AMBIGUITY FUNCTIONS, WIGNER DISTRIBUTIONS AND
COHEN’S CLASS FOR LCA GROUPS

GITTA KUTYNIOK

ABSTRACT. In this paper we construct a general class of time-frequency represen-
tations for LCA groups which parallel Cohen’s class for the real line. For this, we
generalize the notion of ambiguity function and Wigner distribution to the setting
of general LCA groups in such a way that the Plancherel transform of the am-
biguity function coincides with the Wigner distribution. Furthermore, properties
of the general ambiguity function and Wigner distribution are studied. In detail
we characterize those groups whose ambiguity functions and Wigner distributions
vanish at infinity or are square-integrable. Finally, we explicitely construct Co-
hen’s class for the group of p-adic numbers, p prime.

1. INTRODUCTION

For f,g € L*(R), the Wigner distribution is the function Wy, on R x R defined

by
%% _ _E E —27riytd
ey, )= [ flz 5 g x+2 e t.
R

In 1932, it was introduced by Wigner [16] in connection with quantum mechanics.
The concept was reintroduced by Ville [15] in signal analysis some 15 years later.
The Wigner distribution became a popular tool in engineering through the influential
work of Claasen and Mecklenbriuker [3, 4, 5]. Since the Wigner distribution is not
always positive, which is desirable for a time-frequency representation, other time-
frequency representations were constructed.

In 1966, Cohen [6] introduced a general class of time-frequency representations
that allow us to pick time-frequency representations with prescribed, desirable prop-
erties. Cohen’s class is defined by using the so-called “kernel method” [7, Chapter
9]. This method makes extensive usage of the fact that the Wigner distribution
coincides with the Plancherel transform of the ambiguity function.

In the early 1950s, Woodward introduced the ambiguity function on R for radar
analysis [18]. The ambiguity function is the function A;, defined on R x R by

Apglz,y) = /Rf (t - g)g (t + %) 2™t dt.

where f,g € L*(R). Since the fundamental work of Wilcox [17], the ambiguity
function has been widely used in the context of radar and sonar (compare [14]).
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In the last 20 years there have been numerous attempts to define both time-
frequency representations on groups other than R, for example, on Z, on finite
abelian groups and, more generally, on elementary LCA groups [1, 4, 8, 13]. But
until now there has been no attempt to define Cohen’s class for other settings than
the real line.

In the present paper we construct a general class of time-frequency representa-
tions for LCA groups which parallel Cohen’s class for the real line by generalizing
the notion of ambiguity function and Wigner distribution to LCA groups (locally
compact abelian groups, which we always assume to be second countable) in an
appropriate way. The main problem is the existence of LCA groups for which the
mapping r +— 2x is no longer an automorphism. We overcome this difficulty by
using the concept of “2-root-compactness” as a substitude in those cases.

In Subsection 3.1 we give the definition of ambiguity function and Wigner dis-
tribution in the general setting and examine their elementary properties. It turns
out that all basic properties which hold in the real case remain true in the general
situation. Furthermore, in Subsection 3.2 and 3.3 we establish results concerning
the behaviour at infinity and the square-integrability. In the last part of Section
3 we then prove that the Plancherel transform of the ambiguity function coincides
with the Wigner distribution for a large class of LCA groups.

The purpose of the fourth section is to construct a class of time-frequency rep-
resentations for LCA groups which parallel Cohen’s class for G = R by using the
results from the previous section.

In the last section we discuss the example of the group of p-adic numbers, where
p is a prime. These groups seem to be the right setting for problems of computer
science, because the group laws imitate the computer arithmetic most closely. We
study properties of their ambiguity functions and Wigner distributions and give a
concrete formula for Cohen’s class.

2. PRELIMINARIES AND NOTATION

Now let G be a locally compact abelian (LCA) group with its dual group denoted
by G. We always assume G to be second countable. The neutral elements of GG
and G are denoted by e and 1, respectively. For a function f on G, one defines
L,f(z) = f(y 'z) and f*(z) = f(z 1) for all z,y € G. Let f and g be measurable
functions on G. Then the convolution product f x g of f and g is defined by

fxg(x) =/Gf(y)g(y1x) dy,

whenever this makes sense. For M C (G, the characteristic function of M is denoted
by xar- Let S be some set. Then Idg denotes the identity operator.

Let Gy denote the connected component of the identity in G. We call G a Lie
group, if G is an open subgroup of G which is topologically isomorphic to a group
of the form R? x T", p,r > 0.
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G is called n-root compact for some n € N if, for each compact subset C' of GG, the
set

{reG: 2" eC}

is compact. It should be mentioned that this definition is equivalent to [12, Definition
3.1.1] by [12, Theorem 3.1.4]. Note that every compactly generated LCA group is
n-root compact for each n € N [12, Example 3.1.3].

In the following G® is the subgroup of G defined by G® = {22 : 2 € G}. Let

the Fourier transformation " : L'(G) — Co(G), f — 7 be defined by
flw) = / F(&)w(t) dt.
G

When Haar measures on G and G are suitably normalized, the Fourier trinsfor—
mation on L'(G) N L?(G) extends to a unitary operator from L?(G) to L?*(G), the
so-called Plancherel transformation. We also denote this transformation by ~.

As an extensive reference to duality theory of general LCA groups we mention

[10].

The following lemma will be needed subsequently several times.
Lemma 2.1. Let G be a LCA group and H an open subgroup such that there exists
a topological isomorphism ® : G — H.

(i) There exists a positive constant ¢ such that

/G\f(@(t))|dt§c/G|f(t)|dt for all f € L}(G).

(ii) Let the Haar measure on H be induced by the Haar measure on G. Then there
erists a positive constant d such that

/Gf(t) dt:d/Hf(cpl(t))dt for all f € LM(G).

Proof. Let I denote the Haar integral on G. We consider the linear functional
J:C.(H)—=C, J(f):=1c(f0c?®).

Since this functional is translation-invariant and Haar integrals are unique up to a
positive multiplicative constant, we obtain (i).

The claim in (ii) follows immediately from the fact that ® : G — H is a topological
isomorphism. O

3. THE GENERAL AMBIGUITY FUNCTION AND WIGNER DISTRIBUTION

Our aim is to generalize Cohen’s class to the setting of LCA groups. This re-
quires a definition of ambiguity functions Ay, and Wigner distributions Wy, in this
general situation such that the relation Z;g = W;,, is satisfied. There already ex-
ist definitions of ambiguity functions in more general settings, for example, in [8,
Subsection 7.6.1] for elementary LCA groups or in [1, Section 10.2] for finite abelian
groups. But defining the Wigner distribution to be the Plancherel transform of this
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ambiguity function yields a distribution which is no generalization of the classical
Wigner distribution.

3.1. Definition and some basic facts. We start by giving the definition of am-
biguity functions and Wigner distributions in the general setting, discussing the
hypotheses needed and stating some elementary properties.

Definition 3.1. Let G be a LCA group, let H be an open subgroup such that there
exists a topological isomorphism ® : G — H and let f,g € L*(G). The ambiguity

function associated with H and ® of f and g on G X G is defined by
Apg(z,w) = / Ft@(z 1)g(t®(z))w(t)dt ((z,w) € G x G).
G

The Wigner distribution associated with H and ® of f and g on G x G is defined
by

_— _— ~

Wio(w,z) = / flx®(t=1)g(z®(t))w(t)dt ((w,z) € G x Q).
G
Further, we denote Ay ¢ by Ay and Wy s by Wy.

It it easily checked, by using Holder’s inequality and Lemma 2.1 (i), that A 4(x, w)
and Wy ,(w, ) are defined for each z € G, w € G.

Remark 3.2. In Subsection 3.2 and 3.3 we will see that the choice of H and ® does
not affect whether the ambiguity function or Wigner distribution vanishes at infinity
or is square-integrable. But it affects the properties of the members of Cohen’s class
(compare Section 4).

In the following we will state all possible choices of H and & for several LCA
groups.

Ezample 3.3. (i) Consider the case G = R. By taking H = R and defining & :
R — R by ®(x) = £, we see that the definitions above generalize the definition
of the classical ambiguity function and Wigner distribution on L*(R).

(ii) For G = RP or T", an open subgroup H of G always equals G. So all possible
topological isomorphisms ® may be found in [10, Example 26.18 (h) and (i)].

(iii) For G = Z9, H is an arbitrary subgroup of G. It is easy to check (see also [10,
Example 26.18 (g)]) that each topological isomorphism ® : G — H is given by
an element of the discrete group of ¢ X ¢ matrices A having integer entries and
for which det A # 0.

(iv) For G finite, H always equals G. By [10, Example 23.27 (d)], G is isomorphic
t0 Ly X .. X Ly, for integers mq, ... ,m, greater than 1, each of which is
a power of a prime. Now let G = Z,,, m > 1 and a power of a prime, and
let a,b € G be generators of G. Then ® : G — G, ®(a™) = b, n € Z, is a
topological isomorphism and each of the topological automorphisms of G' can
be constructed in such a way.

Next we will discuss why H has to be open and when it is open automatically.
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Remark 3.4. (i) We need the openness of H because of the following reason. Sup-
pose that H is not open. Then the set H = {®(¢) : t € G} is a zero set in G.
Let f,g € L?>(G) be such that f(t) = g(t~!) for all t € H. Then the Wigner
distribution of f and g may not be defined at (1, ¢€), since

Wf,g(1,e)=Lf(¢(t1 ) dt = /\f )2 dt.

(ii) If G is an arbitrary LCA group, H a closed subgroup of G and ® : G — H
a topological isomorphism, we cannot always conclude that H is open. A

counterexample is the group G := [[;2; Zo, where Z, denotes the additive
group of residues mod 2, endowed with the product topology. Here we choose
H to be

H=]]F, Whereﬂz{{o} t i s odd,

= Zy : 1iseven
1=

and define ® : G — H by

@ ((zn)nen) = (Yn)nen, where y,, = {

Obviously, ® is a topological isomorphism, but H is not open in G.

(iii) Let G be a LCA Lie group, H a closed subgroup of G and ® : G — H a
topological isomorphism. It is well-known that this implies H to be open.
Hence in this case the subgroup H is open automatically.

0 : nisodd,
Tz n is even.

For the remainder of this paper let H be an open subgroup of G such that there
exists a topological isomorphism ® : G — H.

Next we state some important basic properties of the ambiguity function and
Wigner distribution which parallel the known properties on R. The proofs carry
over in a straightforward manner.

Proposition 3.5. Let G be a LCA group. For all f,g € L*(G) andz € G, w € @,
the following hold.

(i) [Apg(@,w)| < [[fll2llgllz and [Wyg(w, z)| < || fll2llgll2 for some ¢ >0

(i) Asy(z,w) = Ay s(z7 1, ©0) and Wy y(w,z) = W, p(w, ).

(iii) Af(e, 1) > 0.

To conclude this subsection we want to investigate the ambiguity function and
the Wigner distribution with respect to continuity. It will turn out that we obtain
analogous results as for the classical ambiguity function and Wigner distribution.

Proposition 3.6. Let G be a LCA group.
(i) For all f,g € L*(G),

A, € C(GxG) and Wy, e C(GxG).
(ii) The mappings
(£.9) = Apg,  L*(G) x L*(G) = (C(G % G), || )
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and (f,9) = Wy, LAG) x L*(G) = (C(G x G), || - [|)
are continuous.

Proof. Using Proposition 3.5 (i) and the continuity of ®, the claim concerning the
ambiguity functions follows immediately. To prove the analogous result for the
Wigner distribution, we have to use Lemma 2.1 (ii) in addition. O

3.2. Behaviour at infinity. In what follows, we are interested in the behaviour
at infinity of the ambiguity function and the Wigner distribution. It will turn out,
that we can classify exactly those LCA groups, for which the ambiguity function or
the Wigner distribution is continuous and vanishes at infinity.

Theorem 3.7. Let G be a LCA group. Then the following conditions are equivalent.
(i) A, € Co(G x G) for dll f,g € L2(G).

(ii) Wy, € Co(G x G) for all f,g € L*(G).

(iii) G is 2-root compact.

Proof. We start by proving (i) < (iii). Suppose that (i) holds. We argue by con-
tradiction and assume that G is not 2-root compact. This implies the existence of
a compact subset K of G such that the set X := {z € G : 2° € K} is non-compact.
Let V be any compact neighbourhood of e and define f,g € L?*(G) by f = xv and
g = Xva(k)- Then, for all z € X, we obtain

[Apg(a,1)] = /Gmg(t@(ﬁ))dt‘ -

/G v (Oxveo (¢ B(22)) dt

/ Xvnve(z—2k) (1) dt‘ = |V,
G

a contradiction.
Now suppose that G is 2-root compact. Let f,g € L*(G). Proposition 3.6 (i)
shows that A;, € C(G x G). Let € > 0. For all (z,w) € G x G, we obtain

[Apg(w,w)| < /G [FOllg(t @(@*)]dt = (|f7] *g])(@(2?))-

Now f,g € L*(G) implies |f*| x |g| € Co(G). Hence there exists a compact set
K C G such that

* € >
([fTxlgh(y) <5 forally € G\K.
Define K CG by K = {z € G: 22 € & '(K)}. Then
A y(z,w)| < (IF] * |g])(®(z2)) < % for all z € G\K, w € G.

Since (G is 2-root compact and ® is a topological isomorphism, K is compact.
On the other hand, Af, may be rewritten as

Apg(@,w) = (Lo ) - (La@—9))" @) ((#,w) € G x G).
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Since both functions L¢($)7 and Lg(,-1)g are square-integrable, we obtain (Lq;(m)?) .
(Lo@-19) € L'(G). Hence Ay y(z,-) € Cy(G) for each z € G. This implies that, for
each z € G, there exists a compact subset I'(z) C G such that

A y(z,w)| < % for all w € G\I'(2).

Now we use the sets I'(z), z € G, to construct a compact subset I" of G such that
|Afq(z,w)| < eforall (z,w) € (G xG)\(K xT).

For this, let (z,w) € G x G and let z( be an arbitrarily fixed element of G. We
obtain

|Asg(@,w)] = [{w- Lo(z—2z 2)<1>(w52)9;f>|
= [Apg(w0,w) + (W Loz 9: Loz f — )]
< [Agg(zo, W) + ll9ll2l Law2ay2) f fllz-

There exists a neighbourhood V' (z9) C G of xy such that

| L2 = f — fll2 < for all z € V(o).

2|| 2

Since K is compact, it follows that we can choose finitely many elements z1,... ,zy €
G, N € N, such that the sets V(z;), i =1,...,N, cover K. Then we define I' C G
by

Clearly, T" is compact.
It remains to show that I' satisfies the property mentioned above. Let z € K.

There exists iy € {1,..., N} such that z € V(z;,). Hence, for all w € G\I'(z,),
[Asg(@, )| = [Agg(@io, W)| + |9llol Laaeszz) f = Fll2 <€
In particular, this is true for all w € é\r Therefore, we obtain
A y(z,w)| < e forall (z,w) € (G x G)\(K x ).

Thus (i) holds.
The proof of (ii) being equivalent to (iii) follows the same main steps as the proof
of (i) < (iii) but we often have to use Lemma 2.1 (ii) in addition. O

3.3. Square-integrability. In this subsection we will establish necessary and suf-

ficient conditions for a LCA group G to force any ambiguity function or Wigner

distribution to be square-integrable. This problem can be simplified in an easy way.
For this, let f, g € L?*(Q) and define the function hs,: G x G — C by

(1) hyg(z,t) = f(D)g(t 8(2?)).
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By Hélder’s inequality, hfq(z,) € L'(G) for each z € G. Hence the Fourier
transform of the function ¢ — hy4(z,t) exists and we have

w(®(x))(hyg(z, )Y @) = Apy(z,w) for all (z,w) € G x G.

Now suppose that hp, € L*(G x G). Then the Fourier transform and the
Plancherel transform of ¢ — hy,(z,t) coincide and we obtain

(2) 1A7gllz = (@, w) = (hpg(@, ) W)z = gyl
Conversely, suppose that Ay, is square-integrable. Then, for almost all z € G,
we have (hs4(z,-))"€ L*(G). In particular, this is the Plancherel transform. This
also implies (2). So we have proven the following lemma.
Lemma 3.8. Let G be a LCA group and let f,g € L?>(G). Then the following
conditions are equivalent.
(i) Ay, € L*(G x G).
(ii) hs, € L*(G x G).
The following theorem shows that we may restrict our attention to ambiguity

functions, since all results concerning square-integrability obtained for the ambiguity
function holds for the Wigner distribution in the same manner.

Theorem 3.9. Let G be a LCA group and let f,g € L*(G). Then
[Azgllz = [Wigllo-

In particular, Ay g is square-integrable if and only if Wy, is square-integrable.
Proof. Consider the function Ay, : G x G — C defined by

hig(@,t) = Fa®(t))g(2®(1)).
Using Lemma 2.1 (i) and the same arguments as in the proof of Lemma 3.8 we

obtain |[Wiglla = ||hs4ll2- Let hs, be defined as in (1). In the proof of Lemma 3.8
we showed that ||Asglla = ||hs4ll2- The claim now follows from

11,61

et d(z !

- / / FO)RlgR @) P dede " kg2
GJG

O

Therefore from now on we focus on the ambiguity function. By Lemma 3.8,
in order to prove the square-integrability of an ambiguity function Ay g, it suffices
to show that h;, € L*(G x G). Notice that, for G = R, it is not very difficult
to conclude from Lemma 3.8 that Ay, is square-integrable for any two functions
f,9 € L*(R) (|2, Theorem 2.1]). The case of an arbitrary LCA group is not so easy to
deal with, since then Ay, is not always square-integrable. Here we shall characterize
those LCA groups G which satisfies A;, € L*(G x @) for all f,g € L*(G).

For the proofs of the following theorems, we need some preparation. Let G be a
LCA group. For the remainder of this subsection, we shall always denote the map
r + 22, G — G by ¢. Furthermore, we define ¢ : G/ ker ¢ — G® by

Y([z]) = 2”.
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The function v has the following property.

Lemma 3.10. Let G be a LCA group such that G® is closed. Then v is a topo-
logical isomorphism.

Proof. Obviously, the mapping z — 22, G — G® is a surjective and continuous
homomorphism. Hence, by [10, Theorem 5.29], it is also open, since G®@ is locally
compact and G is o-compact. Using [10, Theorem 5.27|, the claim follows. O

Remark 3.11. There exist LCA groups such that ¢ is not a topological isomorphism.
For example, consider the group H := [[;° Z, endowed with the product topology.
Then define G by G = [[;2, Z4 and regard H as a subgroup of G, where we identify
the elements of Z, with the elements of Z, of order < 2. We endow G with the
topology such that H is an open and compact subgroup of G. Obviously, ¢(H) = {e}
and G® = H. Hence the map z — 22, G — G® is not open. Note that this map
is open if and only if ¥ is open. Thus here % is not a topological isomorphism.

Suppose that G® is closed. In this case we give a condition equivalent to the

square-integrability of the ambiguity function. This condition is much easier to
check.

Theorem 3.12. Let G be a LCA group. Suppose that G is closed. Then the
following conditions are equivalent.

(i) As, € L*(G x G) for all f,g € L*(G).

(ii) ker ¢ is compact and G® is open.

Proof. In the following we will denote ker ¢ by K. By Lemma 3.10, 9/ is a topological
isomorphism. So, in particular, there exists a positive constant i such that the Haar
measure on G/K is equal to u times the Haar measure on G®. Without loss of
generality, for the remainder of the proof, we can assume that the Haar measures on
G, K,G/K,G?® and G/G® are normalized so that for K and G?) Weil’s formula
holds, respectively.

First, suppose that (i) holds. We claim that K is compact. Let f,g € L?*(G). By
Weil’s formula, we obtain

oo>//|Afgxw\ dxdw—//G/K (/ Ay, (ak, w)\2dk) d(zK) dw.

This implies

/ (A 4(zk,w)|?dk < 0o for almost all zK € G/K,w € G
K

But on the other hand we have |Af (zk,w)| = |Afq4(z,w)| for all k € K. If K is
non-compact, this implies Ay, = 0 for all f, g € L*(G), a contradiction.

It remains to prove that G® is open. Assume, towards a contradiction, that G
is not open. Using Lemma 2.1 (i), for f,g € L?(G), we obtain

g2 = /G Ok /G 9(9(a%) Pdudt > / (@ / o(@(12)) Pdadr
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Observe that, if the function t — [f(t)[?* [, |g(t®(2?))|* dz is not integrable, we
obtain a contradlctlon at once by Lemma 3.8. In the other case the requirements
of Lemma 2.1 (i) are fulfilled. Now it suffices to prove the existence of functions

f.g € L*(G) such that
[V [ latp d =
G G
Then we may define a function f : G — C by

0 . teG\H,
0={ Y | e

and a function g : G — C in an analogous way. By Lemma 2.1 (ii), we obtain

/G )Pt = /G a0 f@ O)Par = [ |F@ @) it~ / )Pt

where the Haar measure on H is induced by the Haar measure on G. Hence f,g €
L*(G). Thus we would obtain ||h;,||3 = co. By Lemma 3.8, this is a contradiction.

By assumption, G® is not open in G. Hence G/G® is not discrete. We can
construct a function h € L'(G/GP)\L?*(G/G®P). Then, by [11, Theorem 28.54
(iii)], there exists a function h € L'(G) such that

h(tG®) = / h(tz) da.
G2)

Define f : G — R by

Further, let g := f . Then, by using Weil’s formula,

i [ o) dra
AL |2/G/K/|f (yh)?) 2 dh d(y ) dt

= K| /G P /G P )

= k| [ (o [ 1Fe) Py

If the map ¢ — | f(£)|? [z | f(ty)|? dy does not belong to L'(G), we are done. Oth-
erwise, using Weil’s formula again, we obtain



COHEN’S CLASS FOR LCA GROUPS 11

/\f \2/|g (ta?)? da dt

= ulK| / / f(th)? |f(thy)|? dy dh d(tGP)
G/g(2) G(2) G(2)

= ulK| |f(th)[? dh] d(tG?)

G/G® { G®

2
- [ / \B(thndh} a(G®)
G/g(2) G2)
> K| / h(tG®) 2 d(tG®)
G/G®)

= OQ.

As mentioned above, this is a contradiction. Thus we proved (i) = (ii).
Now suppose that (ii) holds. Let f,g € L?(G). Using Weil’s formula, we obtain

Il = / ) / ot B(2)? de dt

= [1ror [ [ lateeiun)? dndu)
G G/K JK
= K| [ 1fOF [ loeo)P k) de
G G/K
Since G® is open, there exists a positive constant v such that the Haar measure on

G®@ is v times the measure on G® induced by the Haar measure on G. Thus, also
using Lemma 2.1 (i), we obtain

Insel = w&l [ 1FOF [ | laeo@)P e
= wK] [ 11O [ xoo@latt o) dzd
< wii] [ 110F [ loo@)P ded
< ek [ 15OF [ Jata)? dear

= pve K| f[3ll91l3-

Since, by hypothesis, K is compact, we have shown h;, € L?(G x G). Now Lemma
3.8 yields (i). O

The condition that G® be closed is not very restrictive as is shown in the next
proposition.

Proposition 3.13. Let G be a 2-root compact LCA group. Then G® is closed.
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Proof. We argue by contradiction and assume that G is not closed. This means
that there exist y € G\G® and a net (z,),c; in G such that 12 — y. Let K be
a compact neighbourhood of y. Then z? € K for all + > 5. Notice that the set
{z%: 1> 19} U {y} is compact. Since G is 2-root compact, ¢ 1 ({z? : 1 > 1o} U {y})
is also compact. Hence there exists a convergent subnet (z,,)rer of (z,),er- Let
z € G be defined by z,, — z. By continuity of ¢, we obtain y = 22 € G®, a
contradiction. O

The preceding proposition and [12, Example 3.1.3] show that Theorem 3.12 ap-
plies, for instance, to all compactly generated LCA groups.

Under slightly stronger conditions than that G is closed, we can find necessary
and sufficient conditions for the ambiguity functions to be square-integrable, which
are easier to check. However, by Theorem 3.12, square-integrability of all ambiguity
functions implies that G is open. Thus the requirement that G® has to be open
is not very restrictive.

Theorem 3.14. Let G be a LCA group. Suppose that G® is open. Then the
following conditions are equivalent.

(i) Asy € L*(G x G) for all f, g € L*(G).

(ii) ker ¢ is compact.

(iii) G is 2-root compact.

Proof. The equivalence of the statements (i) and (ii) follows from Theorem 3.12.
Suppose that (iii) holds. Then ker ¢ = ¢~ !({e}) is compact. This implies (ii). To
finish the proof we show that (ii) implies (iii). Suppose that G is open and ker ¢ is
compact. Since v is a topological isomorphism, 1~ (K) C G/ ker ¢ is compact for
all compact subsets K C G®). Since ker ¢ is compact, (iii) follows immediately. [

The next corollary shows that a large class of LCA groups satisfy the hypothesis
of Theorem 3.14. However, first we want to exhibit a property for a LCA group GG
which forces G® to be open.

Proposition 3.15. Let G be a LCA group. Suppose that Gy is open. Then G is
open. In particular, G® is open for all LCA Lie groups.

Proof. Suppose that Gy is open. By the structure theorem for LCA groups [10,
Theorem 24.30], there exist a compact abelian group C' and p > 0 such that R? x C
is an open subgroup of G. We have Gy C RP x (). Since Gy is open, also RP x ()
is open. Recall that compact, connected abelian groups are divisible ([10, Theorem
24.25]). Thus we have Cy C C®). This yields

R x Cy CR? x ¥ Cc G@,
Hence G is open. O

Corollary 3.16. Let G be a 2-root compact LCA group. Suppose that Gy is open.
Then, for all f,g € L*(G),

Ap, € I3G x Q).
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Proof. By Proposition 3.15, G is open. Then the claim follows from Theorem
3.14. ]

In particular, the ambiguity function is always square-integrable for all elementary
LCA groups.

The next proposition gives an estimate for the norm of the ambiguity function,
which will be needed in Subsection 3.4.
Proposition 3.17. Let G be a LCA group. Suppose that G is closed and that
As, € L2(G x G) for all f,g € L2(G).

(i) There exists a positive constant C' such that, for all f,g € L*(G),

1456113 < ClIFI3 N3
(ii) The mapping
(f,9) = Apg,  LA(G) x L*(G) — L*(G x G)
18 continuous.
Proof. Let f,g € L*(@). Using the proof of Lemma 3.8, We obtain || Asll5 = l|hsqll3-

By Theorem 3.12 ((i) = (ii)), ker ¢ is compact and G is open. Hence there exist
suitable positive constants i, v and ¢ such that

Ihpgllz < pwelker |l fII2Nlgll2
as was shown in the proof of Theorem 3.12 ((ii) = (i)) and we have | ker ¢| < oo.
This proves (i).
The claim in (ii) is a direct conclusion from (i). O

3.4. ZE, = Wy 4. In this subsection we will show that the Plancherel transform of
the ambiguity function coincides with the Wigner distribution for a large class of
LCA groups.

We need some preparations before we give the theorem and its proof. The follow-
ing theorem is [11, Theorem 31.13|, where we chose A = G.

Theorem 3.18. [11, Theorem 31.13] Let G be a LCA group. Let Cif (G) and Cf (G)
denote the space of functions which have only positive values and which belong to
Co(G) and Co(G), respectively. Then there exist sequences (kn)nen € CH(G)NLYHG)

and (Yn)nen C CF(G)NLY(G) such that for alln € N, w € G, z € G and f € C,(G)
the following is true.

(i) ko(G) C [0,1] and k, = k.

(i hmk() 1.

i)

(iii) k, = = 1, where” denotes the inverse Fourier transform.

(iv) / Un(x)dx =1 and ¥, = ;.

(v) lim (W ¢hn)(z) = w(@).
i) hm 0 (f * ) (2) = f(2).

The next two lemmas will be used in the proof of the theorem.

(v
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Lemma 3.19. Let G be a 2-root compact LCA group. Let f,g € C.(G) and define
the function hygy: G x G — C (as in the proof of Theorem 3.9) by

hyg(z,1) = f(2®(t1))g(x®(1))-
Let () nen be as in Theorem 3.18. Then
(i) by, € C(G x G). )
(ii) For each x € G, (hfq4(-,t) *1,)(x) converges uniformly int € G to hyg4(z,t).

Proof. Clearly, izf,g is continuous. Define T' C G by T = suppf U suppg. Note that
T is compact. Furthermore, define C',Cy C G by

Ci={teG: e (T'T)} and Co,=®(C))TN®C,)

Obviously, C; and C; are also compact, since GG is supposed to be 2-root compact.
It is straightforward to check that supp hy, C Cy x Cy. Thus (i) holds.

Using Theorem 3.18 (vi), this implies immediately that the convergence is uniform.

[

Lemma 3.20. Let G be a 2-root compact LCA group. Further, let f,g € C.(G)
and let (ky)nen be as in Theorem 3.18. Then, for alln € N,

Asg - kn € LNG x G).

Proof. Let n € N. By Theorem 3.18 (iii), Lemma 3.19 (i) and using the fact that
(kn)nen C Cff (G) N LY(G), we obtain

/G A pg () @) dlz )
< / / / (0 () |9 (tD(2))] dt kn(w) dar deo

- / / / w) dwl f(10(z )| |9 (t0(x)) | da dt
= (@) [ [ Vigolta)|de i

<

This proves the lemma. O

For G = R, the following result is contained in [5, Section 2] but without a detailed
proof.

Theorem 3.21. Let G be a 2-root compact LCA group. Suppose that G is open.
Then, for all f,g € L*(Q),

Ay =W, inL*G xG).

Proof. Theorem 3.14 implies that Ay, € L*(G x Q) for all f,g € L2(G).
By Proposition 3.17 (i), by the corresponding result for the Wigner distribution

and by the Plancherel theorem, it suffices to prove that A, 1.9 = Wy, for f,g € C(Q).
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~

For this, let (k,)nen and (¥,)nen be as in Theorem 3.18. Since k, € Co(G), the
function

(z,w) = Ap g (z,w)kn(w), GxG—C

is square-integrable. Hence the Plancherel transforms of both A, and Ay ,-k, exist.
By Theorem 3.18 (ii), for all (z,w) € G x G,

lim Ay (&, w)kn(w) = Apy(2,w).
n—oo
In addition, by Theorem 3.18 (i), we obtain
A g (2, w)kn(w) = Apg(z,w)[* = [kn(w) = 1*[Apg(z,w)[* < [Afy(@,w)]?
for all (z,w) € G % G. Then, by the theorem of dominated convergence,
Tim [|Azy ko — Aggllo = 0,
and hence, by the Plancherel theorem,
lim [[Agg - Fn = Azglle = 0.
This implies that it suffices to prove

lim Amn(w,x) =W;y(w,z)

n—oo

for almost all (w,z) € G x G.
For this, notice that the Plancherel transform of Ay ¢-k,, coincides with the Fourier

transform by Lemma 3.20. Then, for almost all (w, x) € G x G,

AE‘\kn(W,x) = /c;/@Af’g(t’ X)kn(x)mmdxdt
= /G /é /G Fy@1)g(y@()x(y) dyka(x)w(t) x (@) dx dt
= [ [ [ 56oxtu) xTRE atwee s

Since k, € L'(G) as well as fg € L'(G), we are allowed to use Fubini’s theorem in
the last step. Then, by Theorem 3.18 (iii), (iv),

Ay Fulw,z) = /G /G Uy FBE) g (y® (1)) dy di
- / (FERED))g (-0 (1)) * ) (2)(d) dt.
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Hence, using Theorem 3.18 (vi) and Lemma 3.19 (ii), we obtain, for all (w,z) €
G x@G,

Wylw,a) = / PO ) g(x(t))w(t) dt
- / lim ((F(D(E D)g(-(1))) * ) (@) (2) dt

This shows o
Apg=W;, forall f,g € C.(G). O

By Theorem 3.12, the condition that G® is supposed to be open is necessary for
Ay 4 to be square-integrable.

4. GENERALIZATION OF COHEN’S CLASS

In analogy with Cohen [6] (compare also [9, Subsection 4.5]), we may define a
general class of time-frequency representations for LCA groups. For this, let G be
a LCA group and let ¢ : G x G — Chbea function, which we will call kernel. Then
depending on a signal f € L*(G) we may consider the function Cyf : G x G — C
defined by

Cde = ‘Tf'\(ﬁ’

whenever A; - ¢ € L*(G x @) As for G = R, an abundance of time-frequency
representations of G can be constructed this way. Note that, if G is 2-root compact
and G is open, we have Cyf = W} for ¢ = 1 by Theorem 3.21.

This method has a great advantage, since we are able to check in advance im-
portant properties of the time-frequency representation constructed in this way by
only knowing the kernel. In the following we state how the main properties of Cy f
depend on the kernel.

Theorem 4.1. Let G be a 2-root_compact LCA group such that G® is open, ¢ a
kernel such that A, - ¢ € L*(G x G) for all g € L*(G) and let f € L*(G). Then the
following hold.

(i) Marginals:

/AC(pf(w,x) dw = |f(2)|* for allz € G & ¢(e,-) = 1.
G

/GC(pf(w,:v) dz = ((f** f) o ®*)" (W) for allw € G < ¢(-,1) = 1.
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(ii) Total energy:

/ /;Ctﬁf((b,x) dwdz = ||f||22 = ¢(E, ]) 1.
GJG

(iv) Shift invariance:

Cyf(w,x) is time-shift invariant < ¢ is independent of x.

Csf(w, ) is frequency-shift invariant < ¢ is independent of w.

In our general case shift invariance means Cy(wy - nglf)(w, z) = Cy f(w(wp? o
(I)), 33330) .
Proof. The main steps of the proof parallel those for G = R ([7, Subsection 9.4] and

[9, Subsection 4.5]). Here, in addition, we have to use arguments similar to those in
the proof of Theorem 3.21. O

Example 4.2. We consider the case G = R. Note that all relations reduce to the

well-known relations when H = R and ® : R — R is defined by ®(z) = 7. Now

let H =R and ® : R — R be defined by ®(z) = az, a € R\{0}. Then the
frequency-marginal takes the form

1

hence yields a dilation of f on the right-hand side.

(Y2 _
f<%)‘ for ally € R < ¢(-,1) = 1,

5. APPLICATIONS TO THE GROUP OF p-ADIC NUMBERS

Let p be a prime and let €2, denote the group of p-adic numbers. If we endow
(2, with the usual addition [10, Definition 10.2] and topology [10, Theorem 10.5], it
becomes a LCA group.

A Haar measure on 2, can be constructed in the following way. Let v be the
normalized counting measure on {0,1,...,p — 1}. For each n € Z, let u, denote
the corresponding product measure on the space [[;-,{0,1,...,p—1}. Let A, :=
{y € Q, :yp =0for k <n}, n€Z. For asubset A of ,, we define

AMA) = lim p"u,(ANA,).
n—oQ

We normalize A\ by requiring that A(Aq) = 1.
In addition, the group of p-adic numbers is selfdual, that means 2, = €,. A
topological isomorphism y — Xy, {2, — §2, can be defined as follows. If y = 0, then

Xy = 1. Now assume that y # 0. Suppose that y, = 0 for n < k and yz41 # 0.
Then define

— Yi
An 1= Z R for n > k.
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Let x € Q,. If z € A_y, then x,(z) = 1. Otherwise, there exists an integer m < —k
such that x,, = 0 for n < m and z,, # 0. Then

Xy(x) — e27ri(a:m)\_m+:cm+1)\_m_1+...+:c_k_1)\k+1)-

First, we examine 2, with respect to possible choices for H and ®. By [10, 10.16
(a)], the only proper closed subgroups of €, are the subgroups A;. All subgroups
Ay are even open by the definition of the topology of €2,. Hence the only possible
choice for H is H = €2, or H = Ay, k € Z. But since the subgroups A are compact
and €2, is non-compact, Ay is not topologically isomorphic to €2, for each k € Z.
Thus H has to be chosen to equal €2,. Then all possible automorphisms ® are of
the form (compare [10, Example 26.18 (d)])

O :Q, = Qp, ®(z) = az for some a € Q,".

The definition of the multiplication can be found in [10, Definition 10.9].
Thus the ambiguity function and Wigner distribution of some functions f,g €
L?(9Q,) are of the form

Apg(z,y) = . f(t —ax)g(t + ax)x,(t)dt

and

Wiy, z) = 0 f(z — at)g(z + at)xy () dt.

Next we are going to prove that Qp(z) is open. For this, let the map z — 22,
2, — €, be denoted by ¢ and let k£ € Z. Since ¢(A) is a compact, hence closed
subgroup of €2, [10, 10.16 (a)] implies that ¢(Ax) = A; for some [ € Z. It is clear
that, for each m € Z, we can construct y € A, and z € Q, such that o(z) = y.
Thus we obtain Qp@) = (1,. Hence the claim is proven.

(2, is also 2-root compact. We prove this by showing that in this case ¢ is a
topological isomorphism. It is easy to check that ¢ is bijective. It remains to prove
that ¢ is open. The proof of Qp(z) = (), implies that, for each k € Z, there exists
some [ € Z such that ¢(Ag) = A;. Hence, by the definition of the topology of €2, ¢
is open.

Thus the hypotheses of Theorem 3.7, Theorem 3.14 and the corresponding result
for the Wigner distribution and Theorem 3.21 are fulfilled. This implies the following
theorem.

Theorem 5.1. Let f,g € L*(Q,). Then the following hold.
(i) Asy € Co(Qp x Q) and W,y € Co(Q, x ).
(i) Ayy € L*(Q x Q) and Wy, € L*(Qp X Q).
(iii) Asy = Wyy.
Let f € L*(9,) and let ¢ : Q, x S/l\p — C be some function such that Ay -
¢ € L*(2, x Q). Then the time-frequency representations for the group of p-adic
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numbers which belong to Cohen’s class can be obtained from

Cof(y,2) = / /A [ TG aD) (s + athxs () ds (1, ), ) (@)t
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