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Abstract. Fusion frame theory is an emerging mathematical theory that provides a natural
framework for performing hierarchical data processing. A fusion frame can be regarded as a
frame-like collection of subspaces in a Hilbert space, and thereby generalizes the concept of
a frame for signal representation. However, when the signal and/or subspace dimensions are
large, the decomposition of the signal into its fusion frame measurements through subspace
projections typically requires a large number of additions and multiplications, and this
makes the decomposition intractable in applications with limited computing budget. To
address this problem, in this paper, we introduce the notion of a sparse fusion frame, that
is, a fusion frame whose subspaces are generated by orthonormal basis vectors that are
sparse in a ‘uniform basis’ over all subspaces, thereby enabling low-complexity fusion frame
decompositions.

We study the existence and construction of sparse fusion frames, but our focus is on
developing simple algorithmic constructions that can easily be adopted in practice to pro-
duce sparse fusion frames with desired (given) operators. By a desired (or given) operator
we simply mean one that has a desired (or given) set of eigenvalues for the fusion frame
operator. We start by presenting a complete characterization of Parseval fusion frames in
terms of the existence of special isometries defined on an encompassing Hilbert space. We
then introduce two general methodologies to generate new fusion frames from existing ones,
namely the Spatial Complement Method and the Naimark Complement Method, and ana-
lyze the relationship between the parameters of the original and the new fusion frame. We
proceed by establishing existence conditions for 2-sparse fusion frames for any given fusion
frame operator, for which the eigenvalues are greater than or equal to two. We then provide
an easily implementable algorithm for computing such 2-sparse fusion frames.

1. Introduction

Recent advances in hardware technology have enabled the economic production and de-
ployment of sensing and computing networks consisting of a large number of low-cost com-
ponents, which through collaboration enable reliable and efficient operation. Across different
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disciplines there is a fundamental shift from centralized information processing to distributed
or network-wide information processing. Data communication is shifting from point-to-point
communication to packet transport over wide area networks where network management is
distributed and the reliability of individual links is less critical. Radar imaging is moving
away from single platforms to multiple platforms that cooperate to achieve better perfor-
mance. Wireless sensor networks are emerging as a new technology with the potential to
enable cost-effective and reliable surveillance.

These applications typically involve a large number of data streams, which need to be inte-
grated at a central processor. Low communication bandwidth and limited transmit/compu-
ting power at each single node in the network give rise to the need for decentralized data
analysis, where data reduction/processing is performed in two steps: local processing at
neighboring nodes followed by the integration of locally processed data streams at a central
processor.

Fusion frames (or frames of subspaces) [21] are a recent development that provide a natural
mathematical framework for two-stage (or, more generally, hierarchical) data processing. The
need for robust designs against noise, data loss, and channel erasure effects impose certain
constraints on the structure of the fusion frame operator [5, 20, 40, 43, 21]. At the same time,
constraints on the available computing power and bandwidth for data processing motivates
the design of fusion frames that enable signal decomposition with a minimal number of
additions and multiplications. These two factors motivate the study of the existence and
algorithmic constructions of fusion frames that not only have desired operators but also
enjoy some degree of “sparsity” to reduce computational cost. This study is the focus of this
paper. We will further clarify our terminology and objectives in Sections 1.3 and 1.4. Our
main contributions are highlighted in Section 1.5.

1.1. Fusion Frames. The notion of fusion frames (or frames of subspaces) was introduced
in [21] with the main ideas already contained in [18] (see also [7]). However, the concept
of a frame-like collection of subspaces was exploited much earlier in relation to domain
decomposition techniques in papers by Bjørstad and Mandel [4] and Oswald [42].

In contrast to frame theory, where a signal is represented by a collection of scalars, which
measure the amplitudes of the projections of the signal onto the frame vectors, in fusion frame
theory the signal is represented by a collection of vectors, more precisely, the projections of
the signal onto the fusion frame subspaces. In a two-stage data processing setup, these
projections serve as locally processed data, which can be combined to reconstruct the signal
of interest.

Given a Hilbert space H and a family of closed subspaces {Wi}i∈I with associated positive
weights vi, i ∈ I, a fusion frame for H is a collection of weighted subspaces {(Wi, vi)}i∈I

such that there exist constants 0 < A ≤ B < ∞ satisfying

A‖f‖2 ≤
∑

i∈I

v2
i ‖Pif‖

2 ≤ B‖f‖2 for any f ∈ H,

where Pi is the orthogonal projection onto Wi. The constants A and B are called fusion
frame bounds. We refer to a fusion frame as being tight, if A and B can be chosen to be equal,
and Parseval, if A = B = 1. If vi = 1 for all i ∈ I, for the sake of brevity, we sometimes
write {Wi}i∈I instead of {(Wi, 1)}i∈I .
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The decomposition of any signal f ∈ H according to a fusion frame {(Wi, vi)}i∈I is given
by the fusion frame measurements {viPif}i∈I . These completely characterize the signal f ,
which can be reconstructed from those by performing

f =
∑

i∈I

viS
−1(viPif), (1.1)

where S =
∑

i∈I v2
i Pif is the fusion frame operator known to be positive and self-adjoint. We

refer the interested reader to [21] for more details. If dimension reduction is what we seek,
the sequence of vector-valued data {viU

∗
i f}i∈I can be regarded as fusion frame measurements

(cf. [40]), where Ui is a left-orthogonal basis for Wi, i.e., Pi = UiU
∗
i and U∗

i Ui = I. In this
case, the reconstruction formula takes the form

f =
∑

i∈I

viS
−1Ui(viU

∗
i f).

1.2. Applications of Fusion Frames. Frame theory has been established as a powerful
mathematical framework for robust and stable representation of signals by introducing re-
dundancy.1 It has found numerous applications in sampling theory [33], data quantization
[8], quantum measurements [34], coding [2, 46], image processing [11, 26], wireless com-
munications [35, 37, 45], time-frequency analysis [30, 31, 48], speech recognition [1], and
bioimaging [27]. The reader is referred to survey papers [38, 39] and the references therein
for more examples.

Since fusion frame theory is a generalization of frame theory that is more suited for appli-
cations where two-stage (local and global) signal/data analysis is required, its main appli-
cations are situated in areas which require distributed processing. To highlight this, we give
three signal processing applications wherein fusion frames arise naturally. We also discuss
the connection between fusion frames and two pressing questions in pure mathematics.

Distributed Sensing. Consider a large number of small and inexpensive sensors that are
deployed in an area of interest to measure various physical quantities or to keep the area
under surveillance. Due to practical and economical factors, such as low communication
bandwidth, limited signal processing power, limited battery life, or the topography of the
surveillance area, the sensors are typically deployed in clusters, where each cluster includes a
unit with higher computational and transmission power for local data processing. A typical
large sensor network can thus be viewed as a redundant collection of subnetworks forming a
set of subspaces (e.g., see [22, 40, 43]). The local subspace information are passed to a central
processing station for joint processing. A similar local-global signal processing principle is
applicable to modeling of human visual cortex as discussed in [44].

Parallel Processing. If a frame system is simply too large to handle effectively (from either
computational complexity or numerical stability standpoints), we can divide it into multiple
small subsystems for simple and perhaps parallelizable processing. Fusion frames provide

1Traditionally, frame redundancy has been measured by the ratio of the number of frame elements to the
dimension of the Hilbert space it spans. Recently, a quantitative notion of frame redundancy was introduced
in [6]. This notion brings valuable insight into the nature of redundancy and the ability of the frame to
represent different signals from the Hilbert space. It includes the traditional notion of redundancy as a
special case.



4 R. CALDERBANK, P. G. CASAZZA, A. HEINECKE, G. KUTYNIOK, AND A. PEZESHKI

a natural framework for splitting a large frame system into smaller subsystems and then
recombining the subsystems. We wish to mention that splitting of a large frame system into
smaller subsystems for parallel processing was first considered in [4, 42] and predates the
introduction of fusion frames.

Packet Encoding. Information bearing symbols are typically encoded into a number of
packets and then transmitted over a communication network, e.g., the internet. The trans-
mitted packet may be corrupted during the transmission or completely lost due to buffer
overflows. By introducing redundancy in encoding the symbols, we can increase the reliabil-
ity of the communication scheme. Fusion frames, as redundant collections of subspaces, can
be used to produce a redundant representation of a source symbol. In the simplest form,
each fusion frame projection can be viewed as a packet that carries some new information
about the symbol. The packets can be decoded jointly at the destination to recover the
transmitted symbol. The use of fusion frames for packet encoding is considered in [5].

The Kadison-Singer Problem and Optimal Packings. The Kadison-Singer Problem [25]
has been among the most famous unsolved problems in analysis since 1959. It turns out
that this problem is, roughly speaking, equivalent to the following question (cf. [25]): Can a
frame be partitioned such that the spans of the partitions as a fusion frame lead to a ‘good’
lower fusion frame bound? The reader is referred to [25] for details. Therefore, advances in
the design of fusion frames will have direct impact in providing new angles for a renewed
attack to the Kadison-Singer Problem. In addition, there is a close connection between
Parseval fusion frames and Grassmannian packings. In fact, as shown in [40], Parseval fusion
frames consisting of equi-distance and equi-dimensional subspaces are optimal Grassmannian
packings. Therefore, new methods for constructing such fusion frames also provide ways to
construct optimal packings. We note that the frame counterpart of this connection also
exists (cf. [46]).

1.3. Fusion Frames and Sparsity. Distributed data processing applications are typically
characterized by low on-board computing power, small bandwidth budget, and/or short
battery life. When the signal dimension is large, the decomposition of the signal into its
fusion frame measurements through subspace projections requires a large of number additions
and multiplications, which may be infeasible for on-board data processing. This is unless the
fusion frame is designed to have a rather “sparse” structure that reduces the computation
of the signal coefficient vectors.

Over the past few years, sparsity has become a key concept in various areas of applied
mathematics, computer science, and electrical engineering. Sparse signal processing method-
ologies explore the fundamental fact that many types of signals can be represented by only a
few non-vanishing coefficients when choosing a suitable basis or, more generally, a frame. A
signal representable by only k, say, basis or frame elements is called k-sparse. If signals pos-
sess such a sparse representation, they can in general be recovered from few measurements
using ℓ1 minimization techniques (see, e.g., [10, 12, 29] and the references therein). A natural
question to ask is whether sparse representations in fusion frames enjoy similar properties as
sparse representation in frames, that is, whether or not they provide a possibility for precise
signal reconstruction using only an underdetermined set of equations. And, in fact, this
questions was positively answered in [9].
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However, we pose a different question concerning sparsity in this paper, by viewing sparsity
from a very different standpoint. As mentioned earlier, fusion frame processing suffers from
the fact that the computational complexity of determining fusion frame measurements may
be high due to the possibly large signal and/or subspace dimensions. It would hence be a
significant improvement, if each fusion frame subspace would be spanned by an orthonormal
basis, which ensures low-complexity processing. This is precisely the case, if each vector of
such a basis is k-sparse with small k.

A generalization of this consideration is made precise in the following definition.

Definition 1.1. A fusion frame {(Wi, vi)}i∈I is k-sparse with respect to an orthonormal
basis {ej}

M
j=1 for R

M if each subspace Wi is spanned by an orthonormal basis {eij}
mi

j=1 so that
for each j = 1, 2, . . . , mi, eij ∈ span {eℓ}ℓ∈J and |J | ≤ k.

This view of sparsity is fundamentally new in fusion frame theory, and even in classical frame
theory, and it constitutes a main focus of our paper.

1.4. Fusion Frames With Desired Operators. The value of fusion frames for signal
processing is that the interplay between local-global processing and redundant representation
provides resilience to noise and erasures due to, for instance, sensor failures or buffer overflows
[5, 20, 40, 43]. It also provides robustness to subspace perturbations [21], which may be due
to imprecise knowledge of sensor network topology. In most cases, extra structure on fusion
frames is required to manage distortion in the presence of noise and erasures.

Our recent work [40, 43] shows that in order to minimize the mean-squared error in the
linear minimum mean-squared error estimation of a random vector from its fusion frame
measurements in white noise the fusion frame needs to be Parseval or tight. The Parseval
property is also desirable for managing signal processing complexity, since in this situation
the fusion frame operator S is equal to the identity operator, and hence the operator inversion
required for signal reconstruction as in (1.1) is trivial. To allow additional flexibility, we might
however also aim to design a fusion frame not only with S equaling the identity operator, but
also equaling a different operator of our choice. Furthermore, to provide maximal robustness
against erasures of one fusion frame subspace the fusion frame subspaces must also be equi-
dimensional. If maximal robustness with respect to two or more subspace erasures is desired
then the fusion frame subspaces must all have the same pairwise chordal distance as well.
Other examples of optimality of structured fusion frames for signal reconstruction can be
found in [5, 20, 40, 43, 21].

The need to manage both distortion and computational complexity motivates a funda-
mental question, that is, how can one construct sparse fusion frames with desired properties?
More specifically, how can one construct sparse fusion frames for which a set of parameters
such as

• eigenvalues of the fusion frame operator,
• dimensions of the subspaces,
• chordal distances between subspaces, and/or
• weights assigned to the subspaces

can be prescribed?
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1.5. Main Contributions. In this paper, we consider the construction of fusion frames
with desired properties, with emphasis on sparsity. Our main contributions are highlighted
below.

Characterization of Parseval Fusion Frames. We present a complete characterization of
Parseval fusion frames, as an important class of fusion frames, in terms of the existence
of special isometries defined on an encompassing Hilbert space. This characterization is
expressed in Theorem 2.1.

New Fusion Frames from Existing Ones. We introduce two general methodologies to
generate new fusion frames from existing ones, namely the Spatial Complement Method de-
scribed in Theorem 3.3 as well as the Naimark Complement Method detailed in Theorem 3.6.
The former approach applies to general fusion frames, whereas the latter is only applicable
to Parseval fusion frames. Both methods are carefully analyzed concerning the relationship
between the parameters of the two fusion frames. In particular, we show how the weights,
subspace dimensions, fusion frame bounds, eigenvalues of the fusion frame operator, and the
chordal distance between the subspaces for the new fusion frame can be determined from
those of the original fusion frame prior to construction. This provides further insights into
the analysis and construction of fusion frames with desired properties, including Parseval
fusion frames.

Existence and Algorithmic Constructions of Sparse Fusion Frames. We establish exis-
tence conditions for 2-sparse fusion frames for any given fusion frame operator2, for which
the eigenvalues are greater than or equal to two, and provide an easily implementable al-
gorithm for computing such 2-sparse fusion frames. The key feature of our construction is
its simplicity. The mild restriction on the eigenvalues (being greater than or equal to 2)
may seem artificial at first glance, however we conjecture that this is indeed necessary for
achieving 2-sparsity; but we do not have a rigorous proof for this claim. We believe that as
the eigenvalues of the fusion frame operator decrease from two to one, the sparsity deterio-
rates rapidly. For instance, presumably, the sparsest tight frames with M + 1 unit vectors
in R

M are those constructed by Tremain in [47], which have sparsity on the order of M2/2.
Finally, we note that, since fusion frame theory contains frame theory as a special case, our
construction includes the construction of sparse frames with desired frame operator.

1.6. Related Results. The construction of frames with arbitrary frame operators has al-
ready been studied by several authors and we refer to [23, 3, 14, 24, 19, 32] and references
therein. Establishing existence conditions for fusion frames is an even deeper and much more
involved problem.

In 2004, Dykema et al. [32] gave fusion frame constructions (not under the name of fusion
frames) in the operator theoretic setting using a degeneracy condition on the eigenvalues of
the fusion frame operator. Their paper establishes an intriguing and deep set of results and
one can argue that it even gives an “algorithm” for constructing fusion frames. However, such
construction involves an induction proof on the dimension of the Hilbert space, and hence

2Throughout this paper whenever we say a fusion frame with a desired (or given) fusion frame operator we
mean a fusion frame for which the fusion frame operator has a desired set of eigenvalues. A similar language
is used to refer to a frame for which the frame operator has a desired set of eigenvalues.
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is not easily implementable in practice. Also, their procedure is not designed to address the
sparsity question, which is one of our main focusses in this paper.

Frame potentials, which were introduced in [3], have proven to be a valuable tool in
asserting the existence of tight frames. The recent paper [15] introduced and studied fusion
frame potentials, showing that its minimization is equivalent to the minimization of the usual
frame potential over a particular domain. The problem with this approach is however that
minimizers of the fusion frame potential are not necessarily tight fusion frames.

A groundbreaking and comprehensive study of fusion frames with weights and non-constant
dimensional subspaces was later carried out by Massey, Ruiz and Stojanoff [41]. Their pa-
per presents a general characterization of the eigenvalues of a fusion frame operator in the
form of Horn-Klyachko compatibility conditions. Although this fundamental piece of work
classifies when fusion frames exist, it does not provide an algorithmic construction method
for finding them. It does not consider sparsity either.

A significant advance for the construction of equi-dimensional tight fusion frames was
presented in [16]. The authors have provided a complete characterization of triples (M, N, m)
for which tight fusion frames exist, where M denotes the total dimension of the Hilbert space,
N the number of subspaces, and m the dimension of the fusion frame subspaces. They have
also developed an elegant and simple algorithm which can produce a tight fusion frame for
most (M, N, m) triples. It turns out that this construction actually results in some degree of
sparsity but sparsity was not pursued as a construction principle in [16]. In comparison, our
paper is concerned with a more general question, more precisely, the construction of fusion
frames for which the fusion frame operator can possess any desired set of eigenvalues greater
than or equal to two.

1.7. Outline. In Section 2, we provide a complete characterization of the class of Parseval
fusion frames. Section 3 presents two general methodologies – the Spatial Complement
Method and the Naimark Complement Method – to construct a new fusion frame from an
existing one with control on particular properties of the generated fusion frame. In Section 4,
we focus on the algorithmic construction of sparse fusion frames with prescribed fusion frame
operators and present simple algorithms for this complex problem under mild assumptions.
Extensions and related problems are discussed in Section 5.

2. Characterization of Parseval Fusion Frames

In this section, we provide a characterization of Parseval fusion frames in terms of the ex-
istence of special isometries defined on an encompassing Hilbert space. This characterization
may be viewed as the fusion frame counterpart to Naimark’s theorem [13, 17, 28, 36], where
Parseval frames are characterized as frame systems generated by an orthogonal projection of
an orthonormal basis from a larger Hilbert space. However, these characterizations cannot
be easily exploited for constructing Parseval frames or Parseval fusion frames. The difficulty
arises from the uncontrollable nature of the projection of the larger Hilbert space. For fusion
frames, the construction of appropriate isometries are particularly difficult. In fact, these
problems are equivalent to serious unsolved problems in operator theory concerning the con-
struction of projections which sum to a given operator. Nonetheless, these isometries are
illuminating for understanding Parseval fusion frames.
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The following theorem states the main result of this section, which can be regarded as a
quantitative version of [21, Thm. 3.1].

Theorem 2.1. For a complete family of subspaces3 {Wi}i∈I of H and positive weights {vi}i∈I ,
the following conditions are equivalent.

(i) {(Wi, vi)}i∈I is a Parseval fusion frame for H.
(ii) There exists a Hilbert space K ⊃ H, an orthonormal basis {ej}j∈J for K, a partition

{Ji}i∈I of J , and isometries Li : Ei := span{ej}j∈Ji
→ Wi, i ∈ I, such that

P =
∑

i∈I

viLi

is an orthogonal projection of K onto H.

Proof. (i) ⇒ (ii). For every i ∈ I, let {eij}j∈Ji
be an orthonormal basis for Wi. Since

{(Wi, vi)}i∈I is a Parseval fusion frame for H, by [21, Thm. 2.3], the family {vieij}i∈I,j∈Ji

is a Parseval frame for H. This implies (cf. [13, 28, 36]) that there exists a Hilbert space
K ⊃ H with an orthonormal basis {ẽij}i∈I,j∈Ji

so that the orthogonal projection P of K onto
H satisfies

P (ẽij) = vieij, i ∈ I, j ∈ Ji.

Setting Ei = span{ẽij}j∈Ji
, the map

Li :=
1

vi

P |Ei
: Ei → Wi

is an isometry for all i ∈ I, and

P =
∑

i∈I

viLi

is an orthogonal projection of K onto H.
(ii) ⇒ (i). Since P =

∑

i∈I viLi is an orthogonal projection of K onto H, {Pej}j∈J is a
Parseval frame for H. Further, since Li := 1/vi · P |Ei

: Ei → Wi is an isometry, it follows
that {1/vi · Pej}j∈Ji

is an orthonormal basis for Wi, i ∈ I. Applying these observations and
denoting by Pi the orthogonal projection onto Wi, for all f ∈ H, we have

∑

i∈I

v2
i ‖Pif‖

2 =
∑

i∈I

v2
i

∥

∥

∥

∑

j∈Ji

〈

f,
1

vi

Pej

〉 1

vi

Pej

∥

∥

∥

2

=
∑

i∈I

v2
i

∑

j∈Ji

|
〈

f,
1

vi

Pej

〉

|2

=
∑

i∈I

∑

j∈Ji

|〈f, Pej〉|
2

= ‖f‖2.

Thus {(Wi, vi)}i∈I is a Parseval fusion frame as claimed. �

3A family of subspaces is called complete in H, if their span equals H.
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Considering this theorem and its proof, we can derive an interesting corollary which links
the construction of Parseval fusion frames to the construction of special Parseval frames.
In fact, the question of existence of Parseval fusion frames is equivalent to the question of
existence of Parseval frames for which certain subsets of frame vectors are orthonormal. The
answer to this question is not known, but the connection between the two problems may
provide insights into the construction of Parseval fusion frames.

Corollary 2.2. For a family of subspaces {Wi}i∈I of H and positive weights {vi}i∈I, the
following conditions are equivalent.

(i) {(Wi, vi)}i∈I is a Parseval fusion frame for H.
(ii) There exists a Parseval frame {eij}i∈I,j∈Ji

for H such that {1/vi · eij}j∈Ji
is an or-

thonormal basis for Wi for all i ∈ I.

3. Construction of New Fusion Frames from Existing Ones

In this section, we present two general ways, namely the Spatial Complement Method and
the Naimark Complement Method, for constructing a new fusion frame from a given fusion
frame and establish the relationship between the parameters of the two fusion frames. These
ideas were first developed in [16] for constructing tight fusion frames with given parameters.
A special case of the construction methods presented here is reported in [16]. The result of
[16] deals only with the construction of Parseval fusion frames in a finite dimensional Hilbert
space and does not investigate the relation between the new and the original fusion frame
parameters.

3.1. The Spatial Complement Method. Taking the spatial complement appears to be
a natural way for generating a new fusion frame from a given fusion frame. We begin by
defining the notion of an orthogonal fusion frame to a given fusion frame, which is central
to our discussion.

Definition 3.1. Let {(Wi, vi)}i∈I be a fusion frame for H. If the family {(W⊥
i , vi)}i∈I , where

W⊥
i is the orthogonal complement of Wi, is also a fusion frame, then we call {(W⊥

i , vi)}i∈I

the orthogonal fusion frame to {(Wi, vi)}i∈I .

Theorem 3.2. Let {(Wi, vi)}i∈I be a fusion frame for H with optimal fusion frame bounds
0 < A ≤ B < ∞ such that

∑

i∈I v2
i < ∞. Then the following conditions are equivalent.

(i)
⋂

i∈I Wi = {0}.

(ii) B <
∑

i∈I v2
i .

(iii) The family {(W⊥
i , vi)}i∈I is a fusion frame for H with optimal fusion frame bounds

∑

i∈I v2
i − B and

∑

i∈I v2
i − A.

Proof. (iii) ⇒ (i): Suppose that (i) is false. Then there exists a vector 0 6= f ∈ ∩i∈IWi. This
implies f ⊥ W⊥

i for all i ∈ I, hence {W⊥
i }i∈I does not span H. This is a contradiction to

(iii).
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(i) ⇒ (ii): Since B is optimal, by using the fusion frame property, it follows that there
exists some f ∈ H so that

B‖f‖2 =
〈

∑

i∈I

v2
i Pif, f

〉

=
∑

i∈I

v2
i ‖Pif‖

2 ≤
∑

i∈I

v2
i ‖f‖

2.

Hence

B ≤
∑

i∈I

v2
i . (3.2)

It now suffices to observe that we have equality in (3.2) if and only if

f ∈
⋂

i∈I

Wi 6= {0}.

(ii) ⇒ (iii): Since AI ≤
∑

i∈I v2
i Pi ≤ BI, we have

(

∑

i∈I

v2
i − B

)

I ≤
∑

i∈I

v2
i (I − Pi) ≤

(

∑

i∈I

v2
i − A

)

I. (3.3)

From (ii), we have
∑

i∈I v2
i − B > 0 and hence

{(W⊥
i , vi)}i∈I = {((I − Pi)H, vi)}i∈I ,

is a fusion frame. The fusion frame bounds from (3.3) are optimal. �

The following theorem shows that all the parameters of the new fusion frame can be
determined from those of the generating fusion frame prior to the construction.

Theorem 3.3. Let {(Wi, vi)}i∈I be a fusion frame for H, and let {(W⊥
i , vi)}i∈I be its asso-

ciated orthogonal fusion frame. Then the following conditions hold.

(i) Let S denote the frame operator for {(Wi, vi)}i∈I with eigenvectors {ej}j∈J and respec-
tive eigenvalues {λj}j∈J . Then the fusion frame operator for {(W⊥

i , vi)}
N
i=1 possesses

the same eigenvectors {ej}j∈J and respective eigenvalues {
∑

i∈I v2
i − λj}j∈J .

(ii) Assume that dimH < ∞ and m := dimWi for all i ∈ I. Then,

d2
c(W

⊥
i ,W⊥

j ) = d2
c(Wi,Wj) + 2m − dimH for all i, j ∈ {1, . . . , N}, i 6= j.

where d2
c(Wi,Wj) denotes the squared chordal distance between subspaces Wi and Wj

and is given by

d2
c(Wi,Wj) = dimH− tr[PiPj ].

Proof. (i). For each j ∈ J , we have
∑

i∈I

v2
i Piej = λjej.

Hence,
∑

i∈I

v2
i (I − Pi)ej =

(

∑

i∈I

v2
i − λj

)

ej ,
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which implies the claimed properties for the fusion frame operator S⊥.
(ii). The orthogonal projection onto W⊥

i is given by I − Pi. Hence,

d2
c(W

⊥
i ,W⊥

j ) = dimH− tr[(I − Pi)(I − Pj)].

The claim follows from

tr[(I − Pi)(I − Pj)] = tr[I − Pi − Pj + PiPj] = dimH− 2m + tr[PiPj]

and the definition of d2
c(Wi,Wj). �

Corollary 3.4. Let {Wi}
N
i=1 be an A-tight fusion frame for R

M such that Wk 6= H for some
k ∈ {1, . . . , N}. Then {W⊥

i }N
i=1 is an (N − A)-tight fusion frame for R

M . If m := dimWi

for all i ∈ {1, . . . , N} and d2 := d2
c(Wi,Wj) for all i, j ∈ {1, . . . , N}, i 6= j, then

d2
c(W

⊥
i ,W⊥

j ) = d2 + 2m − M for all i, j ∈ {1, . . . , N}, i 6= j.

Proof. Assume that Wk 6= R
M . Then by choosing some 0 6= f ∈ W⊥

k , we obtain

A‖f‖2 =
N
∑

i=1

v2
i ‖Pif‖

2 =
∑

i6=k

v2
i ‖Pif‖

2 <
(

N
∑

i=1

v2
i

)

‖f‖2.

Thus we have A <
∑N

i=1 v2
i , and the application of Theorem 3.2 proves the first part of the

claim. The second part follows immediately from Theorem 3.3 (ii). �

A straightforward application of Corollary 3.4 provides a way of constructing tight fusion
frames with equi-dimensional subspaces. This construction starts with a given set of equi-
dimensional subspaces that do not form a tight fusion frames and fills up the Hilbert space
by adding a new set of subspaces, with the same dimension, to produce a tight fusion frame.

Corollary 3.5. Let {Wi}
N
i=1 be a family of m-dimensional subspaces of R

M . Then there

exist N(M − 1) m-dimensional subspaces {Vi}
N(M−1)
i=1 of R

M so that {Wi}
N
i=1 ∪ {Vi}

N(M−1)
i=1

is a tight fusion frame. Moreover, if N = 1 and dimW1 = M − 1 then the construction is
minimal in the sense that it identifies the smallest number of m-dimensional subspaces which
need to be added to obtain a tight fusion frame.

Proof. For each i = 1, . . . , N , we choose an orthonormal basis {ei
j}

M
j=1 for R

M in such a way

that {ei
j}

m
j=1 is an orthonormal basis for Wi. Let Ti, i = 1, . . . , N , denote the circular shift

operator on the orthonormal basis {ei
j}

M
j=1. Then

{T k
i Wi}

N ,M−1
i=1,k=0,

is a tight fusion frame for R
M of m-dimensional subspaces which contains {Wi}

N
i=1.

Now consider the case where N = 1 and dimW1 = M −1. Let {Vi}
N1

i=1 be any collection of
(M − 1)-dimensional subspaces so that {W1} ∪ {Vi}

N1

i=1 is a tight fusion frame. By Theorem
3.2, we have 1 + N1 = M , hence N1 = M − 1, which equals N(M − 1). �



12 R. CALDERBANK, P. G. CASAZZA, A. HEINECKE, G. KUTYNIOK, AND A. PEZESHKI

3.2. The Naimark Complement Method. Another approach to constructing a new fu-
sion frame from an existing one is to use the notion of Naimark complement. This approach
however applies to Parseval fusion frames only, as stated in the following theorem.

Theorem 3.6. Let {(Wi, vi)}i∈I be a Parseval fusion frame for H with 0 < vi < 1. Then

there exists a Hilbert space K ⊇ H and a Parseval fusion frame {(W ′
i,
√

1 − v2
i )}i∈I for K⊖H

with the following properties.

(i) dimW ′
i = dimWi for all i ∈ I.

(ii) If dimH < ∞ and dimWi = dimWj for all i, j ∈ I, i 6= j, then

d2
c(W

′
i,W

′
j) = d2

c(Wi,Wj) for all i, j ∈ {1, . . . , N}, i 6= j.

Proof. For each i ∈ I, let {fij}j∈Ji
be an orthonormal basis for Wi. Then the family

{vifij}i∈I,j∈Ji

is a Parseval frame for H. By [13, 28, 36], there exists a Hilbert space K ⊇ H, an orthogonal
projection P : K → H, and an orthonormal basis {eij}i∈I,j∈Ji

for K so that

Peij = vifij , i ∈ I, j ∈ Ji. (3.4)

This implies that {(I − P )eij}i∈I,j∈Ji
is a Parseval frame for K ⊖H. Further,

‖(I − P )eij‖ =
√

1 − v2
i , i ∈ I, j ∈ Ji,

and, for j, j′ ∈ Ji, j 6= j′, we have

〈(I − P )eij, (I − P )eij′〉 = −〈Peij, eij′〉 = −〈vifij, vifij′〉 = 0.

Defining
W ′

i = span{(I − P )eij : j ∈ Ji},

we conclude that {(W ′
i,
√

1 − v2
i )}i∈I is a Parseval fusion frame for K ⊖ H. Also, since

vi,
√

1 − v2
i 6= 0 we have that dim W ′

i = dim Wi.
(i). By construction,

dimW ′
i = |Ji| = dimWi for all i ∈ I.

(ii). Set M := dimH, L := dimK, I := {1, . . . , N}, and m := dimWi for all i ∈ {1, . . . , N}.
For the sake of brevity, we define Ei := ((I − P )ei1, . . . , (I − P )eim) ∈ R

M×m and Fi :=
(vifi1, . . . , vifim) ∈ R

M×m. Then, for every i, i′ ∈ {1, . . . , N}, i 6= i′, we obtain

tr[PiPi′] = tr[FiF
T
i Fi′F

T
i′ ] = tr[(F T

i′ Fi)(F
T
i Fi′)] = tr[(〈vifi′j , vifik〉)j,k(〈vifij , vifi′k〉)j,k].

By employing (3.4),

tr[PiPi′] = tr[(〈Pei′j , P eik〉)j,k(〈Peij, P ei′k〉)j,k]. (3.5)

Now letting P ′
i denote the orthogonal projection onto W ′

i, for each i, i′ ∈ {1, . . . , N}, i 6= i′,
the definition of W ′

i implies

tr[P ′
iP

′
i′] = tr[EiE

T
i Ei′E

T
i′ ] = tr[(ET

i′ Ei)(E
T
i Ei′)]

and
(ET

i′ Ei) = (〈(I − P )ei′j , (I − P )eik〉)j,k.
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Utilizing the choice of {eij} and careful dealing with the inner products on K,H, and K⊖H,
for each j, k,

〈(I − P )ei′j, (I − P )eik〉 = 〈ei′j , eik〉 − 〈Pei′j , P eik〉 = −〈Pei′j , P eik〉.

Combining the above three equations,

tr[P ′
iP

′
i′ ] = tr[(〈Pei′j, P eik〉)j,k(〈Peij, P ei′k〉)j,k].

Comparison with (3.5) completes the proof. �

Definition 3.7. Let {(Wi, vi)}i∈I be a tight fusion frame for H. We refer to the tight

fusion frame {(W ′
i,
√

1 − v2
i )}i∈I for K⊖H from Theorem 3.6 as the Naimark fusion frame

associated with {(Wi, vi)}i∈I. The rationale for this terminology is that this is the fusion
frame version of the Naimark theorem [13, 28, 36].

Corollary 3.8. Let {Wi}
N
i=1 be an A-tight fusion frame for R

M . Then there exists some

L ≥ M and a
√

1 − 1/A2-tight fusion frame for R
L−M which satisfies dimW ′

i = dimWi for
all i ∈ {1, . . . , N}. If, in addition, d2 := d2

c(Wi,Wj) for all i, j ∈ {1, . . . , N}, i 6= j, then

d2
c(W

′
i,W

′
j) = d2 for all i, j ∈ {1, . . . , N}, i 6= j.

Proof. This follows immediately from Theorem 3.6. �

We note that Theorem 3.6 is not always constructive, since it requires the knowledge
of a larger Hilbert space from which the given Parseval frame is derived by an orthogonal
projection of an orthonormal basis.

4. Construction of Sparse Fusion Frames with A Desired Fusion Frame
Operator

We now focus on the existence and construction of sparse fusion frames whose fusion
frame operators possess a desired set of eigenvalues. We answer the following questions: (1)
Given a set of eigenvalues, does there exist a sparse fusion frame whose fusion frame operator
possesses those eigenvalues? (2) If such a fusion frame exists how can it be constructed?

Let λ1 ≥ . . . ≥ λM > 0, M ∈ N, be real positive values satisfying a factorization as

(Fac)
M
∑

j=1

λj = mN ∈ N.

We wish to construct a 2-sparse fusion frame {Wi}
N
i=1, Wi ⊆ R

M , such that

(FF1) dimWi = m for all i = 1 . . . , N , and
(FF2) the associated fusion frame operator has {λj}

M
j=1 as its eigenvalues.

In [32], Dykema at al. proved that an operator A with discrete spectrum having kn strictly
positive eigenvalues, each repeated a multiple of k times, is the sum of r rank-k projections
provided that tr[A] = rk. Interestingly, the trace condition coincides with (Fac) if we
restrict our situation to the hypotheses put on the eigenvalues in [32]. Our goal is different
here. We will give an implementable algorithm for computing sparse fusion frames with a
desired fusion frame operator. This will require a restriction on the eigenvalues of the fusion
frame operator to bring us to the case where sparse fusion frames exist.
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4.1. The Integer Case. We first consider the simple case where λj ∈ N for all i = 1, . . . , M .
This case is central to developing intuition about the construction algorithms to be developed.

Proposition 4.1. If the positive integers N ≥ λ1 ≥ λ2 ≥ · · · ≥ λM > 0, N ∈ N, and m ∈ N

satisfy (Fac), then the fusion frame {Wi}
N
i=1 constructed via the (SFFI) algorithm outlined

in Figure 1 satisfies both (FF1) and (FF2) and the fusion frame is 1-sparse.

SFFI: Sparse Fusion Frame Construction for Integer Eigenvalues

Parameters:

• Dimension M ∈ N.
• Integer eigenvalues λ1 ≥ . . . ≥ λM > 0, number of subspaces N , and dimension

of subspaces m satisfying (Fac).

Algorithm:

1) Set k := 1.
2) For j = 1, . . . , M do
3) Repeat
4) wk := ej .
5) k := k + 1.
6) λj := λj − 1.
7) until λj = 0.
8) end.

Output:

• Fusion frame {Wi}
N
i=1 with Wi := span{wi+kN : k = 0, . . . , m − 1}.

Figure 1. The SFFI Algorithm for constructing a 1-sparse fusion frame with
a fusion frame operator with prescribed integer eigenvalues.

Proof. If the set of vectors
{wi+kN : k = 0, . . . , m − 1}

is pairwise orthogonal for each i = 1, . . . , N , then (FF1) and (FF2) follow automatically.
Now fix i ∈ {1, . . . , N}. By construction, it is sufficient to show that, for each 0 ≤ k ≤ m−2,
the vectors wi+kN and wi+(k+1)N are orthogonal. Again by construction, the only possibility
for this to fail is that there exists some j0 ∈ {1, . . . , M} satisfying λj0 > N . But this was
excluded by the hypothesis.

The fact that the fusion frame is 1-sparse follows immediately from the construction and
Definition 1.1. �

The algorithm outlined in Figure 1 shuffles the intended eigenvalues in terms of associated
unit vectors e1, . . . , eM ∈ R

M as basis vectors into the subspaces of the 1-sparse fusion frame
to be constructed. Considering a matrix W ∈ R

mN×M with the vectors w1, . . . , wmN as rows,
intuitively (SFFI) fills this matrix up from top to bottom, row by row in such a way that
the ℓ2 norm of the rows is 1, the ℓ2 norm of column j is λj, j = 1, . . . , M , and the columns
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are orthogonal. The vectors wk are then assigned to subspaces in such a way that the vectors
assigned to each subspace forms an orthonormal system. We note that the generated vectors
wk, k = 1 . . . , mN are as sparse as possible, providing fast computation abilities.

We wish to note that the condition N ≥ λ1 is always necessary since each fusion frame
subspace can contribute at most one to the largest eigenvalue.

4.2. The General Case. We now discuss the general case where the desired eigenvalues
for the fusion frame operator are real positive values that satisfy (Fac).

4.2.1. The Algorithm. As a first step we generalize (SFFI) (see Figure 1) by introducing
Lines 4) – 9), which deal with the non-integer parts. The construction algorithm for real
eigenvalues, called (SFFR), is outlined in Figure 2.

SFFR: Sparse Fusion Frame Construction for Real Eigenvalues

Parameters:

• Dimension M ∈ N.
• Eigenvalues λ1 ≥ . . . ≥ λM > 0, number of subspaces N , and dimension of

subspaces m satisfying (Fac).

Algorithm:

1) Set k := 1.
2) For j = 1, . . . , M do
3) Repeat
4) If λj < 1 then

5) wk :=
√

λj

2
· ej +

√

1 −
λj

2
· ej+1.

6) wk+1 :=
√

λj

2
· ej −

√

1 −
λj

2
· ej+1.

7) k := k + 2.
8) λj+1 := λj+1 − (2 − λj).
9) λj := 0.

10) else
11) wk := ej .
12) k := k + 1.
13) λj := λj − 1.
14) end;
15) until λj = 0.
16) end;

Output:

• Fusion frame {Wi}
N
i=1 with Wi := span{wi+kN : k = 0, . . . , m − 1}.

Figure 2. The SFFR algorithm for constructing a 2-sparse fusion frame with
a desired fusion frame operator.
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The principle for constructing the row vectors wk which generate the subspaces Wi of the
fusion frame is similar to that in (SFFI), that is, again the matrix W which contains the
vectors wk, k = 1 . . . , mN as rows is filled up from top to bottom, row by row in such a way
that the ℓ2 norm of the rows is 1, the ℓ2 norm of column j is λj , j = 1, . . . , M , and the columns
are orthogonal. The vectors wk are then grouped in such a way that the vectors assigned to
each subspace form an orthonormal system. However, here the task is more delicate since
the λj’s are not all integers. This forces the introduction of (2 × 2)-submatrices of the type





√

λj

2

√

1 −
λj

2
√

λj

2
−
√

1 −
λj

2



 .

These submatrices have orthogonal columns and unit norm (ℓ2 norm) rows and allow us
to handle non-integer eigenvalues. This construction was originally introduced in [16] for
constructing tight fusion frames.

Before we prove that (SFFR) indeed produces 2-sparse fusion frames with desired oper-
ators we consider a special case, in which the construction coincides with the construction
of frames with desired frame operators. Our intention is to highlight the applicability of
(SFFR) to the construction of frames with arbitrary frame operators and to present a sim-
ple example that demonstrates how the algorithm works. A detailed analysis of the algorithm
and the proof of its correctness are provided in Subsection 4.2.5.

4.2.2. A Special Case and An Example. In the special case where m = 1 a fusion frame
reduces to a frame and (SFFR) simplifies to an algorithm for constructing 2-sparse frames
with desired fusion frame operators. This algorithm, which we refer to as (SFR), is outlined
in Figure 3.

We now present an example to demonstrate the application of (SFR) as a special case of
(SFFR).

Example 4.2. Let M = 3, m = 1 (special case of frame construction), N = 8, and λ1 = 11
4
,

λ2 = 11
4
, λ3 = 10

4
. Then, the algorithm constructs the following matrix W . Notice that

indeed the ℓ2 norm of the rows is 1, the ℓ2 norm of the column j is λj, j = 1, . . . , M , and
the columns are orthogonal.

W =

























1 0 0
1 0 0

√

3/8
√

5/8 0
√

3/8 −
√

5/8 0
0 1 0

0
√

1/4
√

3/4

0
√

1/4 −
√

3/4
0 0 1

























The eigenvalues of the frame operator of the constructed frame {wk,·}
8
k=1 are indeed 11

4
, 11

4
,

and 10
4

as a simple computation shows. This also follows from Theorem 4.8 or Corollary 4.9
presented later in this subsection.
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SFR: Sparse Frame Construction for Real Eigenvalues

Parameters:

• Dimension M ∈ N.
• Eigenvalues λ1 ≥ . . . ≥ λM > 0, number of frame vectors N satisfying (Fac)

with m = 1.

Algorithm:

1) Set k := 1.
2) For j = 1, . . . , M do
3) Repeat
4) If λj < 1 then

5) wk :=
√

λj

2
· ej +

√

1 −
λj

2
· ej+1.

6) wk+1 :=
√

λj

2
· ej −

√

1 −
λj

2
· ej+1.

7) k := k + 2.
8) λj+1 := λj+1 − (2 − λj).
9) λj := 0.

10) else
11) wk := ej .
12) k := k + 1.
13) λj := λj − 1.
14) end.
15) until λj = 0.
16) end.

Output:

• Frame {wk}
N
k=1.

Figure 3. The SFR algorithm for constructing a 2-sparse frame with a desired
frame operator.

From now on we concentrate on the analysis of (SFFR), keeping in mind that our analysis
also applies to (SFR) as a special case.

4.2.3. Feasibility Checks. Before proving that (SFFR) indeed produces a 2-sparse fusion
frame satisfying (FF1) and (FF2), we investigate the feasibility of the solution furnished
by the algorithm.

Lemma 4.3. For all k = 1, . . . , mN ,

‖wk‖
2
2 = 1.

Proof. This follows immediately from Lines 5), 6), and 11) of (SFFR). �
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Denoting the λj’s in Lines 4) – 6) of (SFFR) by λ̃j ’s to distinguish them from the
eigenvalues λj, j = 1 . . . , M , the only two problems which could occur while running (SFFR)
are:

(P1) λj+1 − (2 − λ̃j) < 0 in Line 9) for some j = 1, . . . , M − 1,
(P2) using eM+1 in Lines 5) – 9) when performing the step for j = M .

The following result shows that these cannot happen.

Proposition 4.4. If λj ≥ 2 for all j = 1 . . . , M , then (P1) and (P2) cannot happen.

Proof. (P1). Since λj ≥ 2 for all j = 1 . . . , M , we have

λj+1 ≥ 2 ≥ 2 − λ̃j for all j = 1, . . . , M − 1.

(P2). Suppose the algorithm is executed until Line 16) with j = M − 1. Let K + 1 denote
the value which k has reached at this point, and denote the coefficients of the vectors wk

by wk = (wk1, . . . , wkM). This means that so far we have constructed wkj for k = 1, . . . , K,
j = 1 . . . , M − 1. Then, by construction,

K
∑

k=1

w2
kj = λj for all 1 ≤ j ≤ M − 1. (4.6)

We have to distinguish between two cases:
Case 1. wK−2,M = 0 and wK−1,M = 0. Then, by (4.6) and Lemma 4.3,

M−1
∑

j=1

λj =

M−1
∑

j=1

K
∑

k=1

w2
kj =

K
∑

k=1

M−1
∑

j=1

w2
kj =

K
∑

k=1

1 = K.

Since
M
∑

j=1

λj = λM +

M−1
∑

j=1

λj = λM + K

is an integer, it follows that λM is an integer as well. Hence during the step j = M only
the Block 11) – 14) as opposed to the Block 5) – 9) will be executed. Thus (P2) does not
happen.

Case 2. wK−2,M =

√

1 − λ̃M−1

2
and wK−1,M = −

√

1 − λ̃M−1

2
. In this case,

M−1
∑

j=1

λj + (2 − λ̃M−1) =
M−1
∑

j=1

K
∑

k=1

w2
kj =

K
∑

k=1

M−1
∑

j=1

w2
kj =

K
∑

k=1

1 = K,

an integer. Since
∑M

j=1 λj is an integer as well, so is

M
∑

j=1

λj −

(

M−1
∑

j=1

λj + (2 − λ̃M−1)

)

= λM − (2 − λ̃M−1).

Hence, as before, in the step j = M only the Block 11) – 14) as opposed to the Block 5)

– 9) will be executed; here λM − (2 − λ̃M−1) times. Thus, in this situation, (P2) does not
occur. �
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4.2.4. Terminology and Lemmata. In preparation for a detailed analysis of (SFFR), which
is presented in Subsection 4.2.5, we need to establish some terminology and a few results.

Definition 4.5. An entry of a vector wk, k ∈ {1, . . . , mN} of the form ±

√

1 −
λ̃j

2
(entered

in Line 5) or 6) of (SFFR)) will be termed a terminal point. An initial point will be an

entry of the form ±
√

λ̃j/2 (entered in Line 5) or 6)).

Considering the matrix W ∈ R
mN×M with the vectors w1, . . . , wmN as rows, the initial

points start non-zero entries in a row with more than one non-zero entry, whereas the terminal
points end such non-zero entries. It is obvious from algorithm (SFFR) that column n of W
has no initial points if and only if

n
∑

j=1

λj is an integer,

and it has no terminal points if and only if
n−1
∑

j=1

λj is an integer.

Let N(j) denote the number of non-zero terms in each column j, j = 1, . . . , M of the
matrix W , that is, let N(j) denote the number of non-zero entries of the vector w·,j. The
following proposition determines exactly the value of N(j) depending on the occurrence of

initial and/or terminal points. We remind the reader of the definition of λ̃j right before
Proposition 4.4.

Lemma 4.6. The following conditions hold for the previously defined values N(j), j =
1, . . . , M .

(i) N(j) = λj, if w·,j contains no initial or terminal points.
(ii) N(j) = ⌊λj⌋ + 1, if w·,j contains terminal, but no initial points.
(iii) N(j) = ⌊λj⌋ + 2, if w·,j contains initial, but no terminal points.
(iv) If w·,j contains both initial and terminal points, then

(a) if λ̃j ≥ λ̃j−1, then N(j) = ⌊λj⌋ + 2,

(b) if λ̃j < λ̃j−1 then N(j) = ⌊λj⌋ + 3.
(v) If λj0 is the first non-integer value, then N(j0) = ⌊λj0⌋ + 2.
(vi) If λj1 is the last non-integer value, then N(j1) = ⌊λj1⌋ + 1.

Proof. (i). This is obvious, since in this case only the Block 11) – 14) is performed as opposed
to the Block 5) – 9).
(ii). Letting nj denote the number of ones in the vector w·,j, it follows that N(j) = nj + 2.

Since the entries of w·,j are nj times a 1 as well as the values ±

√

1 −
λ̃j−1

2
,

λj = nj + (2 − λ̃j−1) = nj + 1 + (1 − λ̃j−1) with 0 < 1 − λ̃j−1 < 1.

This implies ⌊λj⌋ = nj + 1, and thus

N(j) = nj + 2 = ⌊λj⌋ + 1.
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(iii). Now the non-zero entries of the vector w·,j are ±

√

λ̃j

2
as well as nj, say, entries 1.

Hence N(j) = nj + 2, and

λj = nj + λ̃j with 0 < λ̃j < 1.

This implies ⌊λj⌋ = nj , and thus

N(j) = nj + 2 = ⌊λj⌋ + 2.

(iv). The vector w·,j contains as non-zero entries, the initial points ±

√

λ̃j

2
and the terminal

points ±

√

1 −
λ̃j−1

2
as well as, say, nj entries 1, hence N(j) = nj + 4. Thus

λj = nj + λ̃j + (2 − λ̃j−1) = nj + 2 + (λ̃j − λ̃j−1).

If λ̃j − λ̃j−1 ≥ 0, then ⌊λj⌋ = nj + 2, which implies

N(j) = nj + 4 = ⌊λj⌋ + 2.

If λ̃j − λ̃j−1 < 0, then ⌊λj⌋ = nj + 1, which implies

N(j) = nj + 4 = ⌊λj⌋ + 3.

(v) and (vi). These are direct consequences from the previous conditions. �

The following lemma shows an interesting relation between consecutive values of N(j) as
j progresses. However, we note that only the previous lemma is required for the proofs of
the main theorems that will be presented in Subsection 4.2.5.

Lemma 4.7. For any j ∈ {1, . . . , M − 1}, the following conditions hold for the previously
defined values N(j) and N(j + 1) supposing that they are not integers.

(i) If w·,j contains no initial or terminal points, then N(j) ≥ N(j + 1) − 1.
(ii) If w·,j contains initial, but no terminal points, then

(a) if λj + λj+1 is an integer, then N(j) ≥ N(j + 1) + 1,
(b) if λj + λj−1 is not an integer, then N(j) ≥ N(j + 1) − 1.

(iii) If w·,j contains both initial and terminal points, then N(j) ≥ N(j + 1) − 1.

Proof. Recall that we have λj ≥ λj+1.
(i). Since w·,j contains no initial points and λj+1 is not an integer, the vector w·,j+1 contains
initial, but no terminal points. Thus, by Lemma 4.6,

N(j) = ⌊λj⌋ + 1 ≥ ⌊λj+1⌋ + 2 − 1 = N(j + 1) − 1.

(ii). By Lemma 4.6, N(j) = ⌊λj⌋ + 2. Also w·,j contains initial points, hence the vector
w·,j+1 contains terminal points.
(a). Since λj + λj+1 is an integer and w·,j does not contain any terminal points, the vector
w·,j+1 does not contain initial points. This implies N(j + 1) = ⌊λj+1⌋ + 1.
(b). Since λj + λj+1 is not an integer and w·,j does not contain any terminal points, the
vector w·,j+1 does contain initial points. This implies N(j + 1) ≤ ⌊λj+1⌋ + 3.
(iii). By Lemma 4.6, N(j) ≥ ⌊λj⌋ + 2 and the vector w·,j+1 can not contain more than
⌊λj+1⌋ + 3 non-zero entries. �
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4.2.5. Main Results: Analysis of (SFFR). We now present the main results concerning
(SFFR). We first show that the algorithm indeed delivers the correct 2-sparse fusion frame,
i.e., a 2-sparse fusion frame with the prescribed fusion frame operator. From this result,
we deduce that in certain cases a fusion frame can be turned into a tight fusion frame by
careful adding of new subsets (compare also with Corollary 3.5). Also, here we will need to
assume that the eigenvalues are greater than or equal to two since otherwise k-sparse frames
(or fusion frames) do not exist for small values of k (see the discussion in Section 1.5).

Theorem 4.8. Suppose the real values N ≥ λ1 ≥ · · · ≥ λM , N ∈ N, and m ∈ N satisfy
(Fac) as well as the following conditions.

(i) λM ≥ 2.
(ii) If j0 is the first integer in {1, . . . , M}, for which λj0 is not an integer, then ⌊λj0⌋ ≤

N − 3.

Then the fusion frame {Wi}
N
i=1 constructed by (SFFR) fulfills (FF1) and (FF2) and the

fusion frame is 2-sparse.

Proof. If the set of vectors
{wi+kN : k = 0, . . . , m − 1}

is pairwise orthogonal for each i = 1, . . . , N , then (FF1) and (FF2) follow automatically.
Fix i ∈ {1, . . . , N}. By construction, it is sufficient to show that, for each 0 ≤ k ≤ m−2, the
vectors wi+kN and wi+(k+1)N are disjointly supported. We distinguish between the following
two cases:

Case 1. The vector wi+kN is a unit vector, en, say. By (ii) and Lemma 4.6, w·,n does not
have more than N non-zero elements. When defining the vector wi+(k+1)N , already N − 1
vectors wℓ have been defined before its construction. Therefore this definition takes place in
a different step of the loop in Line 1). Hence wi+(k+1)N,j = 0 for all j = 1, . . . , n. This proves
the claim in this case.

Case 2. The vector wi+kN has two non-zero entries, namely an initial and a terminal point,
where the terminal point is at the nth position, say. Again, by (ii) and Lemma 4.6, w·,n does
not have more than N non-zero elements. Hence, concluding as before, wi+(k+1)N,j = 0 for
all j = 1, . . . , n. This proves the claim also in this case.

The fact that the fusion frame is 2-sparse follows immediately from the construction and
Definition 1.1. �

Certainly, this theorem also holds in the special case of frames, i.e., 1-dimensional sub-
spaces.

Corollary 4.9. Suppose the real values λ1 ≥ · · · ≥ λM and N ∈ N satisfy

M
∑

j=1

λj = N

as well as the following conditions.

(i) λM ≥ 2.
(ii) If j0 is the first integer in {1, . . . , M}, for which λj0 is not an integer, then ⌊λj0⌋ ≤

N − 3.
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Then the eigenvalues of the frame operator of the frame {wk}
N
k=1 constructed by (SFFR) are

{λj}
M
j=1 and the frame is 2-sparse.

Proof. This result follows directly from Theorem 4.8 by choosing m = 1. �

Theorem 4.8 is now applied to generate a tight fusion frame from a given fusion frame,
satisfying some mild conditions.

Theorem 4.10. Let {Wi}
N
i=1 be a fusion frame for R

M with dimWi = m < M for all i =
1, . . . , N , and let S be the associated fusion frame operator with eigenvalues λ1 ≥ . . . ≥ λM

and eigenvectors {ej}
M
j=1. Further, let A be the smallest positive integer, which satisfies the

following conditions.

(i) λ1 + 2 ≤ A.
(ii) AM = mN0 for some N0 ∈ N.
(iii) A ≤ λM + N0 − (N + 3).

Then there exists a fusion frame {Vi}
N0−N
i=1 for R

M with dim Vi = m for all i ∈ {1, . . . , N0 −
N} so that

{Wi}
N
i=1 ∪ {Vi}

N0−N
i=1

is an A-tight fusion frame.

Proof. The first task is to check whether such a positive integer A exists at all. We use
the ansatz A = nm for some n ∈ N. This immediately satisfies (ii). Now choose n as the
smallest positive integer still satisfying

λ1 + 2 ≤ A.

Thus (i) and (ii) are fulfilled (and they will still be fulfilled for all larger n ∈ N.) For
inequality (iii), we require

mn ≤ λ1 + nM − (N + 3),

which we can reformulate as
m

M
≤

λ1

Mn
+ 1 −

N + 3

Mn
.

Since m
M

< 1 by assumption, n can be chosen large enough for this inequality to be satisfied.
Next, we set

µj = A − λj for all j = 1, . . . , M.

In particular, we have µ1 ≤ . . . ≤ µM . We claim that the hypotheses of Theorem 4.8 are
satisfied by the sequence {µj}

M
j=1. For the proof, we refer to the assumption of the present

theorem as (i’), (ii’), and (iii’).

(i). By (i’),

µ1 = A − λ1 ≥ 2.

Letting N1 = N0 − N ,

M
∑

j=1

µj =

M
∑

j=1

(A − λj) = AM −

M
∑

j=1

λj = AM − mN = mN0 − mN = mN1.
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(ii). By (iii’),

µM = A − λM ≤ (N0 − N) − 3 = N1 − 3.

From Theorem 4.8 it follows that there exists a fusion frame {Vi}
N1

i=1 for R
M whose fusion

frame operator S1, say, has eigenvectors {ej}
M
j=1 and respective eigenvalues {µj}

M
j=1. The

fusion frame operator for {Wi}
N
i=1 ∪ {Vi}

N1

i=1 is S + S1, which then possesses as eigenvectors
the sequence {ej}

M
j=1 with associated eigenvalues

λj + µj = λj + (A − λj) = A.

Hence {Wi}
N
i=1 ∪ {Vi}

N0−N
i=1 constitutes an A-tight fusion frame. �

The number of m-dimensional subspaces added in Theorem 4.10 to force a fusion frame
to become tight is in fact the smallest number that can be added in general. For this, let
{Wi}

N
i=1 be a fusion frame for R

M with fusion frame operator S having eigenvalues {λj}
M
j=1.

Suppose {Vi}
N1

i=1 is any family of m-dimensional subspaces with fusion frame operator S1,
say, and so that the union of these two families is an A-tight fusion frame for R

M . Thus

S + S1 = AI,

which implies that the eigenvalues {µj}
M
j=1 of S1 satisfy

µj = A − λj for all j = 1, . . . , M,

and
M
∑

j=1

µj =
M
∑

j=1

(A − λj) = AM − mN = mN1.

In particular,

AM = m(N1 − N) = mN0.

Thus, we have examples to show that – in general – fusion frames with the above properties
of S1 cannot be constructed unless the hypotheses of Theorem 4.10 are satisfied. This
shows that the smallest constant satisfying this theorem is in general the smallest number
of subspaces we can add to obtain a tight fusion frame.

5. Extensions and Related Problems

Finally, we would like to discuss several extensions and related problems.
Weights. The handling of weights is particularly delicate. When turning a frame {fi}

N
i=1

into the fusion frame {(span{fi}, ‖fi‖)}
N
i=1 consisting of 1-dimensional subspaces and having

the same (fusion) frame operator as well as the same (fusion) frame bounds [21, Prop. 2.14],
we notice that the subspaces are generated by the frame vectors and the weights have to
be chosen equal to the norms of the frame vectors. Thus choosing weights is in a sense
comparable to choosing the lengths of frame vectors. However the design is more delicate
due to the necessary compensation of the dimensions of the subspaces. Generalizing, for
instance, Theorem 4.8 to weighted sparse fusion frames requires careful handling and a
thorough understanding of the interplay between subspace dimensions and weights. This is
currently under investigation.
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Chordal Distances. It was shown in [40] that maximal resilience of fusion frames to noise
and erasures is closely related to the chordal distances between pairs of subspaces forming the
fusion frame. Hence it would be desirable to be able to control the set of chordal distances
in construction procedures for fusion frames. The results in Section 3 already allow this
control. However, for instance, for Theorem 4.8 this control is more difficult.

Equivalence Classes. Our results normally produce one fusion frame satisfying a desired
property. However, from a scholarly point of view, it would be desirable to be able to
generate each such fusion frame in the sense of the whole “equivalence class” of fusion
frames satisfying a special property. This is beyond our reach at this point, since even the
following apparently simple problem is still unsolved: Construct one Parseval frame in each
equivalence class choosing unitary equivalence as the equivalence relation.

Eigenvalues Less Than 2. At this time, we are not able to give an algorithm for producing
fusion frames with fusion frame operator having eigenvalues less than 2. It was pointed out by
one of the reviewers that reformulating the SFFR algorithm in the Horn-Klyachko language
(see [41]) might allow one to combine the results of [32] with (SFFR) to get an algorithm
which works for this case. Although we have not managed to carry out this program, it
seems to be a good direction for future research - although conventional wisdom indicates
that these fusion frames will be less sparse than those obtained for λi ≥ 2.
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