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Abstract

For a Boolean function Φ: {0, 1}d → {0, 1} and an assignment to its variables
x = (x1, x2, . . . , xd) we consider the problem of finding the subsets of the variables
that are sufficient to determine the function value with a given probability δ. This is
motivated by the task of interpreting predictions of binary classifiers described as
Boolean circuits (which can be seen as special cases of neural networks).

We show that the problem of deciding whether such subsets of relevant variables of
limited size k ≤ d exist is complete for the complexity class NPPP and thus generally
unfeasible to solve. We introduce a variant where it suffices to check whether a
subset determines the function value with probability at least δ or at most δ − γ for
0 < γ < δ. This reduces the complexity to the class NPBPP.
Finally, we show that finding the minimal set of relevant variables can not be

reasonably approximated, i.e. with an approximation factor d1−α for α > 0, by a
polynomial time algorithm unless P = NP (this holds even with the probability gap).

1. Introduction

Algorithmic problem solving in real-world scenarios often requires reasoning in an uncer-
tain environment. This necessity lead to the investigation of probabilistic satisfiability
problems and probabilistic computational complexity classes such as PP and NPPP. One
prototypical example, the E-Maj-Sat problem [14, 15], is an extension of the classical
satisfiability problem that includes an element of a model counting formulation. The class
of NPPP-complete problems contains many relevant artificial intelligence (AI) problems
such as probabilistic conformant planning [4, 13], calculating maximum expected utility
(MEU) solutions [2], and maximum a posteriori (MAP) hypotheses [17].
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Figure 1: The Boolean function Φ(x1, x2, x3) = (x1 ∧ x2) ∨ (¬x3) viewed as a Boolean
circuit (left) and a rectified linear unit (ReLU) neural network in its graphical
(middle) and algebraic representation (right). Network weights and biases are
denoted at the edges and nodes respectively. The ReLU activation %(x) =
max {x, 0} is applied components-wise.

We connect these probabilistic reasoning tasks to an important problem in machine
learning, namely the problem of interpreting the decisions of neural network classifiers.
Neural networks are parameter-rich and highly non-linear models and can be seen as
continuous generalisations of Boolean circuits. This is briefly visualised in Figure 1.
They have achieved impressive success in classification [7, 12, 22] and regression tasks
[21, 24, 23] and are increasingly also used to solve various inverse problems [10, 25].

However, the same expressiveness that allows for hierarchical reasoning and universal
approximation makes understanding and interpreting these models more challenging
compared to traditional machine learning methods like linear regression or decision
trees. Treating neural networks as “black box” solvers without accessible reasoning is
not feasible in many circumstances, for example in critical applications such as medical
imaging and diagnosis [16, 19].
A significant first step towards understanding network decisions is to distinguish the

relevant input parameters from the less relevant ones for a specific prediction. This goal
has been pursued predominantly for image classification problems in the form of visual
maps that assign importance values to the inputs variables, for example in [1, 5, 20, 26].
We formalise this notion as a probabilistic decision problem in the following sense.

Given a Boolean function and an assignment to its variables, is there a small set of
input variables that if held constant determines the function value for almost all possible
assignments to the rest of the variables?

This problem should be contrasted with the feature selection problem, where the goal
is to find a subset of globally important variables, independent from a concrete input.
Instead, here we are interested in finding the important variables only for one specific
input assignment.

We formulate the decision and minimisation version of the problem at hand and compare
it to related problems in Section 2. We then analyse its computational complexity in
Section 3 and prove that it is NPPP-complete. We propose a more practically relevant
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variant of the problem with a gap promise that allows for efficient computations of
expectation values in Section 4. Analysing its complexity will finally show that any
reasonable approximation algorithm to the minimisation version of the problem cannot
be polynomial time unless P = NP.

Notation Throughout the paper d ∈ N denotes the arity of the considered Boolean func-
tion Φ: {0, 1}d → {0, 1} and x = (x1, . . . , xd) ∈ {0, 1}d is an arbitrary fixed assignment
to its variables for which we are interested in finding the subsets of important variables.
We denote the d-dimensional vectors of all zeros or ones by 0d and 1d respectively. The
function Φ is assumed to be described in terms of standard logical operations like AND,
OR, and NOT. The description length of Φ is thus equal to the description length of
the logical expression describing it. We denote [d] = {1, . . . , d} and for a subset S ⊆ [d]
denote by xS = (xi)i∈S the restriction of x to components indexed by S. Further, we will
use Boolean functions also interchangeably as logical propositions, in the sense that Φ(x)
is shorthand for the logical proposition Φ(x) = 1. Whenever we talk about statements
concerning probabilities of logical propositions to hold we assume independent uniform
distributions for all involved variables. Thus, we have for example

Py(Φ(y)) =

∣∣∣{y ∈ {0, 1}d : Φ(y) = 1
}∣∣∣∣∣∣{y ∈ {0, 1}d

}∣∣∣ .

We omit the subscript whenever it is clear from the context over which variables the
probability is taken. If the probability is taken over all variables of a Boolean function
we simply write P (Φ) instead of Py(Φ(y)).

2. Problem Formulation
Intuitively, a subset S ⊆ [d] of variables is relevant for the function value Φ(x) if fixing x
on S and randomising it on the complement Sc does not change the value of Φ with high
probability. The complement then consists of the non-relevant variables.

Definition 2.1. Let Φ: {0, 1}d → {0, 1}, x ∈ {0, 1}d, and δ ∈ [0, 1]. We call S ⊆ [d] a
δ-relevant set for Φ and x, if

Py (Φ(y) = Φ(x) |yS = xS) ≥ δ.

For δ close to one this means that the input x supported on S already determines the
output Φ(x) with high probability. It is clear that S = [d] is always 1-relevant and any
subset S ⊆ [d] is 0-relevant. Now the interesting question arises if for a given δ there
exists a δ-relevant set of a certain maximal size. Similarly, one could ask to find the
smallest δ-relevant set. This set would then be composed of the most important variables
for the function value Φ(x). There is an obvious “rate-distortion” trade-off in the sense
that generally a larger δ will require a larger set S.
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Definition 2.2. For δ ∈ (0, 1] we define the Relevant-Input problem as follows.

Given: Φ: {0, 1}d → {0, 1}, x ∈ {0, 1}d, and k ∈ N, 1 ≤ k ≤ d.

Decide: Does there exist S ⊆ [d] with |S| ≤ k such that S is δ-relevant for Φ and x?

The minimisation formulation of the above decision problem can be defined in the
obvious way.

Definition 2.3. For δ ∈ (0, 1] we define the Min-Relevant-Input problem as follows.

Given: Φ: {0, 1}d → {0, 1} and x ∈ {0, 1}d.

Minimize: k ∈ N such that there exists S ⊆ [d] with |S| ≤ k and S is δ-relevant for Φ
and x.

The majority of the remainder of the paper will deal with analysing the computational
complexity of the Relevant-Input and Min-Relevant-Input problems and related
variants thereof. Before, we want to point out some similarities to a problem from
cooperative game theory.

2.1. Related Works

Another concept for measuring the relevance or the contribution of individual variables
to a collective are the Shapley values [18] in cooperative game theory. Here the variables
are seen as players of a coalitional game and the Shapley values describe a method to
distribute the value achieved by a coalition of players to the individual players. This
distribution fulfils a set of game theoretic properties that make it “fair”.

Let ν : 2[d] → R be a function that assigns a value to each subset of variables (coalition
of players). It is called the characteristic function of the game. Then the Shapley value
of the i-th variable (i-th player) is defined as

ϕi,ν =
∑

S⊆[d]\{i}

|S|!(d− |S| − 1)!
d! (ν(S ∪ {i})− ν(S)) ,

which can be interpreted as the marginal contribution of the i-th variable to the value ν
averaged over all possible coalitions. In general it is #P-hard to compute Shapley values
[3]. However, in some cases efficient approximation algorithms exist [6].
In our scenario the value of a subset of variables S can be measured by the expected

difference in Φ when fixing variables in S and randomising the remaining variables. In
[11] it was proposed to use

ν(S) = 1
2d−|S|

∑
y∈{0,1}d
yS=xS

Φ(y)− Ey (Φ(y))
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for the analysis of classifier decisions, which uses the expectation of the completely
randomised classifier score as a reference value to determine the coalition value. We
observe that

Py (Φ(y) = Φ(x) |yS = xS) = 1− 1
2d−|S|

∑
y∈{0,1}d
yS=xS

|Φ(y)− Φ(x)|

= 1− |ν(S) + Ey (Φ(y))− Φ(x)|,

hence S ⊆ [d] is δ-relevant for Φ and x exactly if |ν(S) + Ey (Φ(y))− Φ(x)| ≤ 1− δ.
Despite this relation between δ-relevant sets and the characteristic function ν our

problem formulation is considerably different from the Shapley value approach. The task
considered in this paper is not to distribute the value of coalitions amongst the variables
but to find (small) coalitions that are guaranteed to have a certain value. We will see
that unlike for for Shapley values no efficient approximation algorithms can exist for this
problem unless P = NP.

3. Computational Complexity Analysis
The first main theorem shows that the Relevant-Input problem is generally hard to
solve for δ ∈

[
1
2 , 1
)
.

Theorem 3.1. For δ ∈
[

1
2 , 1
)
the Relevant-Input problem is NPPP-complete.

The proof of Theorem 3.1 will be split into two parts. We will show that Relevant-
Input is NPPP-hard in Section 3.1 and that it is contained in NPPP in Section 3.2. Before
we continue to give the proof we want to make a few more observations and remarks.

Intuitively, the NP-part of the problem complexity comes from the necessity to check
all subsets S ⊆ [d] as possible candidates for being δ-relevant. The PP-part of the
complexity comes from the fact that for any given set S checking if it is δ-relevant is by
itself a hard problem (in fact PP-hard)1. The problem class NPPP is beyond the scope
of conventional computing. In particular, Min-Relevant-Input is at least as hard to
solve as the corresponding decision problem, which makes it unfeasible to solve exactly.
However, in applications it is rarely required to exactly find the smallest relevant set. It
would be desirable to obtain good approximate solutions within feasible computational
complexity.

There are two potential ways for simplifying the problem by allowing approximations:
Firstly, approximating the size of the minimal relevant set itself, and secondly relaxing
the requirement that the set has to be exactly δ-relevant. The former would address the
NP part whereas the latter would address the PP aspect.
Calculating probabilities or expectation values may be hard in theory, yet it is often

easy to calculate them (approximately) in practice, for example by sampling. Checking
1Checking if a subset is 1-relevant is in coNP instead of PP. Thus we excluded δ = 1 in Theorem 3.1.
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whether a logical proposition is satisfied with probability more than δ this way only fails
if the true probability can be arbitrarily close to δ. These edge cases cause the hardness
of the problem but in our scenario we do not necessarily care about their resolution. We
discuss in Section 4.1 that this can be relaxed formally by stating a promise problem. This
reduces the problem complexity from PP to BPP. Unfortunately, even in this simplified
case, it remains NP-hard to approximate the size of the optimal set S to within any
reasonable approximation factor. This is discussed in Section 4.2.

3.1. Relevant-Input is NPPP-hard

We now give the first part of the proof of Theorem 3.1. This is done by constructing
a polynomial-time reduction of a NPPP-complete problem to Relevant-Input. The
canonical complete problem for NPPP is E-Maj-Sat [14].

Definition 3.2. The E-Maj-Sat problem is defined as follows.

Given: Φ: {0, 1}d → {0, 1} and k ∈ N, 1 ≤ k ≤ d.

Decide: Does there exist x ∈ {0, 1}k such that Py
(
Φ(y)

∣∣∣y[k] = x
)
> 1

2?

In other words E-Maj-Sat asks if there is an assignment to the first k variables of Φ
such that a majority of assignments to the remaining d− k variables satisfies Φ. There
are three hurdles to take if we want to reduce this to Relevant-Input.

1. Instead of assigning values to a given set of k variables we can freely choose the set
S of size k.

2. Instead of freely assigning values to a subset of variables we are given an assignment
to all variables and can only chose to fix a subset of them and randomise the rest.

3. Instead of checking whether the majority of assignments satisfies Φ we check if the
fraction of satisfying assignments is larger or equal to some δ.

We address each of these hurdles and give a chain of polynomial-time reductions
E-Maj-Sat �p IP1 �p IP2 �p Relevant-Input in three steps with intermediate
auxiliary problems IP1 and IP2. The following observations will turn out to be useful.
Remark 3.3. Let Φ and Ψ be Boolean functions, not necessarily of different variables.
Then

P (Ψ) = 0 ⇒ P (Φ⊕Ψ) = P (Φ),
P (Ψ) = 1 ⇒ P (Φ⊕Ψ) = 1− P (Φ),

and if Φ and Ψ are independent, i.e. P (Φ ∧Ψ) = P (Φ)P (Ψ), also

P (Ψ) = 1
2 ⇒ P (Φ⊕Ψ) = 1

2 .
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Lemma 3.4. Let B : {0, 1}k×{0, 1}k → {0, 1} and Ψ: {0, 1}k×{0, 1}k×{0, 1} → {0, 1}
be defined as

B(u,v) =
k∧
i=1
¬(ui ⊕ vi)

Ψ(u,v, t) =
(

k∨
i=1

(ui ⊕ vi)
)
∧ t.

Then, for any Φ: {0, 1}k×{0, 1}d−k → {0, 1} and A : {0, 1}k×{0, 1}k → {0, 1}, we have

P (Φ(u, r)⊕Ψ(u,v, t) |A(u,v)) > 1
2 ⇐⇒ P (Φ(u, r) |A(u,v), B(u,v)) > 1

2 .

Proof. We can rewrite Ψ(u,v, t) = (¬B(u,v)) ∧ t and therefore

P (Ψ |B) = 0

P (Ψ | ¬B) = 1
2 .

Since Φ |A and Ψ |A are conditionally independent given ¬B (in this case Ψ depends on
t only), we obtain from Remark 3.3 that

P (Φ⊕Ψ |A,B) = P (Φ |A,B)

and
P (Φ⊕Ψ |A,¬B) = 1

2 .

Therefore

P (Φ⊕Ψ |A) = P (Φ⊕Ψ |A,B)P (B) + P (Φ⊕Ψ |A,¬B)P (¬B)

= P (Φ |A,B)P (B) + 1
2 (1− P (B))

= 1
2 +

(
P (Φ |A,B)− 1

2

)
P (B) .

This directly implies P (Φ⊕Ψ |A) > 1
2 if and only if P (Φ |A,B) > 1

2 .

Let us now come to the first step of the reductive chain. In this, we translate the
option to freely assign the first k variables into the choice of fixing a set of variables from
a given assignment or randomising them. This choice is however still restricted to the
first k variables.

Definition 3.5. We define the Intermediate Problem 1 (IP1) as follows.

Given: Φ: {0, 1}d → {0, 1}, x ∈ {0, 1}d and k ∈ N, 1 ≤ k ≤ d.

Decide: Does there exist S ⊆ [k] such that Py (Φ(y) |yS = xS) > 1
2?
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In other words IP1 asks the questions if there is a subset of the first k variables of Φ,
such that when fixing these to the values given by x, a majority of assignments to the
remaining variables satisfies Φ.

Lemma 3.6. E-Maj-Sat �p IP1, in particular IP1 is NPPP-hard.

Proof. Let {Φ, k} be an E-Maj-Sat instance. We will construct {Φ′,x′, k′} that is a Yes-
instance for IP1 if and only if {Φ, k} is a Yes-instance for E-Maj-Sat. For convenience
we split the d variables of Φ into the first k variables and the remaining d− k variables
and denote this Φ(x) = Φ(u, r). The main idea is to duplicate the first k variables and
choose x′ in such a way that fixing the original variables or their duplicates corresponds
to assigning zeros or ones in the E-Maj-Sat instance respectively. More precisely, we
define

� Φ′ : {0, 1}k × {0, 1}k × {0, 1}d−k × {0, 1} → {0, 1} as

Φ′(u,v, r, t) = Φ(u, r)⊕
(

k∨
i=1

(ui ⊕ vi) ∧ t
)
,

� x′ = (0k,1k,0d−k, 0) ∈ {0, 1}k × {0, 1}k × {0, 1}d−k × {0, 1},

� k′ = 2k.

This is a polynomial time construction. With Ψ as in Lemma 3.4 we can rewrite
Φ′ (u,v, r, t) = Φ(u, r)⊕Ψ (u,v, t).

Necessity: Assume that {Φ, k} is a Yes-instance for E-Maj-Sat. Then there exists an
assignment u∗ ∈ {0, 1}k to the first k variables of Φ such that Pr (Φ(u∗, r)) > 1

2 . Now
choose S′ = { i ∈ {1, . . . , k} : u∗i = 0 } ∪

{
i ∈ {k + 1, . . . , 2k} : u∗i−k = 1

}
⊆ [k′] = [2k].

Let A : {0, 1}k × {0, 1}k → {0, 1} be given by

A(u,v) =

 ∧
i∈S′∩{1,...,k}

¬ui

 ∧
 ∧
i∈S′∩{k+1,...,2k}

vi−k


and B as in Lemma 3.4. Note that A depends on S′ and thus implicitly on u∗. In fact,
A(u,v) = 1 holds if and only if u∗i = 0 implies ui = 0 and u∗i = 1 implies vi = 1 for all
i ∈ [k]. In particular, we have A(u,u) = 1 if an only if u = u∗. Also B(u,v) = 1 if and
only if u = v. Thus, by the choice of A, B, and S′ we have

Pr (Φ(u∗, r)) = P (Φ(u, r) |u = u∗)
= P (Φ(u, r) |A(u,u))
= P (Φ(u, r) |A(u,v), B(u,v)) ,
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and by the choice of x′, A, and S′ we get

Py′
(
Φ′(y′)

∣∣y′S′ = x′S′
)

= P
(
Φ′(u,v, r, t)

∣∣A(u,v)
)

= P (Φ(u, r)⊕Ψ (u,v, t) |A(u,v)) .

Since Pr (Φ(u∗, r)) > 1
2 , we can use Lemma 3.4 to conclude Py′ (Φ′(y′) |y′S′ = x′S′) > 1

2
which shows that {Φ′,x′, k′} is a Yes-instance for IP1.

Sufficiency: Now, conversely, assume that {Φ′,x′, k′} is a Yes-instance for IP1. Then
there exists S′ ⊆ [k′] = [2k] such that Py′ (Φ′(y′) |y′S′ = x′S′) > 1

2 . Following the same
grouping of variables as before, we write x′ = (u′,v′, r′, t′) and observe that u′i 6= v′i
for all i ∈ [k]. Towards a contradiction, assume there exists an i ∈ [k] with i ∈ S′ and
i+ k ∈ S′. Then ui 6= vi if (u,v)S′ = (u′,v′)S′ and hence

P
(
Ψ(u,v, t)

∣∣ (u,v)S′ = (u′,v′)S′
)

= P (Ψ(u,v, t) | ¬B(u,v)) = 1
2 .

Thus, Remark 3.3 would imply Py′ (Φ′(y′) |y′S′ = x′S′) = 1
2 , which is a contradiction.

Therefore for all i ∈ [k] we can have i ∈ S′ or i+ k ∈ S′ but not both. Similarly, if we
assume there exists an i ∈ [k] with neither i ∈ S′ nor i+ k ∈ S′ we have

Py′
(
Φ′(y′)

∣∣y′S′ = x′S′
)

= Py′
(
Φ′(y′)

∣∣∣y′S′∪{i+k} = x′S′∪{i+k}
)
.

This holds because the only difference is that the clause ui ⊕ vi in Ψ is replaced by
ui⊕1 = ¬ui and this does not change the overall probability. So without loss of generality
we can assume that for each i ∈ [k] exactly one of the cases i ∈ S′ or i+ k ∈ S′ occurs.
Then we can define u∗ ∈ {0, 1}k as u∗i = 0 if i ∈ S′ and u∗i = 1 otherwise. We observe
that S′ and u∗ are exactly as in the previous step and the rest of the proof follows
analogously. Again we use Lemma 3.4 and conclude from Py′ (Φ′(y′) |y′S′ = x′S′) > 1

2
that Pr (Φ(u∗, r)) > 1

2 . This shows that {Φ, k} is a Yes-instance for E-Maj-Sat.

We continue with the second step of the reductive chain. We translate the question
whether a majority of assignments to the non-fixed variables satisfies a Boolean formula
into the question whether the fraction of assignments leaving the function value unchanged
is larger or equal to some δ.

Definition 3.7. For δ ∈ (0, 1] we define the Intermediate Problem 2 (IP2) as follows.

Given: Φ: {0, 1}d → {0, 1}, x ∈ {0, 1}d and k ∈ N, 1 ≤ k ≤ d.

Decide: Does there exist S ⊆ [k] such that Py (Φ(y) |yS = xS) ≥ δ?

In other words IP2 asks the question if there exists a subset of the first k variables of
Φ such that when fixing these to the values given by x a fraction δ of assignments to the
remaining variables leaves Φ unchanged. In order to relate this to IP1, we have to change
the acceptance probability from 1

2 to δ. This can be done using the following Lemma.
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Lemma 3.8. Given d ∈ N and 0 < δ1 < δ2 < 1, there exists a monotone function
Π: {0, 1}n → {0, 1} such that Π(0n) = 0, Π(1n) = 1, and for all Φ: {0, 1}d → {0, 1} we
have

Py(Φ(y)) > δ1 ⇐⇒ P(y,r)(Φ(y) ∨Π(r)) ≥ δ2

with n ∈ O
((
d+ log2

(
1−δ1
1−δ2

))2
+ log2

(
1

δ2−δ1

))
. It can be constructed in O (n) time.

The constructive proof of Lemma 3.8 can be found in Appendix A.

Lemma 3.9. For δ ∈
[

1
2 , 1
)
we have IP1 �p IP2, in particular in this case IP2 is

NPPP-hard.

Proof. Let {Φ,x, k} be an IP1 instance. We will construct {Φ′,x′, k′} that is a Yes-
instance for IP2 if and only if {Φ,x, k} is a Yes-instance for IP1. Let Π: {0, 1}n → {0, 1}
be as in Lemma 3.8 for δ1 = 1

4 and δ2 = δ. We define

� Φ′ : {0, 1}d × {0, 1} × {0, 1}n → {0, 1} : (y, t, r) 7→ (Φ(y) ∧ t) ∨Π(r),

� x′ = (x, 1,1n) ∈ {0, 1}d × {0, 1} × {0, 1}n,

� k′ = k.

This is a polynomial time construction. By the choice of Φ′ and x′ we guarantee Φ′(x′) = 1
regardless of the value of Φ(x) since Π(1n) = 1.
Then, for all S′ = S ⊆ [k] = [k′], we have

Py (Φ(y) |yS = xS) > 1
2

⇐⇒ P(y,t) (Φ(y) ∧ t |yS = xS) > 1
4

⇐⇒ P(y,t,r) ((Φ(y) ∧ t) ∨Π(r) |yS = xS) ≥ δ
⇐⇒ Py′

(
Φ′(y′) = Φ′(x′)

∣∣y′S′ = x′S′
)
≥ δ.

Thus {Φ,x, k} is a Yes-instance for IP1 if and only if {Φ′,x′, k′} is a Yes-instance for
IP2.

We continue with the third and final step of the reductive chain. We translate the
option to choose which of the first k variables to fix into the choice of fixing any set of at
k variables.

Lemma 3.10. For δ ∈
[

1
2 , 1
)
we have IP2 �p Relevant-Input, in particular in this

case Relevant-Input is NPPP-hard.

Proof. Let {Φ,x, k} be an IP2 instance. We will construct {Φ′,x′, k′} that is a Yes-
instance for Relevant-Input if and only if {Φ,x, k} is a Yes-instance for IP2. For
convenience, we split the d variables of Φ into the first k variables and the remaining
d−k variables and denote this Φ(x) = Φ(u, r). The main idea is to extend Φ with clauses
that force the set S to be chosen from the first k variables. More precisely, we define

10
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� Φ′ : {0, 1}k × {0, 1}k × {0, 1}d−k × {0, 1}d−k × {0, 1}d−k → {0, 1} with

Φ′(u,v, r1, r2, r3) = (Φ(u, r1 ⊕ r2 ⊕ r3)⊕ (¬Φ(x))) ∧
(

k∧
i=1

((ui ⊕ ¬xi) ∨ vi)
)
,

where r1 ⊕ r2 ⊕ r3 is understood component-wise,

� x′ =
(
x[k],1k,x[k]c ,x[k]c ,x[k]c

)
∈ {0, 1}k×{0, 1}k×{0, 1}d−k×{0, 1}d−k×{0, 1}d−k,

� k′ = k.

This is a polynomial time construction. By the choice of Φ′ and x′ we guarantee Φ′(x′) = 1
regardless of the value of Φ(x).

Necessity: Assume that {Φ,x, k} is a Yes-instance for IP2. Then there exists S ⊆ [k]
such that Py (Φ(y) = Φ(x) |yS = xS)) ≥ δ. Now choose

S′ = S ∪ { i ∈ {k + 1, . . . , 2k} : i− k /∈ S } .

Then |S′| = |S|+ (k − |S|) = k = k′ and for each i ∈ [k] exactly one of the cases i ∈ S′
or i+ k ∈ S′ can occur. The former corresponds to fixing ui = x′i = xi and the latter to
fixing vi = 1. Therefore

P(u,v)

(
k∧
i=1

((ui ⊕ ¬xi) ∨ vi)
∣∣∣∣∣ (u,v)S′ = x′S′

)
= 1,

which means, conditioned on (u,v)S′ = x′S′ , the probability of satisfying Φ′ only depends
on Φ(u, r1 ⊕ r2 ⊕ r3). Now, since the random vector r1 ⊕ r2 ⊕ r3 is independent of this
condition, it has the exact same distribution as the random vector r and we obtain

Py′
(
Φ′(y′) = Φ′(x′)

∣∣y′S′ = x′S′
)

= Py′
(
Φ′(y)

∣∣y′S′ = x′S′
)

= P
(
Φ′(u,v, r1, r2, r3)

∣∣ (u,v)S′ = x′S′
)

= P
(
Φ′(u,v, r1, r2, r3)

∣∣uS = xS ,vSc = 1
)

= P (Φ(u, r)⊕ (¬Φ(x)) |uS = xS)
= P (Φ(u, r) = Φ(x) |uS = xS)
= Py (Φ(y) = Φ(x) |yS = xS) ≥ δ.

This shows that S′ is a δ-relevant set for Φ′ and x′. Therefore {Φ′,x′, k′} is a Yes-instance
for Relevant-Input.

Sufficiency: Now, conversely, assume that {Φ′,x′, k′} is a Yes-instance for Relevant-
Input. Then there exists a δ-relevant set S′ ⊆ [2k + 3(d− k)] for Φ′ and x′ with
|S′| ≤ k′ = k. Hence, we have

Py′
(
Φ′(y′)

∣∣y′S′ = x′S′
)

= Py′
(
Φ′(y′) = Φ′(x′)

∣∣y′S′ = x′S′
)
≥ δ.

11
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Without any conditions on u and v we have P ((ui ⊕ ¬xi) ∨ vi) = 3
4 for all i ∈ [k]. Since(

3
4

)3
< 1

2 ≤ δ, we have i ∈ S′ or i+ k ∈ S′ for all i ∈ [k] except for at most two cases.
Hence, |S′| ≤ k implies |S′ ∩ [2k]c | ≤ 2. Therefore, r1⊕ r2⊕ r3 conditioned on y′S′ = x′S′
has the same distribution as r1 ⊕ r2 ⊕ r3 without the condition. So, without loss of
generality, we can even assume S′ ∩ [2k]c = ∅.
Similarly, if i ∈ S′ we have P ((ui ⊕ ¬xi) ∨ vi | (u,v)S′ = x′S′) = 1 and additionally

having i+ k ∈ S′ could not increase the probability of satisfying Φ′. Contrary, if i /∈ S′,
we have

P
(
(ui ⊕ ¬xi) ∨ vi

∣∣ (u,v)S′ = x′S′
)

= 1
2 + 1

2P
(
vi
∣∣ (u,v)S′ = x′S′

)
,

which is one if i+ k ∈ S′ and 3
4 otherwise. So including i+ k in S′ does not decrease the

probability. Altogether, without loss of generality we can assume S′ ⊆ [2k], |S′| = k and
for each i ∈ [k] exactly one of the cases i ∈ S′ or i+ k ∈ S′ occurs.

We now choose S = S′ ∩ [k]. Then the rest of the proof proceeds exactly as above and
we conclude

Py (Φ(y) = Φ(x) |yS = xS) = P (Φ(u, r)⊕ (¬Φ(x)) |uS = xS)
= P

(
Φ′(u,v, r1, r2, r3)

∣∣uS = xS ,vSc = 1
)

= P
(
Φ′(u,v, r1, r2, r3)

∣∣ (u,v)S′ = x′S′
)

= Py′
(
Φ′(y′S′)

∣∣y′S′ = x′S′
)

= Py′
(
Φ′(y′) = Φ′(x′)

∣∣y′S′ = x′S′
)
≥ δ,

which shows that {Φ,x, k} is a Yes-instance for IP2.

Altogether, this section finishes the first part of the proof of Theorem 3.1.

3.2. Relevant-Input is contained in NPPP

We now come to the second part of the proof of Theorem 3.1. We will show that Relevant-
Input is in fact contained in NPPP meaning that it can be solved in polynomial time by
a non-deterministic Turing machine with access to a PP-oracle. The following Lemma
will be useful.

Lemma 3.11. Given d ∈ N and 0 < δ1 < δ2 < 1, there exists a monotone function
Π: {0, 1}n → {0, 1} such that, for all Φ: {0, 1}d → {0, 1}, we have

Py(Φ(y)) ≥ δ2 ⇐⇒ P(y,r)(Φ(y) ∧Π(r)) > δ1

with n ∈ O
((
d+ log2

(
δ2
δ1

))2
)
. It can be constructed in O (n) time.

The constructive proof of Lemma 3.11 can be found in Appendix B.

Lemma 3.12. For δ ∈ (0, 1) the Relevant-Input problem is contained in NPPP.

12
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We will prove this for δ ∈
(

1
2 , 1
)
by lowering the probability threshold from δ to 1

2 .

The case δ ∈
(
0, 1

2

]
can be treated analogously by raising the threshold.

Proof. Let {Φ,x, k} be an instance of Relevant-Input. It suffices to show that the
decision problem whether a given set S ⊆ [d] is δ-relevant for Φ and x is in PP. Without
loss of generality we can assume Φ(x) = 1. Otherwise we could consider ¬Φ instead.
Now, choose Π: {0, 1}n → {0, 1} as in Lemma 3.11 for δ1 = 1

2 and δ2 = δ. Then

Py (Φ(y) |yS = xS) ≥ δ ⇐⇒ P(y,r) (Φ(y) ∧Π(r) |yS = xS) > 1
2 .

A probabilistic Turing machine can now draw a random assignment (y, r) conditioned on
yS = xS and evaluate Φ(y) ∧Π(r). Thus, the machine will answer Yes with probability
strictly greater than 1

2 if and only if S is δ-relevant. This means the subproblem of
checking a set for δ-relevance is contained in PP.

A non-deterministic Turing-machine with a PP-oracle can thus search over all possible
sets S ⊆ [d] with |S| ≤ k and check whether any of them is δ-relevant using the oracle.

4. Variations of the Problem Formulation

We want to consider two variations of the Relevant-Input problem. The first variation
relaxes the requirement to check if a candidate set S is exactly δ-relevant or not by
introducing a probability gap γ. In short, we then ask if a δ-relevant set of size k exists
or if all sets of size k are not even (δ − γ)-relevant.
The second variation concerns the optimisation version of the problem. Here we

introduce a set size gap and relax the requirement to find the smallest δ-relevant set.
Instead for k < m we ask if a δ-relevant set of size k exists or if all relevant sets must be
of size at least m.

We show that these problems remain hard to solve (even in combination, that is with
both a gap in probability and set size). This can be used to show that no polynomial
time approximation algorithm for Min-Relevant-Input with approximation factor
better than the trivial factor d can exists unless P = NP. Due to the connection between
Boolean functions and neural networks, as described in Section 1, this inapproximability
result shows theoretical limitations of interpretation methods for neural network decision.

4.1. The Probability Gap

Probabilities and expectation values may be hard to calculate in theory, yet are often
easy to approximate in practice. Checking whether a Boolean function is satisfied by
more than a fraction δ of the possible assignments to its variables can often be done
probabilistically. This only fails if the true probability is close to δ. These edge cases
cause the hardness of the problem. Yet, in our scenario we do not necessarily care about
their resolution. In fact, the choice of δ in the definition of δ-relevant sets is somewhat

13
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no (δ − γ)-relevant
sets exist

No instances

a δ-relevant set
exists

Yes instances

k∗ k

Figure 2: Visualisation of the Gapped-Relevant-Input problem for some fixed Φ and x
and for various k. In the unmarked region in the centre no δ-relevant set exists
but δ̃-relevant sets could exist for any δ̃ < δ, in particular also for δ̃ = δ− γ. In
this region we do not expect an answer for the gapped problem. The solution
k∗ of the ungapped optimisation problem Min-Relevant-Input is the left
boundary of the Yes-instance region.

arbitrary. Thus, it seems impractical to defend the hardness of the Relevant-Input
problem with the exact evaluation of probabilities.

Therefore, we introduce a variant of the problem including a probability gap. This can
be seen as a promise problem with the promise that all sets S are either δ-relevant or not
even (δ − γ)-relevant. Alternatively, this can be seen as the Relevant-Input problem
where we want to answer Yes if a δ-relevant set of size k exists but only want to answer
No if all sets of size k are not even (δ− γ)-relevant. For cases inbetween we do not expect
an answer at all or do not care about the exact answer. This is illustrated in Figure 2.

Definition 4.1. For δ ∈ (0, 1] and γ ∈ [0, δ) we define the Gapped-Relevant-Input
problem as follows.

Given: Φ: {0, 1}d → {0, 1}, x ∈ {0, 1}d, and k ∈ N, 1 ≤ k ≤ d.

Decide:
Yes: There exists S ⊆ [d] with |S| ≤ k and S is δ-relevant for Φ and x.
No: All S ⊆ [d] with |S| ≤ k are not (δ − γ)-relevant for Φ and x.

For γ = 0 we exactly retrieve the original Relevant-Input problem but for γ > 0
this is an easier question.

Lemma 4.2. For δ ∈ (0, 1) and γ ∈ (0, δ) the Gapped-Relevant-Input problem is
contained in NPBPP.

Proof. Let {Φ,x, k} be an instance of Gapped-Relevant-Input. It suffices to show
that the decision problem whether a given set S ⊆ [d] is either δ-relevant (Yes) or not
(δ−γ)-relevant (No) for Φ and x is in BPP. To see this, we describe an explicit algorithm
with bounded error probability.

Draw n = d2 ln(3)
γ2 e independent random binary vectors b(i) ∈ {0, 1}d−|S| for i ∈ [n]

from the uniform distribution on {0, 1}d−|S| and define y(i) ∈ {0, 1}d as y(i)
S = xS and

14
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y(i)
Sc = b(i). Set

ξ = 1
n

n∑
i=1

ξi where ξi =


1, if Φ(x) = Φ

(
y(i)

)
0, if Φ(x) 6= Φ

(
y(i)

) for i = 1, . . . , n.

Then answer No if ξ < δ − γ
2 and answer Yes if ξ ≥ δ − γ

2 .
The random variables ξi are independently and identically Bernoulli distributed vari-

ables with
p = E [ξi] = E [ξ] = Py (Φ(yS) = Φ(x) |yS = xS) .

Therefore S is δ-relevant if p ≥ δ and not (δ−γ)-relevant if p < δ−γ. We use Hoeffding’s
inequality [9] to bound the error probability of the algorithm. Firstly, assume p ≥ δ.
Then we make an error if ξ < δ − γ

2 , which implies p− ξ > γ
2 . The probability for this

event can be bounded by

P

(
p− ξ > γ

2

)
≤ e−

nγ2
2 ≤ 1

3 .

Secondly, assume p < δ − γ. Then we can bound the probability that ξ ≥ δ − γ
2 , and

thus ξ − p > γ
2 , by

P

(
ξ − p > γ

2

)
≤ e−

nγ2
2 ≤ 1

3 .

Altogether the algorithm answers correctly with probability 2
3 showing that the problem

lies in BPP.
A non-deterministic Touring machine with BPP-oracle can thus search over all possible

sets S ⊆ [d] with |S| ≤ k and check if any of them is δ-relevant or all of them are not
(δ − γ)-relevant.

Similar to the original problem formulation we can also state an optimisation version of
the gapped problem. In this case, we relax the optimality condition on the set size k by
allowing also sizes in the region between Yes- and No-instances of Gapped-Relevant-
Input (cf. Figure 2). In other words, we want to find any k that is large enough so that
it is not a No-instance for the gapped problem but not larger than the optimal solution of
the ungapped minimisation problem. Strictly speaking, this results in a search problem
and not an optimisation problem. However, problems of this type can be referred to as
weak optimisation problems [8].

Definition 4.3. For δ ∈ (0, 1] and γ ∈ [0, δ) we define the Min-Gapped-Relevant-
Input problem as follows.

Given: Φ: {0, 1}d → {0, 1} and x ∈ {0, 1}d.

Find: k ∈ N, 1 ≤ k ≤ d such that
(i) There exists S ⊆ [d] with |S| = k and S is (δ − γ)-relevant for Φ and x.
(ii) All S ⊆ [d] with |S| < k are not δ-relevant for Φ and x.

15
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Note that both for Gapped-Relevant-Input and Min-Gapped-Relevant-Input
a solution for γ1 will always also be a solution for γ2 > γ1. Specifically, being able to
solve the ungapped problems introduced in Section 2 provides a solution to the gapped
problems for any γ > 0.

4.2. The Set Size Gap (Approximability)
Even the gapped version of the minimisation problem is hard to approximate. We prove
this by introducing another intermediate problem which we show to be NP-hard but
which would be in P if there exists a “good” polynomial time approximation algorithm
for Min-Gapped-Relevant-Input. As already mentioned before, strictly speaking
Min-Gapped-Relevant-Input is not an optimisation but a search problem. In order to
give a meaning to the concept of approximation factors we use the following convention.

Definition 4.4. An algorithm for Min-Gapped-Relevant-Input has an approximation
factor c ≥ 1 if, for any instance {Φ,x}, it produces an approximate solution k such
that there exists a true solution k̃ (satisfying both conditions in Definition 4.3) with
k̃ ≤ k ≤ ck̃.

An algorithm that always produces the trivial approximate solution k = d achieves an
approximation factor d. We will show that it is generally hard to obtain better factors.
More precisely, for any α > 0 an algorithm achieving an approximation factor d1−α can
not be in polynomial time unless P = NP.

Definition 4.5. For δ ∈ (0, 1] and γ ∈ [0, δ) we define the Intermediate Problem 3
(IP3) as follows.

Given: Φ: {0, 1}d → {0, 1}, x ∈ {0, 1}d, and k,m ∈ N, 1 ≤ k ≤ m ≤ d.

Decide:
Yes: There exists S ⊆ [d] with |S| ≤ k and S is δ-relevant for Φ and x.
No: All S ⊆ [d] with |S| ≤ m are not (δ − γ)-relevant for Φ and x.

The restriction to the case k = m is exactly the Gapped-Relevant-Input problem.
However here we also allow the case k < m with a gap in the set sizes. This is illustrated
in Figure 3.

Lemma 4.6. For δ ∈ (0, 1) and γ ∈ [0, δ) we have SAT �p IP3, in particular, in this
case IP3 is NP-hard.

Proof. Let Φ: {0, 1}d → {0, 1} be a SAT instance. We will construct {Φ′,x′, k′,m′} that
is Yes-instance for IP3 if and only if Φ is a Yes-instance for Sat. Let

q =
⌈
log2

(
d

1− δ

)⌉
and p =

⌊
log2

( 1
δ − γ

)⌋
+ 1.

We set
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No-instances

Yes-instances

a δ-relevant set of
size k exists

no (δ − γ)-relevant
set of size k exists

no (δ − γ)-relevant
set of size m exists

a δ-relevant set of
size m exists

k = m

k

m

Figure 3: Visualisation of the Intermediate Problem 3 for some fixed Φ and x and
for various k and m. As before we do not expect an answer for this problem in
the unmarked regions. The restriction to the diagonal k = m corresponds to
the Gapped-Relevant-Input problem (cf. Figure 2).
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� k′ = dq,

� m′ ≥ k′ arbitrary but at most polynomial in d,

� Φ′ : {0, 1}d×q × {0, 1}m
′+p → {0, 1} with

Φ′(u(1), ...,u(q),v) = Φ

 q∧
j=1

u(j)

 ∨
m′+p∧

i=1
vi

 ,
where each u(j) ∈ {0, 1}d and the conjunction within Φ is understood component-
wise,

� x′ = 1dq+m′+p.

This is a polynomial time construction. By the choice of Φ′ and x′ we guarantee Φ′(x′) = 1
regardless of the satisfiability of Φ.

Necessity: Let Φ be a Yes-instance for SAT. This means that there exists x ∈ {0, 1}d
with Φ(x) = 1. Let S = { i ∈ [d] : xi = 1 } and S′ = S × [q]. Then |S′| ≤ k′. Denote

A(u(1), . . . ,u(q)) =
∧

(i,j)∈S′
u

(j)
i .

Hence, S′ is δ-relevant for Φ′ and x′ if P
(
Φ′(u(1), . . . ,u(q),v)

∣∣∣A(u(1), . . . ,u(q))
)
≥ δ.

We have

P
(
Φ′(u(1), . . . ,u(q),v)

∣∣∣A(u(1), . . . ,u(q))
)
≥ P

Φ

 q∧
j=1

u(j)

 ∣∣∣∣∣∣A(u(1), . . . ,u(q))


≥ P

 q∧
j=1

u(j) = x

∣∣∣∣∣∣A(u(1), . . . ,u(q))

 .
From this, with a union bound, we obtain

P

 q∧
j=1

u(j) = x

∣∣∣∣∣∣A(u(1), . . . ,u(q))

 = 1− P

¬ q∧
j=1

u(j) = x

∣∣∣∣∣∣A(u(1), . . . ,u(q))


= 1− P

∃i ∈ Sc :
q∧
j=1

u
(j)
i


≥ 1− |Sc|2−q

≥ δ,

which shows that {Φ′,x′, k′,m′} is a Yes-instance for IP3.
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Sufficiency: Now, conversely, let Φ be a No-instance for SAT. Then for any subset
S′ ⊆ [dq +m′ + p] with |S′| ≤ m′ we have

Py′
(
Φ′(y′) = Φ′(x′)

∣∣y′S′ = x′S′
)

= Py′
(
Φ′(y′)

∣∣y′S′ = 1
)

= P(u(1),...,u(q),v)

m′+p∧
i=1

vi

∣∣∣∣∣∣ (u(1), . . . ,u(q),v)S′ = 1


≤ 2−(m′+p−|S′|)

≤ 2−p

< δ − γ.

This shows that S′ is not (δ − γ)-relevant for Φ′ and x′, hence {Φ′,x′, k′,m′} is a
No-instance for IP3.

Finally, we come to the second main theorem of the paper which shows the inapprox-
imability of the Min-Gapped-Relevant-Input problem.

Theorem 4.7. Let δ ∈ (0, 1) and γ ∈ [0, δ). Then for any α ∈ (0, 1) there is no
polynomial time approximation algorithm for Min-Gapped-Relevant-Input with an
approximation factor of d1−α unless P = NP.

Proof. We prove this by showing that the existence of such an approximation algorithm
would allow us to decide IP3 in polynomial time for certain instances. These can be
chosen as in the proof of Lemma 4.6, which in turn implies that we could decide SAT in
polynomial time. This is only possible if P = NP.
Let Φ: {0, 1}d → {0, 1} be a SAT instance and {Φ′,x′, k′,m′} an equivalent IP3

instance as in the proof of Lemma 4.6. We have seen that there is some freedom in the
choice of m′ as long as it satisfies k′ ≤ m′ and is at most polynomial in d. We choose
m′ =

⌈
max(2k′(k′1−α + p1−α), (2k′)

1
α + 1)

⌉
with p =

⌊
log2

(
1

δ−γ

)⌋
+ 1 as before. Recall

that k′ = dq with q =
⌈
log2

(
d

1−δ

)⌉
, so clearly m′ is polynomial in d and k′ ≤ m′. Further,

we have m′ > (2k′)
1
α so 1− k′m′−α > 1

2 and therefore

m′(1− k′m′−α) > m′

2 ≥ k
′(k′1−α + p1−α).

Now let d′ = k′ +m′ + p denote the number of variables of Φ′. By the subadditivity of
the map z 7→ z1−α we finally obtain

k′d′
1−α = k′(k′ +m′ + p)1−α ≤ k′

(
k′

1−α +m′
1−α + p1−α

)
< m′.

It remains to show that an IP3 instance with m′ > k′d′1−α can be decided by an
approximation algorithm for Min-Gapped-Relevant-Input with approximation factor
d′1−α. Assume such an algorithm exists and let k be an approximate solution. Then
there exists a true solution k̃ with k̃ ≤ k ≤ d′1−αk̃.
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Firstly, assume that {Φ′,x′, k′,m′} is a Yes-instance for IP3. Then there is a δ-relevant
set of size k′. But no set smaller than k̃ can be δ-relevant. This implies k̃ ≤ k′ and
therefore k ≤ d′1−αk′ < m′.

Secondly, assume that {Φ′,x′, k′,m′} is a No-instance for IP3. Then all sets of size at
most m′ are not (δ − γ)-relevant. But there exists a (δ − γ)-relevant set of size k̃. This
implies k ≥ k̃ > m′.
Altogether, checking whether k < m′ or k > m′ decides {Φ′,x′, k′,m′}.

5. Conclusion

We showed that the task of identifying the relevant components of an input assignment
to the variables of a Boolean function is complete for the complexity class NPPP and thus
related in difficulty to the problem of planing under uncertainty. We showed furthermore
that even relaxing the problem by introducing a probability gap promise that allows for
efficient estimation of the fraction of assignments satisfying the Boolean function does
not significantly simplify the problem. It remains hard to only approximately solve this
gapped problem in any reasonable sense (beyond the trivial solution) unless P = NP.

We want to stress that this is a worst-case analysis and does not imply that the task is
impossible in practical applications. Many non-linear optimisation problems are NP-hard
in general and yet performed successfully on a regular basis. But it strongly suggests
that anything beyond heuristic solution strategies requires further restrictions on the
problem.

A. Raising the Probability

We give a constructive proof of Lemma 3.8. Let Φ: {0, 1}d → {0, 1} be arbitrary and
0 < δ1 < δ2 < 1. We will construct a monotone function Π: {0, 1}n → {0, 1} such that
Π(0n) = 0, Π(1n) = 1, and

Py (Φ(y)) > δ1 ⇐⇒ P(y,r) (Φ(y) ∨Π(r)) ≥ δ2, (1)

with

n ∈ O
((

d+ log2

(1− δ1
1− δ2

))2
+ log2

( 1
δ2 − δ1

))
.

Denote Φ′ : {0, 1}d × {0, 1}n → {0, 1} : (y, r) 7→ Φ(y) ∨Π(r), then

P (Φ′) = P (Φ) + (1− P (Φ))P (Π), (2)

which is monotonously increasing in both P (Φ) and P (Π). Thus it suffices to consider the
edge case when P (Φ) is close to δ1. Since P (Φ) can only take values in

{
0
2d ,

1
2d , . . . ,

2d
2d
}
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we see that (1) is equivalent to the two conditions

P (Φ) = bδ12dc
2d =⇒ P (Φ′) < δ2,

P (Φ) = bδ12dc+ 1
2d =⇒ P (Φ′) ≥ δ2,

which together with (2) is equivalent to

bδ12dc
2d + 2d − bδ12dc

2d P (Π) < δ2 (3)

bδ12dc+ 1
2d + 2d − bδ12dc − 1

2d P (Π) ≥ δ2. (4)

In the case δ1 < δ2 ≤ bδ12dc+1
2d the condition (4) is always fulfilled. Further, we have

bδ12dc
2d + 2d−bδ12dc

2d P (Π) < δ1 + P (Π) so that if P (Π) < δ2 − δ1 also (3) holds. Therefore,
we choose

Π(r) :=
n∧
i=1

ri and n :=
⌊

log2

( 1
δ2 − δ1

)⌋
+ 1.

If otherwise δ2 >
bδ12dc+1

2d rearranging (3) and (4) finally gives us the bounds

a ≤ P (Π) < b (5)

on P (Π) where

a = δ22d − bδ12dc − 1
2d − bδ12dc − 1 ,

b = δ22d − bδ12dc
2d − bδ12dc .

It is not hard to check that indeed we have 0 ≤ a < b ≤ 1. In Appendix C we show for
η ∈ [0, 1] and ` ∈ N the existence of a monotone Boolean function Πη,` : {0, 1}n → {0, 1}
such that Πη,`(0n) = 0, Πη,`(1n) = 1, and

|P (Πη,`)− η| ≤ 2−`

with n ≤ `(`+3)
2 ∈ O(`2). We conclude by choosing

η = b+ a

2 ,

` =
⌊
− log2

(
b− a

2

)⌋
+ 1 =

⌊
− log2

(
2d(1− δ2)

(2d − bδ12dc) (2d − bδ12dc − 1)

)⌋
+ 1

and setting Π = Πη,`. Then Π satisfies (5) and thus also (1) and we get

` ∈ O
(
d+ log2

(1− δ1
1− δ2

))
and therefore n ∈ O(`2) = O

((
d+ log2

(
1−δ1
1−δ2

))2
)
.
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B. Lowering the Probability
We give a constructive proof of Lemma 3.11. Let Φ: {0, 1}d → {0, 1} be arbitrary and
0 < δ1 < δ2 < 1. We will construct a monotone function Π: {0, 1}n → {0, 1} such that

Py (Φ(y)) ≥ δ2 ⇐⇒ P(y,r) (Φ(y) ∧Π(r)) > δ1, (6)

with
n ∈ O

((
d+ log2

(
δ2
δ1

))2)
.

Denote Φ′ : {0, 1}d × {0, 1}n → {0, 1} : (y, r) 7→ Φ(y) ∧Π(r), then

P (Φ′) = P (Φ)P (Π), (7)

which is monotonously increasing in both P (Φ) and P (Π). Thus it suffices to consider the
edge case when P (Φ) is close to δ2. Since P (Φ) can only take values in

{
0
2d ,

1
2d , . . . ,

2d
2d
}

we see that (6) is equivalent to the two conditions

P (Φ) = dδ22de
2d =⇒ P (Φ′) > δ1,

P (Φ) = dδ22de − 1
2d =⇒ P (Φ′) ≤ δ1,

which together with (7) is equivalent to

dδ22de
2d P (Π) > δ1 (8)

dδ22de − 1
2d P (Π) ≤ δ1. (9)

In the case dδ22de−1
2d ≤ δ1 < δ2, notice that we can simply choose Π ≡ 1. Thus, from now

on we assume that this is not the case. Then, rearranging (8) and (9) finally yields the
bounds

a < P (Π) ≤ b (10)

on P (Π), where

a = δ12d

dδ22de ,

b = δ12d

dδ22de − 1 .

It is not hard to check that indeed we have 0 ≤ a < b ≤ 1. In Appendix C, we show for
η ∈ [0, 1] and ` ∈ N the existence of a monotone Boolean function Πη,` : {0, 1}n → {0, 1}
such that Πη,`(0n) = 0, Πη,`(1n) = 1, and

|P (Πη,`)− η| ≤ 2−`
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with n ≤ `(`+3)
2 ∈ O(`2). We conclude by choosing

η = b+ a

2 ,

` =
⌊
− log2

(
b− a

2

)⌋
+ 1 =

⌊
− log2

(
δ12d

2dδ22de (dδ22de − 1)

)⌋
+ 1

and setting Π = Πη,`. Then Π satisfies (10) and thus also (6). Hence, we finally conclude
that

` ∈ O
(
d+ log2

(
δ2
δ1

))

and therefore n ∈ O(`2) = O
((
d+ log2

(
δ2
δ1

))2
)
.

C. Construction of the Functions Πη,`

For η ∈ [0, 1] (the target probability) and ` ∈ N (the accuracy) we construct a Boolean
function Πη,` : {0, 1}n → {0, 1} in disjunctive normal form with n ∈ O(`2), Πη,`(0n) = 0,
Πη,`(1n) = 1, and

|η − P (Πη,`)| ≤ 2−`.

If η ≤ 2−` we can simply choose Πη,`(x1, . . . , x`) =
∧`
k=1 xk. So from now on assume

2−` < η ≤ 1. In this case we construct a sequence of functions Πi : {0, 1}ni → {0, 1} such
that pi = P (Πi) is monotonely increasing and converges to η from below. We proceed
according to the following iterative procedure: Start with the constant function Π0 ≡ 0.
Given Πi and pi we can stop and set Πη,` = Πi if |η − pi| ≤ 2−`. Otherwise we set
ni+1 = ni + ∆ni with

∆ni = argmin
{
n ∈ N : pi + (1− pi)2−n ≤ η

}
, (11)

and

Πi+1(x1, . . . , xni+1) = Πi(x1, . . . , xni) ∨

 ni+1∧
k=ni+1

xk

 .
Clearly, we obtain pi+1 = pi + (1− pi)2−∆ni . We will see below that ∆ni can not be too
large and thus (11) can be efficiently computed by sequential search.

Lemma C.1. The sequence (pi)i∈N is monotonely increasing and we have

|η − pi+1| ≤
1
2 |η − pi|

for all i ∈ N. In particular |η − pi| ≤ 2−i and pi → η as i→∞.
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Proof. Since 0 = p0 ≤ η and by choice of ∆ni, we have pi ≤ η for all i ∈ N. Also from
(11) we know that pi+(1−pi)2−(∆ni−1) > η since otherwise ∆ni would be chosen smaller.
Therefore

η − pi+1 = η − pi − (1− pi)2−∆ni

= η − 1
2pi −

1
2
(
pi + (1− pi)2−(∆ni−1)

)
≤ 1

2 (η − pi) .

The second part simply follows by repeatedly applying the above recursion i times and
from the fact that η − p0 = η ≤ 1.

We conclude that the desired accuracy is reached after at most ` iterations in which
case we stop and set Πη,` = Π`. It remains to determine how many variables need to be
used in total. We first bound how many variables are added in each step.

Lemma C.2. For any i ∈ N, we have ∆ni < − log2 (η − pi) + 1.

Proof. As before we know pi+(1−pi)2−(∆ni−1) > η since otherwise ∆ni would be chosen
smaller. This implies

2−(∆ni−1) >
η − pi
1− pi

≥ η − pi,

and therefore ∆ni < − log2 (η − pi) + 1.

This can finally be used to bound how many variables are used in total.

Lemma C.3. The total number of variables for Πη,` = Π` is

n = n` =
∑̀
i=1

∆ni−1 ∈ O
(
`2
)
.

Proof. From Lemma C.1 we get η − pi ≥ 2(η − pi+1) and thus η − pi ≥ 2`−1−i(η − p`−1).
Without loss of generality we can assume η − p`−1 ≥ 2−` since otherwise we can stop the
iterative construction of Πη,` at `− 1. Using Lemma C.2, this immediately results in

n =
∑̀
i=1

∆ni−1

≤
∑̀
i=1
− log2 (η − pi−1) + 1

≤
∑̀
i=1
− log2

(
2`−i(η − p`−1)

)
+ 1

≤
∑̀
i=1
− log2

(
2−i
)

+ 1

= `(`+ 1)
2 + ` ∈ O

(
`2
)
.
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