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ABSTRACT. Duality principles in Gabor theory such as the Ron-Shen duality principle and
the Wexler-Raz orthogonality relations play a fundamental role for analyzing Gabor systems.
In this paper we present a general approach to derive duality principles in abstract frame
theory. For each sequence in a separable Hilbert space we define a corresponding sequence
dependent only on two orthonormal bases. Then we characterize exactly properties of the
first sequence in terms of the associated one, which yields duality relations for the abstract
frame setting. In the last part we apply our results to Gabor systems.

1. INTRODUCTION

Frames were first introduced by Duffin and Schaeffer [8] in the context of nonharmonic
Fourier series. Outside of signal processing, frames did not seem to generate much interest
until the ground breaking work of Daubechies, Grossmann, and Meyer [6] in 1986. Since then
the theory of frames began to be more widely studied. Traditionally, frames have been used
in signal processing, image processing, data compression, and sampling theory. Recently,
the theory is beginning to grow even more rapidly, since several new applications have been
developed. For example, frames are now used to migrate the effect of losses in packet-based
communication systems and hence to improve the robustness of data transmission [10, 4],
and to design high-rate constellations with full diversity in multiple-antenna code design
[12].

One of the most important concrete realizations of frames are Gabor frames. Gabor
systems were first introduced in 1946 by Gabor [9]. They are generated by modulations and
translations of one single function. That is, we choose a fixed function ¢ € L?(R) and two
parameters a,b > 0, and define the associated Gabor system G(g, a,b) by

g(g, a, b) = {Emanag 1m,n € Z}a

where Ty, f(x) = f(x —na) and E,,,f(x) = 2™ f(z). One of the most fascinating results
is the exact characterization of Gabor frames, known as the Ron-Shen duality principle [15,
Theorem 2.2 (e)]. It states that for each g € L?(R) and a,b > 0 with ab < 1, G(g,a,b) is a
frame for L*(R) if and only if G(g, 7, %) is a Riesz basic sequence. Another very important
result is the Wexler-Raz biorthogonality relations [16] (see also [11, Theorem 7.3.1]), which
characterize exactly all alternate dual frames of a Gabor frame. Let us mention that a
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detailed mathematical analysis was later given by Janssen [14] and Daubechies, Landau,
and Landau [7].

The question arises whether these results, which can be regarded as duality principles, can
be generalized to abstract frame theory. If we would have a general duality theory there,
we could hope to get an abundance of new duality principles for Gabor systems by using
the machinery of frame theory. But we also could apply these results to other frames, e.g.
wavelet frames, and obtain for example a kind of Ron-Shen duality principle or Wexler-Raz
biorthogonality relations for these types of systems.

In this paper we show that in fact for each sequence in a separable Hilbert space we can
construct a corresponding sequence with a kind of duality relation between them. This con-
struction is used to prove duality principles in abstract frame theory, which can be regarded
as general versions of several well-known duality principles for Gabor systems.

Let us now give an outline of the paper. We start with a brief review of the definitions and
basic properties of frames and bases in Section 2. Given a sequence (f;);en in a separable
Hilbert space #, we then define the so-called Riesz-dual sequence (R-dual sequence) (wf )jen
and show which duality relation exists between them (see Subsection 3.1). This construction
is dependent on two fixed orthonormal bases for 4. Therefore in Subsection 3.2 we investigate
how (w]f )jen changes if we choose other orthonormal bases.

The relation between the two sequences turns out to be a powerful tool for deriving
duality principles in abstract frame theory. These are obtained by characterizing properties
of (fi)ien in terms of properties of the corresponding sequence (w;c )jen. In Subsection 4.1 we
first study some basic properties as completeness, w-independence, and minimality, which
each Schauder basis satisfies. Then we exactly characterize those sequences (wa )jen, which
are Schauder basic sequences and show that each Schauder basic sequence is of this form, i.e.
is a R-dual sequence of some other sequence. Subsection 4.2 is devoted to the study of frame
properties of the sequence (f;)ien- In detail, we examine, when there exists a lower or upper
frame bound, when the sequence is a frame sequence, and when it is a tight or exact frame.
It is well known that frames, which are equivalent or even unitarily equivalent, often share
the same properties. Therefore, in Subsection 4.3, we give equivalent conditions when two
frames are (unitarily) equivalent in terms of their R-dual sequences. In addition, we study,
when two frames possess the same frame operator. In the last subsection of Section 4 we deal
with investigating properties of alternate dual frames and of the canonical dual frame. Since
alternate dual frames are crucial for reconstruction algorithms, we give a characterization of
them and, in addition, show how the canonical dual frame is distinguished between the set
of alternate dual frames.

In the last section we apply our results to Gabor systems. In fact the hypothesis for
the construction of a R-dual sequence is satisfied for each Gabor system with some small
restrictions on the orthonormal bases (see Subsection 5.1). Let ¢ € L?(R) and a,b > 0 be
such that G(g,a,b) is a tight frame. In Subsection 5.2, we show that in this situation there
indeed exist infinitely many pairs of orthonormal bases such that the R-dual sequence equals
G(y, %, %) Moreover, in the special case ab = 1, for each Gabor system G(g, a, b), we give a
concrete pair of orthonormal bases so that the system G(g, %, %) is the R-dual sequence. This
seems to indicate the existence of such orthonormal bases for all regular Gabor systems.
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A sequel paper will examine the explicit construction of orthonormal bases for L*(R)
such that G(g, 3, ) is the R-dual sequence of G(g,a,b) with respect to these bases for each
function g € L*(R) and a,b > 0. This would give us most of the known duality principles in
Gabor theory as corollaries in full generality. Moreover, we would obtain an abundance of
new duality principles. Another interesting point for future research is the wavelet setting.
We will prove duality principles also in this situation by using our approach in an upcoming

paper.

2. FRAMES AND BASES REVIEW

In this section we will briefly recall the definitions and basic properties of frames and
bases. For more information we refer to the excellent survey articles by Casazza [3, 2], the
recognized books by Christensen [5], Grochenig [11], and Young [17] and the very well written
research-tutorial by Heil and Walnut [13].

Let # be a separable Hilbert space. A Schauder basis (or simply a basis) for H is a family
of functions (f;)ien such that for all A € H there exist unique scalars ¢;, i € N with

h=ZCz’fi- (1)

In this case, there exist unique elements fz € #H such that ¢; = (h, fz> Moreover, the
sequences (f;)ien and ( fi)ieN are biorthogonal, and (fi)ieN itself forms a basis for L?(R), the
so-called dual basis of (f;)ien. A Schauder basis is an unconditional basis, if the series in
(1) converge unconditionally. Consequently, for a Schauder basis the ordering in (1) can be
crucial. If (f;)ien is a Schauder basis only for its closed linear span, we call it a Schauder
basic sequence. The following well-known characterization of Schauder bases is sometimes
more useful.

Proposition 2.1. Let (f;)ien C H. Then the following conditions are equivalent.

(1) (fi)ien is a Schauder basic sequence.
(ii) There ezists some 0 < B < oo such that, for all N € N and (c;)sen € 1*(N),
2

N 0 2
Y afil| <B|D afi
i—1 i1

A family (f;)ien is a frame for H, if there exist 0 < A < B < oo such that for all h € H,

AllBlE < S [k, £)2 < BRI 2)
i=1

The constants A and B are called a lower and upper frame bound for the frame. Those
sequences which satisfy only the upper inequality in (2) are called Bessel sequences. A frame
is tight, if A = B. If A= B =1, it is called a Parseval frame. A frame is ezact, if it ceases to
be a frame whenever any single element is deleted from the sequence (f;);en. We say that two
frames (f;)ien, (9i)ien for H are equivalent, if there exists an invertible operator U : H — H
satisfying Uf; = g; for all ¢ € N. If U is a unitary operator, (f;)ien and (g;)ien are called
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unitarily equivalent. Let Ty denote the synthesis operator of f = (fi)ien, i-e. Tf(c) =, cifi
for each sequence of scalars ¢ = (c;)icn. Then the frame operator Sh = T;T;(h) = >_(h, fi) fi
associated with (f;);en is a bounded, invertible, and positive operator mapping of ‘H onto
itself. This provides the reconstruction formula

h=S"Sh=" (hf)Ji=" (b )i
i=1 i=1

where f; = S'f;. The family (fi)ieN is also a frame for H, called the canonical dual frame
of (fi)ien. If (g:)ien is any sequence in A which satisfies

h=> (b g = (h.g:)fi,
i=1 im1

it is called an alternate dual frame of (f;)ien. A sequence is called a frame sequence, if it is a
frame only for its closed linear span. We have the following well-known characterization of
frame sequences.

Proposition 2.2. Let (f;)ien C H. Then the following conditions are equivalent.

(1) (fi)ien is a frame sequence.
(ii) There erist 0 < A < B < oo such that

o0

Zcifi

=1

Allefl2 < < Bllcll2

for all ¢ = (¢;)ien € (ker T})> .

Riesz bases are special cases of frames, and can be characterized as those frames which
are biorthogonal to their dual frames. An equivalent definition is the following. A family
(fi)ien is a Riesz bases for #, if there exist 0 < A < B < oo such that for all sequences of
scalars ¢ = (¢;)ien,

o0

Zcifi

=1

Allell2 < < Blcllz-

We define the Riesz basis constants for (f;);en to be the largest number A and the smallest
number B such that this inequality holds for all sequences of scalars ¢. The dual basis of
a Riesz basis, the so-called dual Riesz basis is itself a Riesz basis. If (f;);en is a Riesz basis
only for its closed linear span, we call it a Riesz basic sequence. 5

An arbitrary sequence (f;)ien in H is minimal, if there exists a sequence (f;);en, which is
biorthogonal to (f;)ien, or equivalently, if the distance d(f;, span,; f;) # 0 for all i € N. It is
complete, if the span of (f;);en is dense in H. A sequence (f;)ien is called w-independent for
£*(N)-sequences if, whenever ¢ = (¢;)ien € £2(N) is a sequence of scalars and Y, ¢;fi = 0, it
follows that ¢ = 0. If this holds for any sequences of scalars ¢ = (¢;)ien, We say that (fi)ien
is w-independent.
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3. THE R-DUAL SEQUENCE

3.1. Definition. Let (f;)ien be a sequence in a separable Hilbert space H and let (e;) en and
(h;)ien be orthonormal bases for 7. We will construct a sequence (w;c )jen in the following
way. For each ¢ € N, we expand f; with respect to the basis (e;),en and define a matrix with

these coefficients as entries of the row vectors. Then, for each j € N, we define wjf to be the
linear combination of h;,7 € N with the column entries of this matrix as coefficients. This
process leads to the following definition.

Definition 3.1. Let (e;)jen and (h;)ien be orthonormal bases for a separable Hilbert space
H. Let (fi)ien C H be such that >, [(f;, e;)|* < oo for each j € N, and let

w]f = <fia€j>hi (] € N)

Then (w{)jeN is called the Riesz-dual sequence (R-dual sequence) for (f;)ien(= f) with respect
to (ej)jEN and (hz)zeN

Notice that the hypothesis >, [(fi,e;}|* < oo for each j € N is always fulfilled if the
sequence (f;);en is Bessel.

This simple construction gives us a powerful tool for deriving duality principles in general
frame theory (see Section 4). These duality principles are stated in terms of the sequences

(fi)ien and (w;)jeN. Therefore, knowing the orthonormal bases (e;)jen and (h;)ien which

belong to the construction and the R-dual sequence (wjf )jen, we also need an algorithm to
invert the process and calculate (f;);en from this data.

Lemma 3.2. Let (¢j) jen and (h;)ien be orthonormal bases for H. Let (fi)ien C H be such
that 3", |(fi,e;)|* < co for each j € N. Then, for alli € N,

=1

In particular, this shows that (f;)ien is the R-dual sequence for (w]f)jeN with respect to (h;)ien
and (e;)jen-

Proof. The definition of (w/);en implies that
(fires) = (wl, b)) forallieN, jeN
Thus we have
Ji= Z(fi, ej)e; = Z(w]f, hi)e;.
7j=1 7=1
O

This is a kind of duality relation between the sequence (f;);en and its R-dual sequence
(w}c )jen, which implies that we can interchange their roles in results in Section 4.
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Remark 3.3. Let (f;)ien C H be such that Z |(fi,e;)|* < oo for each j € N. Suppose that
(fi)ien satisfies property A if and only if (w )JeN satisfies property B, where A and B are
operator theoretic properties (e.g. being a frame a Riesz basic sequence etc.). By Lemma
3.2, this implies that (f;);en satisfies property B if and only if (w ) jen satisfies property A.

Therefore each result in Section 4 gives rise to a similar result Wlth (fi)ien and (w ) jen being
interchanged.

3.2. Dependency on the orthonormal bases. We will examine to which extent the
sequence (wf )jen depends on the chosen orthonormal bases (e;);en and (h;)ien. The next
result seems to indicate that producing (w )JeN is nearly almost a unique process. That is,
if we change one of the orthonormal bases (ej)jen or (h;)ien, then we may not be able to
change the other basis to get the same R-dual sequence.

Proposition 3.4. Let (€j)jen, (€})jen, (hi)ien, and (hi)ien be orthonormal bases for a
separable Hilbert space H. Let (fi)ien C H be such that >, |(fi,e;)[* < oo as well as
> l{fise ;)\2 < oo for all j € N. Denote the R- dual sequence of (fi)ien with respect to

(ej)jen, (hi)ien and (€})jen, (Bi)ien by (w )JEN and (w; )]EN; respectively. Then the follow-
ing conditions are equwalent
(1) wf—w for all j € N.
(ii) IfB is the matriz of (e, )jen with respect to (ej)jen, C is the matriz of (h ien with
respect to (h;)ien and A = ((fi, €;))ienjen, then AB* = CA.

Proof. Let B = (b;;)ijen and C = (¢;5); jen. By definition of (w )JeN and (w; )JeN we have

<wk: i) = (fi,ex) and <wkfvh;> = (fi, €})-
Hence (wf)jeN = (w;-f)jeN if and only if, for every i € N,k € N we have

z<fzaej>bkj <fz;ek> <w;cf:h;> wl{ah; ZCZ] wkv ZCZ] f]aek
j=1
Since, for all € N,k € N,
D (firei)bj = (AB*)y and > (f, er) = (CA)u,
Jj=1 j=1
the result follows. 4

This indicates that if ( f,)ieN is a frame there only exist different pairs of orthonormal bases
((e5)jen, (hi)ien) and ((€})jen, (hi)ien), which lead to the same R-dual sequence, under very
rare circumstances.

Lemma 3.5. Let (ej)jEN7 (e;')jENi (hi)iEN7 (h;)iENi (fi)iEN} (wf)jENi (w;'f)jENf A; B; and C
be defined as in Proposition 3.4. If (f;)ien is a frame for L*(R) with frame operator S, then
the following conditions are equivalent.

(i) wf—w for all j € N.

(ii) A*CtAS 'B*=1.
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Proof. If (f;)ien is a frame, then there exists a matrix V so that VA =TI and V*V = S—1
So AB* = CA implies B* = VAB* = VCA. Hence we have B = A*C*V*. But B has to be
unitary, which yields

I = BB* = A*C'V*V AB*.
On the other hand there exists a unitary matrix E such that A = ESY2. Thus V = S~/2E*
and V*V = ES~1/28-12E* = ES~'E*. Now,

I = A*C'ES™'E*AB* = A*C'ES™'?2B* = A*C*AS™' B*.
O

But in the situation of Gabor frames we have examples, where the conditions in (ii) are
fulfilled (compare Proposition 5.4).

It is a very strong requirement to demand the sequences (w’-f )jen and (w ) jen to coincide.
If we want those sequences to satisfy similar properties, it is often enough to require them to
be (unitarily) equivalent. The following result characterizes those orthonormal bases which
yield (unitarily) equivalent R-dual sequences. It is remarkable that these properties do not
dependent on the choice of the orthonormal bases (h;)ien and (h});en.

Proposition 3.6. Let (e;)jen, (e')JeN, (ha)ien, (h'),-eN, (fi)iews (w))jen, and (wi)jen be
defined as in Proposition 3.4. If (w )jEN; and (w; )]EN are frames, then the following state-
ments hold.
(i) The following conditions are equivalent.
(a) (w;-f)jeN is equivalent to (w}c)jeN.
(b) ker(A) = ker(AB*).
(ii) The following conditions are equivalent.
(a) (w;f )jen is unitarily equivalent to (wjf )jen.
(b) A*A = (AB*)*(AB*).
If (fi)ien is a frame with frame operator S, the above is equivalent to S = BSB*.

Proof. Let a = (a;)jen be any sequence of scalars. First we observe that
oo oo o0

Za] ’f—ZZa] (fis€)hi = ZZZ%U”@’C bjrh; —Z(AB*a)ih;.

i=1 j=1 i=1 j=1 k=1 =1

This imphes

o0

Zajw;-f =0 <<= AB*a=0.
j=1

Secondly, we have

Zaﬂ f_zzaa fir ej)hi —Z( a)ih;.

i=1 j=1 =1

Hence
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Now (w;-f )jen is equivalent to (wjf )jen if and only if for all sequences of scalars (a;) en, We
have ajwjf =0 if and only if 3, ajwf = 0. ,This proves (i).
To show (ii), it suffices to prove that (wjf,w Iy = (w;,w}:} for all j,k € N if and only if
(b) holds. First, we compute
(w;_f’w;f> =

(fir €5} ek f2)

[Z <fz; em>bj—m] [Z bkn <en7 fz)]

m=1

M 1D

1

BA*AB),,.

Il
/N S,

Since also
(w{,w,{) = Z(fz-,ejﬂek, fi) = (A" A,
i=1

we obtain that (w;-f,w’f> = (wf,w,f} holds for all j,k € N if and only if we have A*A =
(AB*)*(AB*).
Finally, if (f;)cn is a frame, we have A*A = S. Thus

S=A"A= BA*AB* = BSB".

4. DUALITY PRINCIPLES

Throughout this section let H be a separable Hilbert space. We fix two orthonormal bases
(ej)jen and (h;)ien for H. Let (fi)ien C H be such that Y. |(fi,e;)]* < oo for all j € N.
Recall that this inequality is automatically fulfilled whenever (f;);en is a Bessel sequence.
Let (w]f)jeN denotes its R-dual sequence with respect to (e;)jen and (h;)ien. We will show
that we can characterize all properties of (f;);en in terms of properties of (w{ )jen

First we establish a basic connection between a sequence and its R-dual sequence which
will be used frequently in what follows.

Proposition 4.1. For all (a;)jen € *(N) and (b;)ien € *(N),
2

o o o0 2 oo
gl =D [, )7 and | bifi| =D g w),
=1 i=1 i=1 j=1

where ¢ = 3. aje; and g =, bih;.
Proof. We compute

o

=3 3> a@lfie)(Foe) = Y16, P

i=1 j=1 k=1 i=1

=1

The second claim follows from Remark 3.3. O
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4.1. Schauder bases. The basic properties, which a Schauder basis satisfy, are complete-
ness, w-independence, and minimality. Therefore before characterizing those sequences
(fi)ien, which are Schauder basic sequences, we start by giving equivalent conditions for
the sequence (f;);en to be complete.

Proposition 4.2. The following conditions are equivalent.

(i) (fi)ien is complete.
(i1) (wf)jeN is w-independent for ¢*(N)-sequences.

In particular, if (w )]EN is w-independent, then (f;)ien is complete.

Proof. Let (a;j);en € ¢*(N) and define ¢ by d) = Z -aje;. Using Proposition 4.1, we obtain

> aw Z (&, f:)I.
j=1 i=1

Therefore (w]f )jen is w-independent for ¢2(N)-sequences if and only if

> b, fi)?#0 forallg = Za]e],a—(a])]eNez( N), a # 0.

i=1 j=1

This in turn is equivalent to (f;);en being complete. O

The set of sequences (w]f )jen in M, which are w-independent for ¢?(N)-sequences, is a
proper subset of the set of w-independent sequences. Therefore we also ask for a characteri-
zation of w-independent sequences (wjf )jen in terms of properties of (f;)ien. This is provided
by the following proposition.

Proposition 4.3. The following conditions are equivalent.
(i) (wf)jeN is w-independent.
(ii) If a = (aj)jen is a sequence of scalars and ¢, = Y;_, aje; € H for everyn € N and

. ]2 —
Jim 2—1 (Pn f3)
then a = 0.

Proof. By Proposition 4.1, we have

> U, £i)?
=1

Now the claim follows immediately. O

The next result investigates when the R-dual sequence is minimal.

Proposition 4.4. The following conditions are equivalent.

(i) (w;c)jeN is minimal.
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(ii) There exist constants 0 < ¢; < 1, j € N such that, for every sequence of scalars
(aj)jen and k € N, we have

o0

E ajw]

7j=1
iii) There exist constants c¢; > 0, j € N such that, for every ¢ = > _.ae; € H, where
J A
(aj)jen is a sequence of scalars, we have

D 18 ) > Il(cjaz)jenlls-
=1

> |epagl.

Proof. First suppose that (w )]EN is minimal. Then there exists a sequence (g,);jen, Which
is biorthogonal to ( ;)jEN: i.e., for all 5,k € N, we have

<gk1 ) - 5k]
For each j € N, define ¢; by ¢; = > 0. Then, for each sequence of scalars (¢;);en and

each k£ € N, we obtain

||9 Il

1 o0
> — 9k Y aw] )| = |cpal.
] ‘< 2. >‘
This shows (i) = (ii).

Now assume that (ii) holds. Let (a;)jen be a sequence of scalars with ¢ = 3. a,e; € H.
Suppose that ajwjf = 0. By (ii), we have 0 = [|3>_; ajwf” > |egag| . This implies a = 0
for all £ € N, and hence (i).

To prove (ii) = (iii), let ¢}, j € N be constants which satisfy condition (ii). Define c; = %,
j € N. Using Proposition 4. 1 we have

oo

2 awj

i=1

2

o o o
1
> el =3 el < (35) mpidont < || = Sice.
j=1 j=1 i=1
The converse follows immediately from Proposition 4.1. 0

Now we turn our attention towards Schauder bases, or even more generally Schauder basic
sequences. We will characterize exactly those sequences (w;c )jen, which are Schauder basic
sequences, in terms of properties of (f;)ien-

Theorem 4.5. Let the frame operator for (f;)ien be denoted by S. For each N € N, let
Py denote the orthogonal projection of H onto span,.;<y{e;} and let Sy denote the frame
operator for (Pn f;)ien. Then the following conditions are equivalent.

(i) The non-zero elements of the sequence (w;)jeN form a Schauder basic sequence.
(ii) There ezists some 0 < B < oo such that, for all N € N and ¢ € H,

> e Pufd? < B> (o, £i)?
1=1 i=1
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(iii) There exists some 0 < B < oo such that, for all N € N,
Sy < BS.
Moreover, in this case (fi)ien is complete in F' = span{e; : Y, |(fi, €;)|* # 0}.

Proof. Let E = {j € N : Y. |(fi,e;}|* # 0}. Deleting all elements e; with j € E, ensures
that wf # 0 for all j € N. Hence by considering only those elements e; with j € E without

restriction we can assume that Y, [{fi,e;)|*> # 0 for all j € N,
Fix N € Nand M > N. By Proposition 2.1 and 4.1, (i) is equivalent to

2

2 o0
iajw;‘ <B iajwjf =B [e, f)[* for all (a;)jen € I*(N),
j=1 j=1 i=1
where ¢ = Z;Vil aje;. Now
N 2 o0
D awlll =6, P i)l
j=1 i=1

implies that (i) and (ii) are equivalent.

The equivalence of (ii) and (iii) follows immediately from Y, [(¢, Pn fi)|* = (Sn ¢, ¢) and
S, fi)|> = (S¢, ¢), whenever the sum is finite.

Finally, we prove the moreover part. Towards a contradiction, assume that (f;);en is not
complete in F'. Hence there exists some ¢ € F such that (¢, f;) = 0 for all i € N. Now we
expand ¢ with respect to the orthonormal basis (e;)en, i.6. ¢ = Zj ajej. Let k € N denote
the smallest positive integer such that ay # 0. Then (ii) implies

0 # Z (¢, Pefi)|* < BZ (o, f) |

But since ¢ is contained in the orthogonal complement of span;.{f;}, we obtain

Z |<¢a fz)‘Z = 0:
i=1

a contradiction. O

We will show that in fact any Schauder basic sequence in H is of the form (w]f )jen, i.e.
is a R-dual sequence of some other sequence. Hence we derive all Riesz basic sequences, all
Schauder bases and all Riesz bases by using our construction.

Proposition 4.6. If (g;) en is a Schauder basic sequence in H, then there exists a sequence
(fi)ien in H and orthonormal bases (€;)jen and (h;)ien for H with w{ = g; for every j € N.
Moreover, if (g9j)jen is a Schauder basis for H, then (f;)ien is w-independent for ¢*(N)-
sequences.

Proof. Since (g;)jen is a Schauder basic sequence in ‘H, we have that # = H; & H,, where
H, = span;cn{g;}. Since (g;)jen is a basic sequence, there exists a sequence (g;-)jeN in
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Hi, which is biorthogonal to (g;);en, i-e. we have (9;-,910 = §j; for all j,k € N. Let
D={¢eMi:> (¢ 9)* < oc}. Since

o

k=1

we have that g;- € D for every j € N. Hence,

E = {Z ajg; : (a;) jen a sequence of scalars and n € N} C D.
j=1
Since (g;-)jeN is a basis for H, E is dense in H;. That is, D is dense in H;. Hence D
contains an orthonormal basis (h;)jen for Hi. Now we can extend (h;)jen to (h;)ien an
orthonormal basis for H by adding to (h;),en an orthonormal basis for H,. Then (h;)ien is
an orthonormal basis for # and =, [(hi, g;)|” < oo for all i € N. It follows that

o0

fir=w! = Z(gy‘,hi>€j,

7j=1
exists for (e;)jen an orthonormal basis for H. Moreover, by Proposition 4.2, (fi)ien is
w-independent for ¢(N)-sequences, if (g;)jen spans H. By construction and Lemma 3.2,
w]’-c = g; for every j € N. O

4.2. Frame properties. We first characterize all Bessel sequences and sequences with lower
frame bounds. Then we deal with frame sequences and frames, and at last we obtain equiv-
alent conditions for a frame to be tight or exact.

4.2.1. Euxistence of frame bounds. We can classify exactly those R-dual sequences, which
belong to a Bessel sequence or a sequence with lower frame bound.

Proposition 4.7. The following conditions are equivalent.
(i) (fi)ien is a Bessel sequence with Bessel bound B.
(ii) (w}c)jeN satisfies

< \/§||a||2

(o]

o f
Z a;W;
j=1

for all a = (a;)jen € *(N).
Proof. Let (a;j);en € 1*(N) and set ¢ = >_jaje;. By Proposition 4.1, we obtain

oo 2 (o]
d_awl| =D K, fi)l.
j=1 i=1
Since ||@||? = ||a||?, the claim follows immediately. O
2

Proposition 4.8. The following conditions are equivalent.
(i) (fi)ien has lower frame bound A.
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(ii) (wf)jeN satisfies

> awlll > VAl
7j=1
for all a = (a;)en € *(N).
Proof. We can use the same arguments as in the proof of Proposition 4.7. O

Provided that the sequence (f;);cn is Bessel, we show that the R-dual sequence is unitarily
equivalent to (S/2e;)jen, where S is the frame operator for (f;)ien-

Proposition 4.9. If (f;)ien C H is Bessel then

(w], wl) = (5'er, §'e;),
where S is the frame operator for (f;)ien-
Proof. We compute

(w],wl) = (fies){fier) = <Z<ek>fi>fiaej> = (Sex, ¢5) = (5 ex, 5%¢;).

=1 =1

g

Corollary 4.10. Let (f;)ien C H be a Bessel sequence. Then, for every family of scalars
(aj)jen, we have

o

Z ot
ajwj

=1

o

512,
E a; S e,
j=1

Proof. We have

o

Z ot
a]wj

j=1

2

2 o0 o
=D aa(wwl) = ) a;a5(SPer, §V%e;) =

J.k=1 j.k=1

o0

=—aql/2,
E a; S %e;j
=1

d

4.2.2. Frame sequences. There exists an interesting relation between the synthesis operator
of f and the span of (wjf )jen, which will turn out to be very useful in the sequel.

Lemma 4.11. We have
(span]-el\,{wf})L = ker T}

in the sense that g € (spanjel\l{wjj-c})L if and only if ((hi, g))ien € ker T}.

Proof. Let g € H. Then g € (spanjel\,{wf})L if and only if (g,wjf) =0 for all j € N. For
each j € N, we have

(g,w]) = <g,Z<fi,e,->h,~> = (g, h){fi,ej) = <ej,2(hi,g)fi>.

i=1 i=1 =1
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Since (e;)jen is an orthonormal basis, (e;,> ;(hi,g)fi) = 0 for all j € N if and only if
> :{hi, g) fi = 0. Hence, by definition of T}, g € (sp:;mjel\,{wjf})L is equivalent to ({h;, g))ien €
ker Tf. O

The next result shows a kind of equilibrium between a sequence and its R-dual sequence.
It can be viewed as a general version of [15, Theorem 2.2 (c)].

Proposition 4.12. The following conditions are equivalent.

(i) (fi)ien is a frame sequence.
(ii) (wf)jeN is a frame sequence.

Proof. Let (b;);en € I*(N). By Proposition 4.1, we have

> g, whP = D> bif,
j i=1

7j=1
where g = ). b;h;. Using Lemma 4.11 and Proposition 2.2 finishes the proof. 0

2

I

The following result gives equivalent conditions for the sequence (f;);en to be a frame for
‘H. This can be regarded as the Ron-Shen duality principle in abstract frame theory.

Theorem 4.13. Suppose that there exist 0 < A < B < oo such that A <>, [{fi,e;)|> < B
for all j € N. For each subset V C N, let Py denote the orthogonal projection of H onto
spancy{e;}. Then the following conditions are equivalent.

(i) (fi)ien s a frame for H with frame bounds A and B.

(ii) (wf)jeN is a Riesz basic sequence with Riesz basis constants /A and v/B.

(iii) There exists some 0 < B < oo such that, for all orthogonal projections P on H and
for all ¢ € H, we have

i=1 =1

(iv) There exists some 0 < B < oo such that, for all subsets V C N and for all ¢ € H,
we have

> U Prfi)l* < BY (6, fi) -
=1 =1

Proof. The equivalence of (i) and (ii) follows immediately from Proposition 4.7 and 4.8.
Now suppose that (f;);en is a frame for . For any orthogonal projection P on H and for
any ¢ € PH, we have

Z (¢, Pf)? = Z (Pg, f)|? = Z (b, fi) .

This shows (i) = (iii).
Obviously, (iii) implies (iv).
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It remains to prove (iv) = (ii). For this, suppose that there exists some 0 < B < oo such
that, for all subsets V' C N, we have

oo

DL P < BY IS )
i=1 i=1

For each finite subset V' of N, we can permute the orthonormal basis (e;);en, so that Py
equals Py, N = [V|, where Py denotes the orthogonal projection of # onto span; ;< y{e;}-
By taking all subsets V' C N, we obtain

> K, Pu i) Z (f, )2
=1 i=1

for all N € N and f € #. Now Theorem 4.5 implies that (w )JEN is a Schauder basic
sequence for any permutation of the basis (e;);en. Hence (w]f )jeN is an unconditional basis.
Moreover, the hypothesis A <Y {fie))? < B for all j € N implies that (||wjf||)]-eN is
bounded. Thus (w ) jen is a Riesz basic sequence. O

Let (fi)ien be a frame for H. By the previous theorem, the R-dual sequence (w}c)jeN is a
Riesz basic sequence. We have an explicit form for the dual Riesz basis of (w ) jeN-

Proposition 4.14. Let (f;)ien be a frame for H with frame operator denoted by S. Define
wjf* for each 7 € N by
wf* = Z(S_lfi, e]-)hi
i=1
Then we have
(wi* wly =6; foralli,jeN,

] Y
i.e. (wjf

Proof. For all i, j € N, we have

)jen is the dual Riesz basis of (w )JeN

(wf*,w@:Z(Slfi,ej>m=<€kaz<eja51fi>fz'> {ejs ek) = O

=1 i=1

O

4.2.3. Tight and exact frames. First we give a characterization of A-tight frames in terms of
their R-dual sequences. This is a kind of general version of an important duality principle
from Gabor theory [11, Corollary 7.3.2], which follows from the Wexler-Raz biorthogonality
relations.

Proposition 4.15. The following conditions are equivalent.

(i) (fi)ien s a A-tight frame.
(ii) (%w;)jeN is an orthonormal system.
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Proof. Using Theorem 4.13, condition (i) holds if and only if, for all ¢ = Zj aje;, where
a = (a;) en is a sequence of scalars, we have

Zaa

But Allall3 = [I>=; ajw§||2 is equivalent to (ﬁw;)jeN being an orthonormal system. O

Alall; = Allo|” = Z (¢, fi)|?
=1

This shows in particular that the sequence (f;)sen is a Parseval frame if and only if its
R-dual sequence is an orthonormal system.

By using well-known equivalent conditions for a frame to be exact, we can characterize
these frames in terms of their R-dual sequence by using previous results.

Proposition 4.16. The following conditions are equivalent.

() (fi)ien is an exact frame.
ii) (f:)ien s a Riesz basis.

iii) (fz)zeN 1S a frame that is w-independent.
)

(iv) (w )]EN is a Riesz basic sequence such that whenever b = (b;)ien 1S a sequence of
scalars, Gn = >y bih; for every n € N, and

o
; V2 —
nll_gloz;'(gmwjﬂ =0,
‘]:

=

then b = 0.
(v) (w;c)jeN is a Riesz basis.

Proof. The equivalence of (i), (ii), and (iii) is well known. Moreover, (iii) < (iv) follows
immediately from Theorem 4.13, Proposition 4.3, and Remark 3.3. To prove (ii) < (v) first
assume that (f;)ien is a Riesz basis. Then Theorem 4.13, Lemma 4.11, and the fact that
ker Ty = {0} imply that (w )JeN is also a Riesz basis. The converse can be shown the same
way because of Remark 3. 3 O

4.3. Relationships between frames. Given two frames for H, if they are equivalent or
even unitarily equivalent, they often share the same properties. Therefore in the following
we characterize those pairs of frames, which are (unitarily) equivalent.

If (f;)ien and (g;)ien are tight frames for 4, the following proposition is a kind of gener-
alization of the Gabor frame result by Balan and Landau [1], which classifies the equivalent
Gabor frames.

Proposition 4.17. Let (f;)ien and (g;)ien be frames for H. Then the following conditions
are equivalent.

(i) (fi)ien s equivalent to (9i)ien-

(i1) The spans of (w )]EN and (w})jen are equal.

Proof. Recall that (f;)ien is equivalent to (gi)ien if and only if ker Ty = kerT,. Now the
claim follows from Lemma 4.11. Il

The following proposition deals with unitarily equivalent frames.
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Proposition 4.18. Let (fi)ien and (g;)ien be frames for H. Then the following conditions
are equivalent.

(i) (fi)ien is unitarily equivalent to (g;)ien-
ii) The frame operators S, and Sy for w! = f en and w9 = (w?)en are equal.
j J

j
Proof. (f;)ien and (g;)ien are unitarily equlvalent if and only if, for all (b;)ien € (ker Tp)™*,

> bif;
i=1
By Proposition 4.1, this in turn is equivalent to

> g wh)” = Z| ¢, w

j=1
for all ¢ = >, b;h;. The claim now follows 1mmed1ately from . (¢, wj’-t Y2 = (Syurd, #) and
225 o, wi)? = (Swe, 6). O

We may also ask under which conditions both frames possess the same frame operator.
This is an immediate corollary from the previous proposition by using the duality relation
between a sequence and its R-dual sequence.

i i

Proposition 4.19. Let (f;)ien and (g;)ien be frames for H. Then the following conditions
are equivalent.

(1) (fi)ien and (gi)ien have the same frame operator.
(ii) (wf)jeN is unitarily equivalent to (w?);en-
Proof. The proof follows immediately from Proposition 4.18 by applying Remark 3.3. O

4.4. The dual frame. We will study properties of alternate dual frames and canonical dual
frames.

First we characterize all alternate dual frames of a frame (f;);en in terms of the R-dual
sequence. This can be regarded as Wexler-Raz biorthogonality relations in abstract frame
theory.

Theorem 4.20. Let (f;)ien and (¢;)ien be frames for H. Define the frame operator for
(fi)ien relative to (1i)ien by
Srud =Y (&, [yt
i=1
Then

Styd = Z <¢, Z(wljs’ w;'p>ek> €j
j=1 k=1

Moreover, the following conditions are equivalent.
(i) (¥i)ien is an alternate dual frame of (f;)ien-
(ii) Sfﬂl) = Sw’f = 1.
(iii) (w,’:, wf} =0, for all j,k € N.
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Proof. The equivalence of (i) and (ii) follows from the definition.
To prove the concrete form of Sy, and (ii) < (iii), for each ¢ € H, we compute

Sf,¢¢ = Z((ﬁ,fz)%
i=1
= <¢, > hz’>‘f’“> 2wy, hide
i=1 k=1 Jj=1

(o ol olNe o}

= 33D (b wl) wf hide

i=1 j=1 k=1

= ZZ(gb, ex) <w;-/}, Z(w,{, hi>hi> €j

j=1 k=1 =1

S S et wle;
j=1 k=1

_ <¢,z<wg,wy>ek>ej.
7j=1 k=1

This proves the first part of the claim.
Now S¢, = I if and only if

<¢,Z<w,’:,w;-/’>ek> = (¢,e;) foralljeN, ¢ € H.

k=1
This in turn is equivalent to
o
Z(w}:, w;-z’)ek =e; foralljeN
k=1
Combining this with the fact that (e;);en is an orthonormal basis finishes the proof. [

Now we investigate the properties and the construction of alternate dual frames in more
detail. They can be viewed as a kind of generalization of results from [16, 7, 14], which are
combined in [11, Lemma 7.6.1] and [11, Proposition 7.6.2].

Theorem 4.21. Let (f;)ien be a frame for H with frame operator denoted by S. Then
571

w;

€ spanleN{wlf} for all j € N. Moreover, the following conditions are equivalent.

(1) (¥i)ien is an alternate dual frame of (f;)ien-
(ii) There erists a Bessel sequence (k;)jen in (SpanlEN{wlf})J— so that

w;’-b = wfflf +k; foralljeN

Proof. Since (S f;);en is equivalent to (f;);en, Theorem 4.17 implies that spanleN{wfflf} =
spancy{w }. This proves the first claim.
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Now suppose that (1););en is an alternate dual frame of (f;);en. Then

¢ = i< b = ii U i)
Hence,
i:(ej’ Ui =1 ®
and for all [ # j )
i:(ej, Vi) {fi,er) = 0. (4)

Hence, letting
i =S i+ (Wi —SUf),

we have

o0

> es, STHi+ (i — ST fiv )

=1

= <Z<ej: S_lfi>fi7€l> + <Z<€j7¢i - S_lfi>fi;€l>

i=1 =1
= (ej, &) + <Z<6j,¢i - Slfi)fi,€z> :
i=1
since (fi)ien is a frame. Applying (3) and (4) yields

o0

> (ej, i — ST fi)fi=0 foralljEN.

i=1
Thus k; = Y, (¢ — S ' fi,e)hi is a Bessel sequence in (spf»,mjel\]{w}c})L by Lemma 4.11 and
w? = wf_lf + k;. This shows (i) = (ii).

j
Now suppose (ii) holds. It is easy to check that

S—1f

w;p:wj +k; foralljeN

implies

i = Z [(S7'fi,ej) + (kj hi)] e; forallie N.
j=1
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So, for each [ € J,

> lenvifi = Z<€z,z v eg) + (Kj, ha)) ej>fi
1=1 i=1 j=1
= D> ey ST + (has k)] (erse) o
i=1 j=1

(et ST i) + (hay k)] f

|
.Mg

=1

= Z(elas fz fz+z h'z;kl

Since (fi)ien is a frame, Y .{e;, S7'f;) fi = €;. Moreover, (k;)ien € (spanjeN{wf})L. Hence
Lemma 4.11 implies that Y _.(h;, k;) f; = 0. This proves that (¢;);en is an alternate dual
frame of (f;)ien- d

8

Among the alternate dual frames the canonical dual frame is distinguished by the following
properties.

Proposition 4.22. Let (f;)ien be a frame for H with frame operator denoted by S and let
(¥i)ien be an alternate dual frame of (f;)ien. Then the following conditions are equivalent.

(i) ¥ = S fi for alli € N.
(i1) If (vs)ien is an alternate dual frame of (f;)ien, we have

[w?|| < [lw?]

for gllj € J for which 1ﬁ~j # ;.
(iii) If (v:)ien is an alternate dual frame of (f;)ien, we have

¥ f P f
wj w- w]- w]-
||w¢|| IwaII ||w¢|| IwaII

for all j € N for which wj # ;.
Proof. By Theorem 4.21, an alternate dual is of the form w;-/’ = wfflf + kj, j € N, where

wf_lf € spanleN{wl } for all j € N and (k;),en is a Bessel sequence in (spancy{w;})*. Hence

lw? (1 = flwi™ 7|2+ [[k5]12 > [|w]™ /|| with equality if and only if (t5)ien = (S~ fi)ien.
To prove (11) & (i), we compute

2
w;-p B ]f o (wjf, wf’) + (w;p,wjf)
lw?ll - [Jw]]] [Jw!|[[|w? |

Now Theorem 4.20 implies (wj ,wf y =1 for all j € N. Therefore (ii) and (iii) are equivalent.
U
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5. APPLICATION TO (GABOR SYSTEMS

In this section we will apply the general results obtained in the preceding sections to the
special case of Gabor systems. Moreover, in special cases we prove the existence of pairs of
orthonormal bases, which gives rise to particular R-dual sequences. This raises the hope to
obtain the general duality theory for Gabor frames from our theory. But for this we need to
resolve Problem 5.6.

5.1. Necessary conditions. In order to apply the results from Section 4 to Gabor systems,
we first need to check whether the R-dual sequence exists for each Gabor system.
We start with a technical lemma which will be needed in the following.

Lemma 5.1. Let a,b > 0 and define ¢ = min{a, ;}. Fiz somel € Z. Then, for all g € L*(R)
and for all f € L*([lc, (I + 1)c]), we have

(I+1)c

S {EusToag, ) = b /l @S lge - n) .

m,neL ¢ nes

Proof. First note that >~ _,[g(z —nc)|? converges almost everywhere, since g € L*(R) and

l(cl+1)c Y ez l9(z — ne)Pdz = ||g||3 < co. Then we have

Z |<Emanag,f)|2 = ZZKEWb’f'Tnay)‘Q

m,ne” n€EZ meZL

= ) blIf - Tnadll?

neL
(I+1)c ) )
= o[ @P Y lote - nofds
le nez

d

The next result will determine a large class of orthonormal bases for which the hypothesis
of Definition 3.1 is satisfied.

Proposition 5.2. Let a,b > 0. Then, for all g € L*(R) and for all bounded compactly
supported f € L*(R), we have

S U EmTnag, f)I? < o0,

m,neL
Proof. Let ¢ = min{a, 3 }. We can write f as

N

I Xke,(k+1)e)-
k=—N
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Using Lemma 5.1 and with esssup,.|f(z)| < B, we obtain

N
Z <Emanaga Z fX[ka(k+1)C]>

2

Z ‘(Emanag: f>‘2

m,neEL m,n€EL k=—N
N
< Z Z ‘(Emanaga fX[kc,(k+1)c]>|2
k=—N \| m,ncz
N (k+1)c
< Vi 3 [ @R ot - no) s
k=—N v ke nezZ
< BVb2N|g|*

O

Now it follows easily that wf exists for all j € N and for every Gabor family G(g, a,b) =
(Emanag)m,nEZ-

Corollary 5.3. Let a,b > 0, let g € L*(R) and let (ej) jen be an orthonormal basis for L*(R)
with e; bounded and compactly supported for each j € N. Then, for each orthonormal basis

(hi)ien for L*(R), wf(g’a’b) exists for all j € N.
Proof. This follows immediately from Proposition 5.2. O

5.2. A special form of w9(9*%), Recall that the Ron-Shen duality principle [15, Theorem
2.2 (e)] states that, for g € L*(R) and a,b > 0, the Gabor system G(g,a,b) is a frame for
L?(R) if and only if G(g, 3, +) is a Riesz basic sequence. Hence we are interested in whether
the system G(g, %, %) is indeed a R-dual sequence of G(g,a,b). For this, we need to find
suitable orthonormal bases. Let g € L?(R) and a,b > 0 be such that G(g,a,b) is a A-tight
frame for L?*(R). For this class of sequences we can indeed find such orthonormal bases.
Moreover, the proof of the following proposition gives an explicit construction.

Proposition 5.4. Let g € L*(R) and a,b > 0 be such that G(g,a,b) is a \-tight frame
for L*(R). Then, for each bounded and compactly supported orthonormal basis (e;)jen for
L*(R), there exists a unitary operator U : L*(R) — L*(R) so that G(g,3,%) is the R-dual
sequence of G(g, a,b) with respect to (e;)jen and (U(e;));en-

Proof. Without loss of generality we can assume that the index set J is of the form Z? and
A = 1. By Corollary 5.3, the R-dual sequence (wfk(g’a’b)) jkez defined by

w]gk(g,a,b) = Z <Emanaga 6jk>€mn

m,neZ

does exist. By Proposition 4.15, the system (wjgk(g’a’b))j,kez is an orthonormal basis for
its closed linear span. Now let (ji)jrez and (vji)jkez be fixed orthonormal bases for

span{w]gk(g’a’b) : 4,k € Z}*+ and span{Eing : 4,k € Z}*, respectively. For this to work, we
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need to know that these two spaces have the same dimension. To see this, recall that for a Ga-

bor frame G(g, a, b) with analysis operator T, if ab = 1 then ker T, = {0} and G(g, ;, *) spans

L*(R). Also, if ab < 1, then dim(ker T,) = oo and dim(span{EiT%g 4k € Z}) = oo.
Combined with Lemma 4.11, this implies that our spaces have the same dimension. Now
define the operator U : L?(R) — L?(R) by

a 1 :
U(wfk(g’ ’b)) = mEiT%g and Ul(ypjx) = ¢ forall j, k € Z.
2 a

By [11, Corollary 7.3.2|, the system (EiT%g)j,keZ is orthogonal with ||E1T%g||2 = ||g||2 and
hence U is a unitary operator which satisfies

1 a
—EiT@g = U(w]gk(g’ ’b)) = Z <Emanaga ejk>U(emn)'

lola s =,

In the special case ab = 1 we can say even more.

Remark 5.5. Let g € L*(R) and a,b > 0, ab = 1. Further we define (e;n)mnen and (hi;)ijen
by
1 1

emn = e Toaxpa and hij = —oEmTs X4y

Then G(g,3,+) is the R-dual sequence of G(g,a,b) with respect to the orthonormal bases

(emn)mmnen and (hi;); jen:
This can be proven by a straightforward but long calculation.

This seems to indicate that the following problem can be solved.

Problem 5.6. Given a Gabor frame (sequence) G(g,a,b), find orthonormal bases (e;);en
and (hi)ien for L*(R) so that G(g, ¢, <) = (w]gkgg,a,b))j’kez.

a

If this is true, we obtain most known duality principles in Gabor theory e.g. the Ron-Shen
duality principle as corollaries from our results.
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