DENSITY OF WEIGHTED WAVELET FRAMES

CHRISTOPHER HEIL AND GITTA KUTYNIOK

ABSTRACT. If ¢ € L2(R), A is a discrete subset of the affine group A = Rt x R,
and w: A — Rt is a weight function, then the weighted wavelet system generated
by ¥, A, and w is W(¢, A, w) = {w(a,b)'/2a=/2¢(Z —b) : (a,b) € A}. In this
paper we define lower and upper weighted densities Dy (A) and D (A) of A with
respect to the geometry of the affine group, and prove that there exist necessary
conditions on a weighted wavelet system in order that it possesses frame bounds.
Specifically, we prove that if W(%, A, w) possesses an upper frame bound, then the
upper weighted density is finite. Further, for the unweighted case w = 1, we prove
that if W(%, A, 1) possesses a lower frame bound and D (A~!) < oo, then the lower
density is strictly positive. We apply these results to oversampled affine systems
(which include the classical affine and the quasi-affine systems as special cases), to
co-affine wavelet systems, and to systems consisting only of dilations, obtaining some
new results relating density to the frame properties of these systems.

1. INTRODUCTION

A common folklore is that it is not possible to define a notion of density for the affine
group that is analogous to the phase-space density that is defined for the Heisenberg
group. While it is true that the affine group does not display a Nyquist-type phenomenon
with respect to density of wavelet frames, we show in this paper that a useful definition
of density for the affine group does exist and that necessary conditions for the existence
of wavelet frames can be formulated in terms of density conditions.

Let A = R* x R denote the affine group, endowed with the multiplication

(@,b) - (z,y) = (az, % +y).
Let o be the unitary representation of A on L?(R) defined by

(0(a,0)f)(x) = a™/2f(Z ~b).

Given a function ¢ € L?(R), asubset A C A, and a weight function w: A — R, we define
the weighted wavelet system generated by ¥, A, and w to be the weighted collection of
time-scale shifts of ¢ given by

W, A, w) = {w(a,b)'/?o(a,b)¢ : (a,b) € A}
= {w(a,b)"?a *p(2 —b) : (a,b) € A}. (1)

When w = 1 in this or other definitions, we will simply omit writing it. This definition
of weighted wavelet systems includes as special cases the usual affine wavelet systems,
the quasi-affine wavelet systems, and the co-affine wavelet systems (defined below). In
particular, it is important to allow the case of nonconstant weights in (1) in order to
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obtain the quasi-affine systems. We say that W (¢, A,w) is a frame for L?(R) if there
exist A, B > 0 (the frame bounds) such that

VIEL’®), AlfIE< 3 [, wab)o@by)] <BIfI3 (2

(a,b)EA

We may also consider the upper and lower inequalities in (2) independently of each other.
In order to put our results into perspective, let us review the analogous density results
that exist for the case of Gabor frames and the Heisenberg group, restricting our discus-
sion to the one-dimensional case for simplicity. We refer to [6] for additional background
and references.
Given a function g € L2(R) and a subset A C R2, the Gabor system determined by
g and A is the collection of time-frequency shifts of g defined by

G(g,A) = {2 g(z — a) : (a,b) € A}.

Classical results are mostly concerned with the case of rectangular lattices of the form
A = aZ x bZ. Rieffel proved in [19], as a corollary of deep results on von Neumann
algebras, that if G(g,aZ x bZ) is a complete subset of L?(R) then necessarily ab < 1.
After a number of developments, including [8], [17], [16], Ramanathan and Steger proved
in [18] that all Gabor frames G(g,A), without restrictions on g or A, satisfy a certain
Homogeneous Approzimation Property (HAP), and deduced from this that if G(g,A) is a
frame then the lower Beurling density of A satisfies D~ (A) > 1 (note that D~ (aZ xbZ) =
1/ab), and that if this frame is a Riesz basis then D~ (A) = D*(A) = 1. For the special
case A = aZ x bZ, they were also able to recover by this technique the completeness
result of Rieffel. Some corrections and extensions were obtained in [6], compare also [12].
It was shown in [4] that the Rieffel result does not extend to non-lattices: there exist
complete (but non-frame) Gabor systems with upper Beurling density . Recently, it has
been shown in [2] that there is a fundamental connection between density properties and
the so-called excess of a Gabor frame, and this connection is a manifestation of deeper
implications of the HAP and related properties of localized frames [3].

In brief, in terms of necessary conditions for Gabor frames there is a critical or Nyquist
density for A separating frames from non-frames, and furthermore the Riesz bases sit
exactly at this critical density. It is natural to ask whether wavelet systems share similar
properties, and the immediate answer is that there is clearly no exact analogue of the
Nyquist density for wavelets. In particular, consider the case of the classical affine systems
with dilation factor @ > 1 and translation parameter b > 0, i.e.,

W, A) = {a 2 p(az —bk): j ke Z}, A={(a,bk):j,keZ}). (3)

It can be shown that for each a > 1 and b > 0 there exists a wavelet ¢ such that W(¢, A)
is a frame or even an orthonormal basis for L?(R). In fact, the wavelet set construction
of Dai, Larson, and Speegle [7] shows that this is true even in higher dimensions: wavelet
orthonormal bases in the classical affine form exist for any expansive dilation matrix.
For additional demonstrations of the impossibility of a Nyquist density, even given con-
straints on the norm or on the admissibility condition of the wavelet, see the example of
Daubechies in [8, Thm. 2.10] and the more extensive analysis of Balan in [1]

However, the more general question remains: for what sets A and what weights w is
it possible to construct wavelet frames W(, A,w)? Two important examples of wavelet
systems other than classical affine systems are the quasi-affine and co-affine systems.
Quasi-affine systems, introduced by Ron and Shen [20], are obtained by replacing the set
A used in the definition of the affine system (3) by

A = {(,bk) : j <0,k € Z} U {(a’,a™7bk) : j > 0,k € Z}, (4)
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and using the weight
w(d’,bk) = 1, i>0,keZ,
w(a?,a Ibk) = a7, j>0,keZ. (5)

In other words, “extra” elements are added to an affine system, and additionally the
norms of the extra elements are adjusted. Ron and Shen proved that if a is integer and
b = 1 then an affine system is a frame if and only if the quasi-affine system is a frame.
The utility of the quasi-affine system is that it is integer translation-invariant, unlike the
original affine system. More general quasi-affine systems with rational dilation factors
were studied by Bownik in [5].

Co-affine wavelet system were studied recently by Gressman, Labate, Weiss, and Wil-
son [11]. If we write an affine system as {D,; Tyt }; rez, where D,; and T}, are the ap-
propriate dilation and translation operators, then a co-affine system is {TD,it)}; rez-
This amounts, in the terminology of this paper, to taking

A = {(a?,a 7bk) : j, k € Z}, (6)

and w = 1. It was shown in [11] that such a system can never form a frame for
L?(R), and, moreover, this impossibility remains even allowing weights of the form
w(a’,a7bk) = w(a’).

In this paper we will show that there is a natural density interpretation of the difference
between affine/quasi-affine and co-affine systems. Moreover, we obtain this as a corollary
of a more general result relating the density of arbitrary subsets A of the affine group
to frame properties of W(y, A, w). We begin in Section 2 by defining upper and lower
weighted Beurling densities D (A), Dy (A) of A that are appropriate to the geometry
of the affine group, and deriving some basic properties related to these densities. Then,
in Sections 3.2 and 3.4 we prove the following result, which places restrictions on when
W(3, A, w) can form a frame for L?(R).

Theorem 1. Given a nonzero ¢ € L?(R), a subset A of A, and a weight function
w: A — RT, the following statements hold.

(a) If W(2, A, w) possesses an upper frame bound for L?(R), then D (A) < co.

(b) Let w = 1, and suppose that DT(A™1) < co. If W(¢), A) possesses a lower frame
bound for L?(R), then D~(A) > 0.

Qualitatively, the statement D (A) > 0 or D~ (A) > 0 implies that, in a certain
sense, there cannot be “gaps” in the distribution of points of A of arbitrarily large size,
and the requirement D, (A) < oo or DT (A) < co implies that there cannot be too much
“crowding together” of points. In particular, we show that for the unweighted case, finite
upper density is equivalent to being able to divide A into finitely many subsequences each
of which is “separated” in a sense appropriate to the affine group.

In Section 4 we present several applications of Theorem 1. We consider first the
“oversampled affine systems” introduced in [14], which include the affine systems, the
quasi-affine systems of Ron and Shen, and the quasi-affine systems of Bownik as spe-
cial cases. We show that each oversampled affine system has identical density, namely,
DY (A) = Dy (A) = 1/(blna). Next we show that the (unweighted) co-affine systems
are extreme examples in regard to density: D~ (A) = 0 while DT (A) = co. Further,
DFH(A 1) < o0, so a co-affine system can possess neither an upper nor a lower frame
bound. Finally, we show that a system consisting only of dilations of a function can
never form a frame for L?(R).

We conclude with some remarks on the hypotheses in Theorem 1. First, although
we only obtain the result in Theorem 1(b) for the unweighted case, we believe that it
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should also be true for the weighted case. In particular, we are only able to consider
the case of unweighted co-affine systems. Second, we do not know if the hypothesis
DH(A™1) < oo in Theorem 1 is necessary. Adding the assumption D¥(A) < oo does
not resolve this question, since, for example, if A is the set given in (3) corresponding
to the affine system, then A~! is the set corresponding to the co-affine system, so for
this A we have Dt(A) < oo yet DY (A7) = co. Further, it is not true that if both
D+(A) < 0o and DF(A™1) < oo then necessarily D~ (A) > 0; for example, consider the
set A = {(a?,bk) : j € Z,k > 0}.

A sequel paper will examine the analogue of the HAP for wavelet systems, and its
relation (or lack thereof) to density conditions in the wavelet case. Another interesting
topic for future research is the case of higher dimensions, allowing dilation matrices in
place of dilation factors.

Note added. Following submission of this paper, we learned of some related references.
It is well-known that density theorems for Gabor frames G(g, A) generated by Gaussian
functions g are related to density questions in the Bargmann-Fock spaces, e.g., [21]. In
[22], K. Seip introduced a notion of density for Bergman-type spaces on the unit disk,
and it is possible to derive some density results for wavelet frames W(1, A) generated by
certain wavelets ¢ from those results. We have also learned that W. Sun and X. Zhou
have simultaneously derived some results on the density of irregular wavelet frames that
are related to ours. The paper [23] is restricted to wavelet frames W(y, A) where A has
the form A = S x T. Additionally, the paper [24] introduces a density notion for the
affine group that is similar to ours, and derives a number of interesting related results.
However, the results are distinct from ours, and in particular the weighted case is not
considered there.

2. WEIGHTED AFFINE BEURLING DENSITY

In R™, Beurling density is a measure of the “average” number of points of a set that
lie inside a unit cube. We will define a Beurling density that is suited to the geometry
of the affine group.

First we require some notation. For h > 1, we let )}, denote a fixed family of neigh-
borhoods of the identity element e = (1,0) in A. For simplicity of computation, we will
take

Qn = [,h) x [=h,h).
For (z,y) € A, we let Qp(z,y) be the set @y, left-translated via the group action so that
it is “centered” at the point (z,y), i.e.,
Qh(xay) = (xay) ) Qh = {(ara, % + b) ‘a€ [%,h), be [_hah)}

Let p = dw—“” dy denote the left-invariant Haar measure on A. Since p is left-invariant,
we have that

h h
wWQn(z,y)) = w(Qr) = /_h/l d—xdy = 4hInh.

/h T
Next, given a subset A of A and a weight function w: A — R™T, we define the weighted
number of elements of A lying in a subset K of A to be

#u(K) = Z w(a, b).
(a,b)eK
Then the upper weighted affine Beurling density of A is
su w(AN x,
D$ (A) — lim sup p(w,y)eA # ( Qh( y)) ,
h—oc0 M(Qh)
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and the lower weighted affine Beurling density of A is

D;U (A) — liminf lnf(a:,y)EA #uw (A N Qh(wa y))
h—00 m(@n)
If D, (A) = D (A), then we say that A has uniform weighted affine Beurling density and
denote this density by D, (A). If w = 1, we omit writing it. Densities of sets associated
with the affine, quasi-affine, and co-affine systems are computed in Section 4.
We will derive some equivalent ways to view the meaning of finite upper weighted

density and positive lower weighted density. First, however, we will require the following
technical lemma, which will be used throughout. Note that Qp(h??,2k)-(p,q) = (h*’,2k)-

Qh . (P: q)

Lemma 2. Let h > 1, r > 1, and (p,q) € A be given.
(a) {Qn(h*,2k)- (p,q): j,k € Z} covers A.
(b) Any set Qn(z,y) intersects at most N = 3(h’p+ h* + hplq| + 1) sets of the form
Qh(hQJa 2k) : (p7 q)
(c) Any set Q.4 (z,y) intersects at most N = (log,, r + 3)(rh? 4+ h? + 1) sets of the
form Qn(h?7,2k).
(d) If Qn(z,y) N Qn(a,d) # 0, then (z,y) € Q2p2(a,d).

Proof. (a) Since A is invariant under right-shifts, it suffices for this part to consider the
case (p,q) = (1,0). Fix any (z,y) € A. Then [log, z — 1,log, = + 1) contains a unique
integer of the form 2j, and there exists a unique a € [%, h) such that log, x = 2j +1logy, a.
Further, since % < 2h, there exists at least one integer k and a number b € [—h, h) such
that y = 28 + b. Hence (z,y) = (h¥a, 2 +b) = (h¥,2k) - (a,b) € Qn(h*,2k).

(b) Fix (z,y) € A, and suppose that (u,v) € Qn(z,y) NQx(h?,2k)-(p,q). Then there
exist points (a,b), (¢,d) € Qp such that

(u,v) = (2,9) - (a,0) = (az, 3 +D) € Qn(,y)

and
(u,0) = (B7,28) - (e,d) - (p,q) = (Wep, 2k + & +g) € Qu(h™,2k) - (p,).

In particular, {7 = h% with < a,c < h, so Wy < b < th“”. Therefore
log, z log,p log, z log,p
2 2 2

which is satisfied for at most 3 values of j. Further, 2k = ;& + bep — ed — cpg, so

zy  W’p W hplg|
2h2J 2 2 2 — T 2hr% 2 2 2
For a given value of j, this is satisfied for at most h%p + h% + hp|q| + 1 values of k. Thus,
Qn(z,y) can intersect at most 3(h?p + h? + hp|q| + 1) sets of the form Qp(h%, 2k).
(
(

c¢) The proof is similar to the proof of part (b).

d) Suppose that (¢,d) € Qn(z,y) N Qrla,b). Then we would have (¢,d) = (a,b) -
(r,s) = (z,y) - (t,u) for some (r,s), (t,u) € Qp. Therefore,

(a,b) - (z,y) = (r,8)- (t,u)™! = (5,8t —tu) € Qape,
so (z,y) € Qan2(a,b). O

Using this lemma, we can give a useful reinterpretation of finite upper density.



6 CHRISTOPHER HEIL AND GITTA KUTYNIOK

Proposition 3. If A C A and w: A — R, then the following conditions are equivalent.
(a) D (A) < oo.
(b) There exists h > 1 such that sup(, ,yea #w(A N Qr(2,y)) < 0.
(c) For every h > 1 we have sup, ,)ca #w (AN Qr(z,y)) < 0.

Proof. (a) = (b) and (c) = (b) are trivial.

(b) = (a), (c). Suppose there exists h > 1 such that R = sup(, ,yca #w(A N
Qh(xa y)) < 0.

For 1 <t < h, we have Q¢(2,y) C Qn(z,y), 50 SUP(; y)eca #u(ANQt(z,y)) < co. On
the other hand, if ¢ > h then we have t = rh with r > 1. If we let N,, = (log,, 7+ 3)(rh®+
h? + 1) be as given in Lemma 2(c), then each set Q,x(z,y) is covered by a union of at
most N, sets of the form @y (h?7,2k). Consequently,

sup #u(ANQrn(x,y)) < Ny - sup #w(AﬂQh(hzjazk)) < N:R < o0.
(zy)€A JkEZ

Thus statement (¢) holds. Further,

N.R Rh
DH(A) < 1 r =
w(A) < limsup 2500 = Tn <

so statement (a) holds as well. O

00,

A similar result holds for the case of positive lower weighted density.

Proposition 4. If A C A and w: A — R, then the following conditions are equivalent.
(a) D,(A) > 0.
(b) There exists some h > 1 such that inf(, ,)ca #w(A N Qr(z,y)) > 0.

For the unweighted case, we will give a further interpretation of finite upper density
in terms of the following definition.

Definition 5. We will say that a set K C A is affinely h-separated if
(a,b) # (c,d) € K = Qn(a,b) N Qp(c,d) = 0.

Proposition 6. If A C A and w = 1, then the following conditions are equivalent.
(a) DY(A) < co.

(b) There exists h > 1 such that A can be written as a finite union of subsets
A1, ..., AN, each of which is affinely h-separated.

(¢) For every h > 1, A can be written as a finite union of subsets Ay,..., Ay, each
of which is affinely h-separated.

Proof. (a) = (c). Assume that D*(A) < oo, and let A > 1 be given. Then by Lemma 3,
we have M = sup(, ,yca #(A N Qn(z,y)) < co. Fix any (a,b) € A. If (c,d) € A is such
that Qp(a,b) NQp(c,d) # 0, then we have by Lemma 2(d) that (¢,d) € Qap2(a,b). Now,
by Lemma 2(c), there exists an N, independent of (a, b), such that Qo2 (a, b) is contained
in a union of at most N sets of the form Q(h?/,2k). However, each set Qn(h?/,2k) can
contain at most M points of A. Hence Q242 (a,b) can contain at most M N points of A.

Thus, each Qp(a,b) with (a,b) € A can intersect at most M N sets Qp(c,d) with
(¢,d) € A. By the disjointization principle of Feichtinger and Grébner [10, Lemma 2.9],
it follows that A can be divided into at most M N subsequences Ay, ..., Ay n such that
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for each fixed i, the sets Qp(a,b) with (a,b) € A; are disjoint, or in other words, A; is
affinely h-separated.

(b) = (a). Assume that A = Ay U---U Ax with each A; affinely h-separated. Fix §
so that 1 < 262 < h, and suppose that two points (a,b) and (c,d) of some A; were both
contained in some Qs(z,y). Then by Lemma 2(d), we would have (z,y) € Qas2(a,b) C
Qnr(a,b) and (z,y) € Qa52(c,d) C Qn(c,d). Hence (a,b) = (¢, d) since A; is affinely
h-separated. Thus, each 5(,y) contains at most one point of A;, S0 sup(, ,yca #(A N
Qs(z,y)) < N < co. It therefore follows from Proposition 3 that Dt (A) < co. O

3. PROOF OF THEOREM 1

3.1. The Bergman transform. Before beginning the proof of Theorem 1, we recall
some basic facts. Define a function n by

~ _ 266_57 62 07
M) = {0, £<0.

We have [|n|l> = 1 and [ % d¢ =1 < oo. Therefore 7 is an admissible function, and
consequently the continuous wavelet transform W, defined by

Wyf(a,b) = (f,o(a,b)n),  (a,b) € A,

maps L?(R) into L?(A,dy). Furthermore, W, f is a continuous function for each f €
L?(R), and the roles of f and n can be interchanged by using the relation Wyn(a,b) =
W, F((a,5)0).

In fact, we have chosen this particular analyzing wavelet n because W, f possesses a
stronger property than continuity. Let C* = {z € C : Im(z) > 0} denote the complex
upper half-plane. The Bergman transform of f € L?>(R) is the function Gf defined on

1

CT by
Gf(b+ai) = ngmg(x), 0_1/277(’7”7_17)) = m%/g<f: o(a, %)77> = m—3/2an(a;%)-

For each f € L?*(R), Gf is an analytic function on CT, cf. [9, Sec. 2.5], [13, p. 308].
In particular, if we identify A with C* in the obvious way, then since @, is a compact
neighborhood of ¢ = 0 + 17 in C*, we have by [15, Thm. 2.2.3] that for each h > 1 there
exists a constant K}, independent of f € L2(R), such that

GF@)| = |GFO+1)] < Ka / /Q IGf(2)] de.

3.2. Proof of Theorem 1(a). We will now prove part (a) of Theorem 1. Assume that
¥ € L2(R)\ {0}, A C A, and w: A — R¥ are given such that D} (A) = co. We will
show that W(, A,w) does not possess an upper frame bound.

We cannot have 1) identically zero on both (—00,0] and [0,00), and we can assume
without loss of generality that supp(1)) N[0, 00) # 0. In this case the Bergman transform
Gt of 1 is an analytic function on C* that is not identically zero. Now, if Wyn had a
zero in every set Qp(c,d) for each (¢,d) € A and every h > 1, then, using the relation

2 PWyn(z,y) = 2r Gp(—y + 1i),
it is easy to see that the zeros of Gy would have a finite accumulation point. Since G
is analytic, this implies Gi = 0, which is a contradiction. Hence, there must be some
(¢,d) € A and some h > 1 such that Wyn does not vanish on Qp(c, d), and consequently,

6 = inf Wyn(z, > 0.
) (o) 01(@: )]
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Now choose any N > 0. Since D (A) = o0, it follows from Proposition 3 that

sup #w(AmQh(xay)) = 00,
(z,y)€A

so there must exist a point (p,¢) € A such that #, (AN Qr(p,q)) > N. Define
9 =0a(p,q) (c,;d)"")n
and note that ||g|l2 = ||n]|]2 = 1. Now,
(a,b) € Qu(p,a) = (0,0) - Qr = (c,d)- ()" - (a,b) € (c;d) - Qn = Qu(c, ),
so we can compute that

Y Ko, wa,b)?o(a, b))

(a,b)EA

| 2

(o ((p,q) - (¢,;d) "), w(a, )"/ o(a, b)i)|”
(a,b)eANQL (p,q)

= ST @) [(n, o((e,d) - (p,0) - (@, b)w)]

(a,b) EANQR(p,q)

= Y lw@d) [ Wn((e,d) - (0,0) " - (b))
(a,b)EANQn(p,q)
0 #u(ANQn(p,q)) > N&°.

Since N is arbitrary and ||g||2 = 1, we conclude that W(%, A, w) cannot possess an upper
frame bound.

v

v

3.3. Lemmas. In order to prove Theorem 1(b), we will require the following technical
lemmas.

Lemma 7. If A C A satisfies DV (A) < oo, then DF(A - (p,q)) < oo for each (p,q) € A.
Proof. Since D¥(A) < oo, we have by Proposition 3 that

M = sup #(ANQ:(z,y)) < oo.
(z,y)eA
Fix any (p,q) € A. By Lemma 2, we have that {Q2(2%7,2k) - (p,q) : j, k € Z} covers A,

and there exists an integer N independent of (z,y) such that each Q2(z,y) intersects at
most N of the sets Q2(2%,2k) - (p, q). Therefore,

#(A-(p,9) N Q2(z,y)) < N sup #(A- (p,g) N Q2(2%,2k) - (p, q))

1,kE€EZ

IA

N sup #(A N Q2(2%,2k))
JkEZ

MN,

IA

and therefore D* (A - (p,q)) < oo by Proposition 3. O

Lemma 8. Let §, R > 1 be given. If T > R(R + 0), then we have for every (p,q) € A
that

(a,b) ¢ Qr(p,q) = Qr N Qs((a,b)™" - (p,q)) = 0.
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Proof. Suppose that there exists a point (z,y) € Qr N Qs5((a,b)™1-(p,q)). Then (z,y) =
(a,b)"! - (p,q) - (c,d) for some (c,d) € Q5. Since we also have (z,y) € Qr, we can check
that

(paq)_l ’ (aab) = (C,d) ’ (may)_l = (%,dm—my) € QT-
Therefore (a,b) € (p,q) - Qr = Qr(p, q)- 0

Lemma 9. For each § > 1, there exists a constant Cs > 0 such that for every (p,q),
(a,b) € A,

) ’ )b ? <C ’ ’ ? d_xd .
(ow.am oo <cs [[ o)

Proof. Let (p,q) € A and (a,b) € A be given. Set f = o((p,q) ! - (a,b))y and let
h = 6'/2. Then we compute as follows:

(o), o(a,b)¥)[* = [(n, o((p,0) * - (a,0))0)|”
= [(#. 0(1,0)n>|2
= (21)2|GS (D)
< a (10 [[ 16562 )
= 183 ([ g |01 oo 2o dm)2
</:;/’;x3%|<fa )
([ )
< K (/W /#ml%w, a(w,t)n>|dtdar)2
< K2 (/ljh /_Zdtda:) (//Q 2 (7, a(:c,t)n>|2dti—x)

C(;// [(f, oz, t)m |2d—xdt

:Cé// |<U(pq 1 (a,b)), o |2d—$dt
-1 2 dx
yer // (W, 0@ )™ (pra) - () [
:cé// (b, o xt>2d—”’dt O
Qs((a,b)=1-(p,q))

3.4. Proof of Theorem 1(b). Now we give the proof of part (b) of Theorem 1. Assume
that ¢» € L2(R) and A C A are given such that DT (A~!) < oo and D=(A) = 0. Our
goal is to show that W(, A) does not possess a lower frame bound.
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Fix any ¢ > 0. We have W,y € L*(A,du), so, since the sets @ form a nested,
increasing, exhaustive sequence of subsets of A there must exist some R > 1 such that

[ 1w oo Eay < -
A\Qr T

Fix T > R(R + 1). Then, since D~ (A) = 0, by Proposition 4 we can find a point
(p,q) € A such that
ANQr(p,q) = 0.
Let 6 > 1 be chosen so that R(R + 6) < T. Then by Lemma 8, we have that

U @s((a,)™" - (p,q)) € A\Qr.
(a,b)EA

Now, since DT (A1) < oo, we have by Lemma 7 that DT(A~! - (p,q)) < oo as well.
Therefore, by Proposition 6 we can write A as a finite union A = A; U---U Ay in such a
way that A; ' - (p,q) is affinely J-separated for each i = 1,..., N. Consequently, for each
i we have

U Qs((@b)" - (2a) C A\Qn, (7)
(a,b)EA;
with the union being disjoint.
Finally, applying Lemma 9 and (7), we compute that

> Howom o) < Gy 3 //Qa((ab)—l.(pq>)|<¢’ U(m’y)">|2iﬁdy

(a,b)eA i=1 (a,b)EA;

ol 2 dx
Cé;//A\QR |<¢7 U(may)n>| ?dy

< NCse.

Since ||lo(p,¢)nll2 = lInllz = 1, it follows that W(y, A) cannot possess a lower frame
bound, which completes the proof.

IN

4. EXAMPLES AND APPLICATIONS
In this section we will apply our results to several types of weighted wavelet systems.

4.1. Oversampled affine systems. A general notion of oversampled affine systems was
introduced in [14], which includes the affine and quasi-affine systems as special cases. We
will show that each such oversampled system has the same density.

Definition 10. Given a > 1, b > 0, and r;, an oversampled affine system is a weighted
wavelet system of the form W(y, A, w) with

A= {(aj,%):j,kEZ} and w(a? M):l

77-]- r]'

Example 11. The following are special cases of oversampled affine systems.
a. The classical affine systems are obtained by setting r; = 1.

b. The quasi-affine systems of Ron and Shen [20] are obtained when a is an integer,

b=1, and
1, j<0,
ry = . .
a’, j2>0.
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c. The quasi-affine systems of Bownik [5] are obtained when a = p/q is rational,

b=1, and
g7, j<O0,
ri = . i
Y, Jj=20.

Proposition 12. If W(, A, w) is an oversampled affine system, then A has uniform
weighted affine Beurling density

1
blna’

Proof. Fix (z,y) € A. If (a/ bk) € Qn(z,y), then
(2% - 28) = (2,9)7" - (o, &) € Qu.

In particular, “z_] € [%, h). There are at least 2log, h and at most 2log, h + 1 integers

j satisfying this condition Additionally, we have Z§% — hr] <k < 4 hT’. For a

given j, there are at least 2 TJ and at most hr] +1 1ntegers k satisfying this condition.
Taking the weight into account we conclude that

Dy (A) =

2log, h - 1 2k < #u(ANQr(z,y)) < (2log, h+1) - 1. (2hr] + 1)
rj b Tj b
Thus
(2logah+1)-%-(¥+l) )
Du(A) < limsup ik = blna’
and similarly D (A) > . O

We remark that for Gabor systems G(g,aZ x bZ), the Beurling dens1ty of the lattice
aZ x bZ is a ubiquitous constant in a variety of formulas. For example, if Q (9,aZ x bZ)
is a tight frame for L2(R) and ||g||2 = 1, then the frame bounds are exactly % Many of
these formulas have analogues for classical affine systems, with the number ﬁ playing
the role that 1 5 blays for Gabor systems. For this reason, Daubechies already suggested
in [9, Sec. 4. 1] that 7= might play the role of a density for affine systems, but she also
demonstrated that affine systems cannot possess an analogue of the Nyquist density that
Gabor systems possess.

4.2. Co-affine systems. Next we will consider the co-affine systems studied in [11]. We
show that unweighted co-affine systems can possess neither an upper nor a lower frame
bound.
Proposition 13. Fix a > 1 and b > 0, and set A = {(a’,a=9bk) : j,k € Z}. Then

D (A)=0 and DT (A) = 0.

Consequently, a co-affine system W(1, A) cannot possess an upper or a lower frame
bound.

Proof. Fix (z,y) € A. If (a,a=7bk) € Qn(z,y), then
(%j,a*jbk— 2—?) = (z,y) ' (a’,a7bk) € Q.

This requires
log, z —log, h < j < log, z +log, h
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and
zy —alh zy +alh
b b '
As in the proof of Proposition 12, terms +1 are not significant in the limit, so it suffices
to observe that

<k<

|log, z+log, h] Qhat
#u(ANQu,y) —

j=[log, z—log, h]

By changing x, we can make this quantity arbitrarily large or small, which yields the
conclusion D~(A) = 0 and DT (A) = occ. Finally, since A~! is the set corresponding to
the affine system, we have DT (A=) = 1/(blna) < co. The nonexistence of frame bounds
therefore follows from Theorem 1. |

4.3. Systems of translates and dilations. Finally, we examine systems which consist
only of translates or of dilations of a given function.

Proposition 14. Let ¢ € L?(R), A; C R, and A, C R* be given.
(a) T(¥,A1) = {¥(z — a)}aca, is not a frame for L?(R).

(b) D(¥,A2) = {a™1/24(Z)}4en, is not a frame for L*(R).

Proof. Note that both of these systems are special cases of weighted wavelet systems,
namely,

T, A1) = W@, {1} x Ay)  and  D(y,Az) = W(¥, Ay x {0}).

Consider first the case of pure dilations. Note that D~ (Ay x {0}) = 0. If DT (A2 x
{0}) = oo, then D(1), A3) cannot possess an upper frame bound by Theorem 1(a).

Suppose on the other hand that D (As x {0}) < co. If (¢,0) € (A3 x {0}) 1NQn(z,y),
then (£, —2) = (z,y)™' - (¢,0) € Qn. Hence § < £ < h,s0 —h® < =L = _ZWLL B3,

T’ c h c ez

Therefore (£,4)7* - (1,0) € Qps, s0 (1,0) € th(;,y). Thus
sup  #((A2 x {0}) 7' NQnlz,y)) < sup #((A2 x {0}) N Qps(z,y)) < oo,

(z,y)EA (w’y)EA
so DT ((Az x {0})™1) < oo by Proposition 3. Consequently, Theorem 1(b) implies that
D(, Aa) cannot possess a lower frame bound in this case.
The proof for T (¢, A1) is similar, and was also obtained in [6] by using the fact that
a system of pure translations is a Gabor system of the form G(g,A; x {0}). d
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