlated signals

x1, . . . ,xN ∈ Rn with (nearly) the same locations of their most significant elements.

A simple example of such a situation are the three color channels of a natural RGB

image, where we intuitively expect the important wavelet coefficients in all three

channels to be on nearly the same locations. Furthermore, the same model often ap-

pears in the study of DNA microarrays, magnetoencephalography, sensor networks

and MIMO communication [6, 32, 62, 69]. It is usually convenient to represent the

signals as columns of a n×N matrix X = [x1 . . .xN ]. The recovery algorithms are
then based on mixed matrix norms, which are defined for such an X as

‖X‖(p,q) =
( n

∑
i=1

‖x̃i‖qp
)1/q

,

where p,q≥ 1 are real numbers and x̃i, i= 1, . . . ,n, are the rows of the matrix X . If
A is again the sensing matrix and Y = AX are the measurements, then the analogue

of (P1) in this setting is then
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X̂ = argmin
Z∈Rn×N

‖Z‖
(p,q)

s. t. Y = AZ

for a suitable choice of p and q, typically (p,q) = (2,1). We refer for example to

[36, 65, 67] for further results.

Finally, let us point out that model-based compressive sensing [3] provides a

general framework for many different kinds of structured sparsity.

1.4.6 Compressed Learning

In this last part, we will discuss applications of compressed sensing to a classical

task of approximation theory, namely to learning of an unknown function f from

a limited number of its samples f (x1), . . . , f (xm). In its most simple form, treated
already in [13] and elaborated in [58], one assumes that the function f is known

to be a sparse combination of trigonometric polynomials of maximal order q in

dimension d, i.e. that

f (x) = ∑
l∈{−q,−q+1,...,q−1,q}d

cle
il·x

and ‖c‖0 ≤ k, where k ∈ N is the level of sparsity. Theorem 2.1 of [58] then

shows that, with probability at least 1− ε , f can be exactly recovered from sam-

ples f (x1), . . . , f (xm), where m ≥ Ck ln((2q+ 1)d/ε) and x1, . . . ,xm are uniformly

and independently distributed in [0,2π ]d . The recovery algorithm is given by

argmin
c

‖c‖1 s. t. ∑
l

cle
il·x j = f (x j), j = 1, . . . ,m.

We refer to [12, 60] for further results and to [40, Chapter 12] for an overview on

random sampling of functions with sparse representation in a bounded orthonormal

system.

In another line of study, compressed sensing was used to approximate functions

f : [0,1]d → R, which depend only on k≪ d (unknown) active variables i1, . . . , ik,
i.e.

f (x) = f (x1, . . . ,xd) = g(xi1
, . . . ,xi

k
), x ∈ [0,1]d.

In [24] and [71], the authors presented sophisticated combinatorial (adaptive and

non-adaptive) constructions of sets of sampling points, which allowed for recovery

of f to a precision of 1/L using onlyC(k)(L+1)k lnd points. Observe, that (L+1)k

points would be necessary even if the location of the active coordinates would be

known. The use of compressed sensing in this setting was then discussed in [61]. The

algorithm developed there was based on approximation of directional derivatives of

f at random points {x1, . . . ,xmX } and random directions {ϕ1, . . . ,ϕmΦ }. Denoting
the mΦ×mX matrix of first order differences as Y and the mΦ ×d matrix of random

directions by Φ , it was possible to use direct estimates of probability concentrations
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to ensure, that the k largest rows of ΦTY correspond to the k active coordinates of

f with high probability. Again, only an additional lnd factor is paid for identifying

the unknown active coordinates.

Finally, the paper [21] initiated a study of approximation of ridge functions of

the type

f (x) = g(〈a,x〉), x ∈ [0,1]d, (1.43)

where both the direction a ∈ Rd \ {0} and the univariate function g are unknown.

Due to the assumption a j ≥ 0 for all j = 1, . . . ,d, posed in [21], it was first possible

to approximate g by sampling on grid points along the diagonal { i
L (1, . . . ,1)

T , i =
0, . . . ,L}. Afterwards, the methods of compressed sensing were used in connection
with the first order differences to identify the vector a. The importance of derivatives

of f in connection with the assumption (1.43) is best seen from the simple formula

∇ f (x) = g′(〈a,x〉) ·a. (1.44)

Hence, approximating the gradient of f at a point x gives actually also a scalar

multiple of a.

Another algorithm to approximate the ridge functions was proposed in [37]. Sim-

ilarly to [61], it was based on (1.44) and on approximation of the first order deriva-

tives by first order differences. In contrary to [21], first the ridge direction a was

recovered, and only afterwards the ridge profile g was approximated by any stan-

dard one-dimensional sampling scheme. Furthermore, no assumptions on signs of

a was needed and it was possible to generalize the approach also for recovery of

k-ridge functions of the type f (x) = g(Ax), where A ∈Rk×d and g is a function of k
variables. We refer also to [18] for further results.
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Birkhäuser/Springer, New York (2013)

41. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via

coordinate descent. J. Stats. Software 33, 1–22 (2010)
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