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Abstract

In most practical situations, images and videos can neither be compressed nor transmit-
ted without introducing distortions that will eventually be perceived by a human observer.
Vice versa, most applications of image and video restoration techniques, such as inpainting or
denoising, aim to enhance the quality of experience of human viewers. Correctly predicting
the similarity of an image with an undistorted reference image, as subjectively experienced
by a human viewer, can thus lead to significant improvements in any transmission, com-
pression, or restoration system. This paper introduces the Haar wavelet-based perceptual
similarity index (HaarPSI), a novel and easy-to-compute similarity measure for full reference
image quality assessment. HaarPSI utilizes the coefficients obtained from a Haar wavelet
decomposition to assess local similarities between two images, as well as the relative im-
portance of image areas. The consistency of HaarPSI with human quality of experience
was validated on four large benchmark databases containing several thousands of differently
distorted images. On these databases, HaarPSI achieves higher correlations with human
opinion scores than state-of-the-art full reference similarity measures like the structural sim-
ilarity index (SSIM), the feature similarity index (FSIM), and the visual saliency-based
index (VSI). Along with the simple computational structure and the short execution time,
these promising experimental results suggest a high applicability of HaarPSI in real world
tasks.

1 Introduction

Today, digital images and videos have become an ubiquitous means of representing and commu-
nicating information. Modern hand-held devices such as mobile phones are omnipresent in our
daily lives and are typically fully equipped with hardware and software to capture, store, send,
and display visual signals. Digital video broadcasts allow for the simultaneous transmission of
a huge amount of different channels and internet-based streaming of video signals continues to
be on the rise.
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In most image and video transmission systems, distortions are introduced to the transmitted
signal. For most applications, the ultimate receiver is the human visual system. Thus, besides
objective factors such as the packet loss rate or the throughput, the Quality of Experience
(QoE) in such systems is highly affected by the subjectively perceived quality of the received
multimedia signal. The same is true for image and video restoration techniques, such as de-
noising or inpainting, which are usually applied to enhance the experience of human viewers.
Correctly predicting the subjectively experienced similarity of an image with an undistorted
reference image, by applying a numerical image quality measure, can hence lead to a significant
improvement of the QoE of a transmission, compression, or restoration system.

Image quality assessment methods can be differentiated by how much information about the
undistorted reference image is used for estimating the perceived quality of the corresponding
distorted image: While full reference (FR) image quality assessment approaches assume and
exploit the full knowledge of the reference image, no reference (NR) image quality assessment
methods do not rely on any information regarding the reference image (although it is typically
assumed to be a natural image). Reduced reference (RR) quality assessment approaches exist
in the middle of this spectrum and require a small set of features derived from the reference
image for estimating the similarity with the considered distorted image.

In transmission systems, the complete reference image is typically available to the sender,
while towards the receiver’s end, transmitting information about the reference image becomes
increasingly costly. This leads to different application domains for FR, NR, and RR approaches:
FR methods are useful at the beginning of a transmission process, e.g. for controlling an
encoding procedure, during which the original image is fully available. NR methods, on the
other hand, can also be helpful on the receiver’s side, where only the distorted, transmitted
signal is available, e.g. for controlling deblurring algorithms, or other forms of post-processing.
Finally, RR methods can be applied throughout the whole transmission process, given that the
features of the reference image required for a good quality assessment only use a small amount
of bandwidth.

In addition to practical applications, research on image and video quality assessment might
also shed light on the underlying mechanisms of human visual perception and can provide a
framework for the evaluation of computational models of human vision.

Usually, image quality measures are evaluated and compared by considering rank order
correlations with so-called mean opinion scores (MOS), that have previously been experimentally
obtained for large databases of distorted images. The MOS is a numerical value assigned to
images in psychophysical tests during which participants rate the subjectively perceived quality
of said images. The MOS is typically considered to be the ground truth for the perceived quality
of a distorted image.

This work introduces the Haar wavelet-based perceptual similarity index (HaarPSI), a novel
and computationally inexpensive algorithm yielding FR image quality assessments. The basic
idea of HaarPSI is to judge the similarity between two images by considering their respec-
tive Haar wavelet representations. The magnitude responses on the two scales of the wavelet
transform associated with the highest frequencies are used to compute local similarities. Fur-
thermore, the relative importance of thus obtained local (dis)similarities is assessed by a weight
function that takes the sum over all four scales of the Haar wavelet transform at a given location.
Combining the similarity map with the weight function yields the Haar similarity index, which
is formally defined in (11) and (13) in Section 3. In Section 4, we evaluate the consistency of
HaarPSI with the human quality of experience and compare its performance to state-of-the-
art similarity measures like SSIM [1], FSIM [2], and VSI [3]. As depicted in Tables 1 and 2,
HaarPSI achieves higher correlations with human opinion scores than all other considered FR
quality metrics in all test cases except one, where it only comes second to VSI. In addition,

2



HaarPSI is significantly faster than the metrics yielding the second and third highest correlations
with human opinion scores, namely VSI and FSIM.

As a final introductory remark, we would like to note that it is both convenient and surpris-
ing, that the very promising experimental results of HaarPSI reported in Section 4 are solely
based on the responses of Haar filters, which are arguably the simplest and computationally
most efficient wavelet filters existing. The results of a more elaborate analysis of the appli-
cability of other wavelet filters in the similarity measure defined in Section 3 can be found in
Table 4.

2 Previous Work

The simplest and probably still most popular FR image quality metric is the mean squared error
(MSE). The MSE is defined as the average of the squared intensity difference of a distorted and
a reference image (i.e., up to a factor, the squared `2-norm of the difference). The peak signal-
to-noise ratio (PSNR) is a related metric that calculates the ratio between the squared maximal
intensity and the MSE and expresses it in the logarithmic decibel scale. MSE and PSNR are
popular as they are cheap to compute and applicable to optimization in a straight-forward
manner. However, neither MSE nor PSNR correlate well with the human perception of visual
quality, as indicated by Table 1. This has led to the construction of various image quality
metrics that aim for a better conformance with the human perception of image quality and
image similarity.

More sophisticated approaches towards perceptually accurate image quality assessments
(IQA) typically follow one of three strategies. Bottom-up approaches explicitly model various
processing mechanism of the human visual system (HVS), such as masking effects [4], contrast
sensitivity [5], or just-noticeable-distortion [6, 7], in order to assess the perceived quality of
images. For instance, the adaptivity of the HVS to the magnitude of distortions is modeled
explicitly by most apparent distortion (MAD) [8], in order to apply two different assessment
strategies for supra- and super-threshold distortions.

However, the newly proposed Haar similiarty index as well as most image quality metrics
developed recently, follow a top-down approach. There, general functional properties of the
HVS (considered as a black box) are assumed, in order to identify and to exploit image features
corresponding to the perceived quality. Prominent examples are the structural similarity index
(SSIM) [1], visual information fidelity (VIF) [9], gradient similarity measure (GSM) [10], spec-
tral residual based similarity (SR-SIM) [11], and the visual saliency-induced index (VSI) [3].
SSIM [1] tries taking into account the sensitivity of the human visual system towards structural
information. This is done by pooling three complementary components, namely luminance sim-
ilarity (comparing local mean luminance values), contrast similarity (comparing local variances)
and structural similarity, which is defined as the local covariance between the reference image
and its perturbed counterpart. Although being criticized [12], it is highly cited and among the
most popular image quality assessment metrics. SSIM was generalized for a multi-scale set-
ting by the multi-scale structural similarity index (MS-SSIM) [13]. Visual information fidelity
(VIF) [9] considers the mutual information shared by a reference image and a distorted image,
which are both expressed in an image model defined in the wavelet domain. Eventually, the
mutual information is related to the subjectively perceived image quality. Following the basic
framework of combining complementary feature maps introduced in [1], changes in contrast
and structure are captured by considering local gradients in [10], while the squared difference in
pixel values between the reference image and the distorted image is used to measure luminance
variations. Additionally, masking effects are estimated, based on the local gradient magnitude
of the reference image and incorporated when the two feature maps are combined.
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A combination of two feature maps is also applied successfully by the feature similarity
index (FSIM) [2] and will be discussed in more detail later in this section. Spectral residual-
based similarity (SR-SIM) [11] takes into account changes in the local horizontal and vertical
gradient magnitudes. Additionally, it incorporates changes in a spectral residual-based visual
saliency estimate. The visual saliency-induced index (VSI) [3] follows the same line as SR-SIM
by combining similarities in the gradient magnitude and the visual saliency. However, it further
exploits the visual saliency map for weighting the spatial similarity pooling. Furthermore, [3]
also explores the influence of different saliency models on the performance of the proposed image
quality measure.

Adopting the advances in machine learning and data science, IQA methods following a third,
purely data driven strategy have been proposed recently. So far, data driven approaches were
mainly developed for the domain of NR IQA [14, 15, 16, 17], but they have also been adapted
in the context of FR IQA [18].

The feature similarity index (FSIM) [2], proposed in 2011, has since then been one of the
most successful and influential FR image quality metrics. It also shares certain conceptual
similarities with the newly proposed HaarPSI measure. For the remainder of this section, we
will hence examine FSIM in a little more detail. FSIM combines two feature maps derived from
the phase congruency measure [19] and the local gradients of the reference and the distorted
image, respectively, in order to estimate the perceived quality. For a grayscale image f ∈ `2(Z2),
the gradient map is defined by

Gf [x] =

√
((ghor ∗ f)[x])

2
+ ((gver ∗ f)[x])2, (1)

where ghor and gver denote horizontal and vertical gradient filters (e.g. Sobel or Scharr filters),
and ∗ denotes the two-dimensional convolution operator. The algorithm used by the authors
of FSIM in order to compute the phase congruency map was developed by Peter Kovesi [20]
and contains several non-trivial operations, such as adaptive soft thresholding. However, in its
essence, the phase congruency map of a grayscale image f can be described by

PCf [x] ≈
|
∑

n(gc
n ∗ f)[x]|∑

n |(gc
n ∗ f)[x]|

, (2)

where (gc
n)n is a set of differently scaled and oriented complex-valued wavelet filters. The

idea behind (2) is that if the obtained complex-valued wavelet coefficients have the same phase
at a location x, taking the absolute value of the sum is the same as taking the sum of the
absolute values. In this case, PCf [x] will be close to or precisely 1.

To assess local similarities between two images with respect to the maps defined in (1) and
(2), FSIM - like many other image quality metrics - uses a simple comparison function for scalar
values that already appeared in [1], namely

S(a, b, C) =
2ab+ C

a2 + b2 + C
, (3)

where the constant C > 0 provides stability in the case that a2 + b2 is close to zero. Using (3),
a local feature similarity map is defined for two grayscale images f1, f2 ∈ `2(Z2) by

FSf1,f2 [x] = S (Gf1 [x],Gf2 [x], C1)α ·S (PCf1 [x],PCf2 [x], C2)β , (4)

with constants C1, C2 > 0 and exponents α, β > 0. Based on the assumption that the human
visual system is especially sensitive towards structures like edges and ridges, at which the phases
of the Fourier components are in congruency (see e.g. [21]), the phase congruency map is not
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only used in (4) but also applied to determine the relative importance of different image areas
with respect to human perception. Eventually, the feature similarity index is computed by
taking the weighted mean of all local feature similarities, where the phase congruency map is
used as a weight function, that is

FSIMf1,f2 =

∑
x FSf1,f2 [x] · PCf1,f2 [x]∑

x PCf1,f2 [x]
, (5)

where
PCf1,f2 [x] = max (PCf1 [x],PCf2 [x]) . (6)

The original publication of FSIM also proposes a generalization to color images defined
in the YIQ color space, named FSIMC. In the YIQ space, the Y channel encodes luminance
information, while the I and Q channels encode chromatic information. Color images defined in
the RGB color space can easily be transformed to the YIQ space with a linear mapping, namelyfY

f I

fQ

 ≈
0.299 0.587 0.114

0.596 −0.274 −0.322
0.211 −0.523 0.312

 ·
fR

fG

fB

 . (7)

FSIMC simply incorporates the chroma channels I and Q into the local feature similarity
measure (4). The gradient maps as well as the phase congruency maps are purely based on the
luminance channel Y in FSIMC and FSIM alike.

We think that the mathematical structure of HaarPSI described in the upcoming Section 3
can best be understood in comparison with the structure of and the concepts behind FSIM. In
particular, HaarPSI can be considered a significantly simplified version of FSIM that not only
requires much less computational effort but also clearly outperforms FSIM on all benchmark
databases in Section 4.

3 The Haar Wavelet-Based Perceptual Similarity Index

The basic idea of HaarPSI is to construct feature maps in the spirit of (1) as well as a weight
function similar to (2) by considering a single wavelet filterbank. The response of any high-
frequency wavelet filter will look similar to the response yielded by a classical gradient filter, like
the Sobel operator. Furthermore, the phase congruency measure used as a weight function in
FSIM is computed directly from the output of a multi-scale complex-valued wavelet filterbank,
as illustrated in equation (2). This gives a strong intuition that it should indeed be possible
to define a similarity measure based on a single set of wavelet filters, that at least matches the
performance of FSIM on benchmark databases, but requires significantly less computational
effort.

The wavelet we choose for this endeavor is the so-called Haar wavelet, which was already
proposed in 1910 by Alfred Haar [22] and is arguably the simplest and computationally most
efficient wavelet there is. The one-dimensional Haar filters are given by

h1D
1 =

√
2 · [1, 1] and g1D

1 =
√

2 · [−1, 1], (8)

where h1D
1 denotes the low-pass scaling filter and g1D

1 the corresponding high-pass wavelet filter.
For any scale j ∈ N, we can construct two-dimensional Haar filters by setting

g
(1)
j = g1D

j ⊗ h1D
j ,

g
(2)
j = h1D

j ⊗ g1D
j ,
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where ⊗ denotes the outer product and the one-dimensional filters h1D
j and g1D

j are given for
j > 1 by

g1D
j = h1D

1 ∗ (g1D
j−1)↑2,

h1D
j = h1D

1 ∗ (h1D
j−1)↑2,

where ↑ 2 is the dyadic upsampling operator, and ∗ denotes the one-dimensional convolution

operator. Note that g
(1)
j responds to horizontal structures, while g

(2)
j picks up vertical structures.

All eight Haar filters used in the computation of HaarPSI are shown in Figure 1.

Figure 1: The eight Haar wavelet filters applied in the Haar wavelet-based perceptual similarity
index (11).

For two grayscale images f1, f2 ∈ `2(Z2), we define a local similarity measure based on the
first two stages of a two-dimensional discrete Haar wavelet transform, namely

HS
(k)
f1,f2

[x] =
2∏
j=1

S
(∣∣∣(g(k)

j ∗ f1)[x]
∣∣∣ , ∣∣∣(g(k)

j ∗ f2)[x]
∣∣∣ , C1

)
, (9)

where C1 > 0 is a constant, k ∈ {1, 2} selects either horizontal or vertical filters, S denotes
the scalar similarity measure (3), and ∗ is the two-dimensional convolution operator. The local
similarity measure (9) can be seen as an analog to (4). However, the Haar-based measure
refrains from including a feature map like the phase congruency map (2), that is based on
various partly nonlinear computations, involving a total of 16 complex-valued wavelet filters.
Instead, (9) only relies on two scales of a real-valued Haar wavelet transform and hence requires
significantly less computational effort and is easier to be included in any optimization process.
A visualization of a local similarity map derived from (9) can be found in the second row of
Figure 2.

Furthermore, a simple weight function can be defined by taking the sum of wavelet coeffi-
cients across four scales of a discrete Haar transform:

W
(k)
f [x] =

∣∣∣∣∣∣
4∑
j=1

(g
(k)
j ∗ f)[x]

∣∣∣∣∣∣ , (10)

where k ∈ {1, 2} again differentiates between horizontal and vertical filters. Note that this
weight function is essentially the quotient (2) reduced to its numerator. Figure 2 shows an
example of weights computed from a natural image by (10).
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Using the weight function (10), the Haar similarity index for two grayscale images f1, f2 is
finally given as the weighted average of the local similarity measure (9), that is,

HaarPSIf1,f2 =


∑
x

2∑
k=1

(
HS

(k)
f1,f2

[x]
)α
·W(k)

f1,f2
[x]

∑
x

2∑
k=1

W
(k)
f1,f2

[x]


1
α

, (11)

with an exponent α > 0 and

W
(k)
f1,f2

[x] = max(W
(k)
f1

[x],W
(k)
f2

[x]). (12)

Please note that due to the monotonicity of the power function in the interval [0, 1], omitting
the exponent 1

α in (11) would have no effect on the rank order-based correlations with human
opinion scores reported in Section 4.

Analogous to FSIM, HaarPSI can be extended to color images in the YIQ color space by
including the chroma channels I and Q in the local similarity measure (9). Formally, this
generalization is given by

HaarPSICf1,f2 =


∑
x

2∑
k=1

(
HSC

(k)
f1,f2

[x]
)α
·W(k)

fY1 ,f
Y
2

[x]

∑
x

2∑
k=1

W
(k)

fY1 ,f
Y
2

[x]


1
α

, (13)

with a single exponent α > 0 and a chroma-sensitive local similarity measure

HSC
(k)
f1,f2

[x] =
2∏
j=1

S
(∣∣∣(g(k)

j ∗ f
Y
1 )[x]

∣∣∣ , ∣∣∣(g(k)
j ∗ f

Y
2 )[x]

∣∣∣ , C1

)
· S((m ∗ f I

1)[x], (m ∗ f I
2)[x], C2)

· S((m ∗ fQ
1 )[x], (m ∗ fQ

2 )[x], C2), (14)

with constants C1, C2 > 0 and a 2× 2 mean filter m.
The grayscale version of HaarPSI only requires two parameters to be selected, namely C1 in

(9) and α in (11), while HaarPSIC uses a second constant C2 in (14). These parameters were
optimized by the authors to yield a superior overall performance on all four databases considered
in section 4 and chosen to be C1 = 40, α = 0.03 and C2 = 250. However, it should be noted
that for other databases or specific applications, different values might still be favorable (see
Figure 4).

4 Experimental Procedure and Results

The consistency of HaarPSI with the human perception of image quality was evaluated and
compared with most of the image quality metrics discussed in Section 2 with four large publicly
available benchmark databases of quality-annotated images. Those databases differ in the
number of reference images, the number of distortion magnitudes and types, the number of
observers, the level of control of the viewing conditions, and the stimulus presentation procedure.

The LIVE database [23] contains 29 reference color images and 779 distorted images that
were perturbed by JPEG compression, JPEG 2000 compression, additive Gaussian white noise,

7



(a) reference f1 (b) distorted f2 (c) HS
(1)
f1,f2

(d) HS
(2)
f1,f2

(e) W
(1)
f1,f2

(f) W
(2)
f1,f2

Figure 2: (a) An undistorted reference image. (b) The reference image distorted by the JPEG
compression algorithm. (c) The horizontal local similarity map (11) (k = 1). (d) The vertical
local similarity map (11) (k = 2). (e) The horizontal weight function (10) (k = 1). (f) The
vertical weight function (10) (k = 2). Yellow indicates a high similarity in (c) and (d) and a
high relative importance of an area in (e) and (f), while dark blue represents the respective
opposite. The images (a) and (b) were taken from the CSIQ database [8].

Table 1: Spearman Rank Order Correlations of IQA Metrics With Human Mean Opinion Scores

Grayscale Images

PSNR VIF SSIM MS-SSIM GSM MAD SR-SIM FSIM VSI HaarPSI
LIVE 0.8756 0.9636 0.9479 0.9513 0.9561 0.9672 0.9619 0.9634 0.9534 0.9675

TID 2008 0.5531 0.7491 0.7749 0.8542 0.8504 0.8340 0.8913 0.8804 0.8830 0.9042
TID 2013 0.6394 0.6769 0.7417 0.7859 0.7946 0.7807 0.8075 0.8022 0.8048 0.8129

CSIQ 0.8058 0.9195 0.8756 0.9133 0.9108 0.9466 0.9319 0.9242 0.9372 0.9525

Color Images

PSNR VIF SSIM MS-SSIM GSM MAD SR-SIM FSIM VSI HaarPSI
LIVE 0.8756 0.9636 0.9479 0.9513 0.9561 0.9672 0.9619 0.9645 0.9524 0.9685

TID 2008 0.5531 0.7491 0.7749 0.8542 0.8504 0.8340 0.8913 0.8840 0.8979 0.9079
TID 2013 0.6394 0.6769 0.7417 0.7859 0.7946 0.7807 0.8075 0.8510 0.8965 0.8791

CSIQ 0.8058 0.9195 0.8756 0.9133 0.9108 0.9466 0.9319 0.9310 0.9423 0.9567

The highest correlation in each row is written in boldface.

Gaussian blurring as well as JPEG 2000 compressed images that have been transmitted over a
simulated Rayleigh fading channel. Each distortion is introduced at five to six different levels
of magnitude. On average, about 23 subjects evaluated the quality of each image with respect
to the reference image. The viewing conditions were fairly controlled for in terms of viewing
distance. Ratings were collected in a double stimulus manner.

The TID 2008 database [24] comprises 25 colored reference images and 1700 degraded images,
that had been subject to a wide range of distortions, including various types of noise, blur,
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JPEG and JPEG 2000 compression, transmission errors, local image distortions, as well as
luminance and contrast changes. Subjective ratings were gathered by comparisons. The results
from several viewing conditions of experiments in three different labs and on the internet were
averaged. TID 2008 was later extended to TID 2013 [25], which added new types of distortions,
which are mostly of a chromatic nature. In total, TID 2013 contains 3000 differently distorted
images.

The CSIQ database [8] is based on 30 reference color images. Six different types of distor-
tions (JPEG compression, JPEG 2000 compression, global contrast decrements, additive pink
Gaussian noise, and Gaussian blurring) at four to five different degradation magnitudes were
applied to the reference images. The viewing distance was controlled. Images were presented on
a monitor array and subjects were asked to place all distorted versions of one reference image
according to its perceived quality.

For all databases, we use the Spearman rank oder correlation coefficient (SROCC) to mea-
sure the consistency of the similarity scores computed by an image quality metric with the
mean opinion scores reported by human participants. The first step in computing the SROCC
is to construct two sequences of integers by mapping each distorted image from a database
to the rank respectively induced by the image quality metric and the human opinion scores.
The SROCC is then defined as the Pearson correlation coefficient of these two sequences. If
a numerical similarity measure is perfectly consistent with the subjective human opinion, the
ranks will be the same for each distorted image and the SROCC will be exactly 1.

All four databases only contain color images. However, out of the metrics considered in our
experiments, only FSIM and HaarPSI are defined for both grayscale and color images, while the
visual saliency-based index (VSI) was specifically designed for color images. All other similarity
measures considered in our experiments only accept grayscale images as inputs. To reflect these
differing designs, all methods were tested on all databases once with the original color images
and once with grayscale conversions. The correlation coefficients of all ten considered similarity
measures with the human mean opinion scores for the LIVE image database, TID 2008, TID
2013 and the CSIQ database are compiled in Table 1.

Table 2 provides a quick impression of the overall performance of each metric. It depicts the
average SROCC of each metric with respect to all four databases as well as the mean execution
time in milliseconds. The average execution time was measured on a Intel Core i7-4790 CPU
clocked at 3.60 GHz. Each quality measure was computed ten times for ten different pairs of
randomly generated 512× 512 pixel images.

Table 2: Mean SROCC and Execution Time

Color Images Grayscale Images
SROCC Time (ms) SROCC Time (ms)

HaarPSI 0.9280 30 0.9093 16
VSI 0.9223 75 0.8946 75

FSIM 0.9076 135 0.8925 116
SR-SIM 0.8982 10 0.8982 10
MAD 0.8821 880 0.8821 855
GSM 0.8780 8 0.8780 7

MS-SSIM 0.8762 29 0.8762 24
SSIM 0.8350 7 0.8350 5
VIF 0.8273 407 0.8273 394

PSNR 0.7185 2 0.7185 1

A high correlation with the mean opinion scores annotated to the distorted images of a
large database containing many different types and degrees of distortions is arguably the best
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indicator of an image quality measure’s consistency with human perception. However, for
certain applications like compression or denoising, it could be more important to know if an
image quality metric has a high correlation the human experience within a single distortion
class. Table 3 depicts the SROC coefficients for all image quality metrics, when only subsets
of databases containing specific distortions like Gaussian blur or JPEG transmission errors are
considered.

Table 3: Spearman Rank Order Correlations of IQA Metrics With Human Mean Opinion Scores

Color Images

PSNR VIF SSIM MS-SSIM GSM MAD SR-SIM FSIM VSI HaarPSI

LIVE

jpg2k 0.8954 0.9696 0.9614 0.9627 0.9700 0.9692 0.9700 0.9724 0.9604 0.9680
jpg 0.8809 0.9846 0.9764 0.9815 0.9778 0.9786 0.9823 0.9840 0.9761 0.9822
gwn 0.9854 0.9858 0.9694 0.9733 0.9774 0.9873 0.9812 0.9716 0.9835 0.9863
gblur 0.7823 0.9728 0.9517 0.9542 0.9518 0.9510 0.9660 0.9708 0.9527 0.9613

ff 0.8907 0.9650 0.9556 0.9471 0.9402 0.9589 0.9466 0.9519 0.9430 0.9555

TID 2008

gwn 0.9070 0.8797 0.8107 0.8086 0.8606 0.8386 0.8989 0.8758 0.9229 0.9162
gwnc 0.8995 0.8757 0.8029 0.8054 0.8091 0.8255 0.8957 0.8931 0.9118 0.9002
scn 0.9170 0.8698 0.8145 0.8209 0.8941 0.8678 0.9084 0.8711 0.9296 0.9357
mn 0.8515 0.8683 0.7795 0.8107 0.7452 0.7336 0.7881 0.8264 0.7734 0.7956
hfn 0.9270 0.9075 0.8729 0.8694 0.8945 0.8864 0.9195 0.9156 0.9253 0.9170
in 0.8724 0.8327 0.6732 0.6907 0.7235 0.0650 0.7678 0.7719 0.8298 0.8113
qn 0.8696 0.7970 0.8531 0.8589 0.8800 0.8160 0.8348 0.8726 0.8731 0.8831

gblr 0.8697 0.9540 0.9544 0.9563 0.9600 0.9196 0.9551 0.9472 0.9529 0.8878
den 0.9416 0.9161 0.9530 0.9582 0.9725 0.9433 0.9666 0.9618 0.9693 0.9714
jpg 0.8717 0.9168 0.9252 0.9322 0.9393 0.9275 0.9393 0.9294 0.9616 0.9555

jpg2k 0.8132 0.9709 0.9625 0.9700 0.9758 0.9707 0.9809 0.9780 0.9848 0.9864
jpgt 0.7516 0.8585 0.8678 0.8681 0.8790 0.8661 0.8881 0.8756 0.9160 0.8930

jpg2kt 0.8309 0.8501 0.8577 0.8606 0.8936 0.8394 0.8902 0.8555 0.8942 0.9061
pn 0.5815 0.7619 0.7107 0.7377 0.7386 0.8287 0.7659 0.7514 0.7699 0.8112

bdist 0.6193 0.8324 0.8462 0.7546 0.8862 0.7970 0.7798 0.8464 0.6295 0.8064
ms 0.6957 0.5096 0.7231 0.7338 0.7190 0.5163 0.5704 0.6554 0.6714 0.6063

ctrst 0.5859 0.8188 0.5246 0.6381 0.6691 0.2723 0.6475 0.6510 0.6557 0.6415

TID 2013

gwn 0.9291 0.8994 0.8671 0.8646 0.9064 0.8843 0.9251 0.9101 0.9460 0.9365
gwnc 0.8981 0.8299 0.7726 0.7730 0.8175 0.8019 0.8562 0.8537 0.8705 0.8579
scn 0.9200 0.8835 0.8515 0.8544 0.9158 0.8911 0.9223 0.8900 0.9367 0.9396
mn 0.8323 0.8450 0.7767 0.8073 0.7293 0.7380 0.7855 0.8094 0.7697 0.7853
hfn 0.9140 0.8972 0.8634 0.8604 0.8869 0.8876 0.9131 0.9040 0.9200 0.9102
in 0.8968 0.8537 0.7503 0.7629 0.7965 0.2769 0.8280 0.8251 0.8741 0.8559
qn 0.8808 0.7854 0.8657 0.8706 0.8841 0.8514 0.8497 0.8807 0.8748 0.8872

gblr 0.9149 0.9650 0.9668 0.9673 0.9689 0.9319 0.9622 0.9551 0.9612 0.9120
den 0.9480 0.8911 0.9254 0.9268 0.9432 0.9252 0.9398 0.9330 0.9484 0.9460
jpg 0.9189 0.9192 0.9200 0.9265 0.9284 0.9217 0.9396 0.9339 0.9541 0.9556

jpg2k 0.8840 0.9516 0.9468 0.9504 0.9602 0.9511 0.9672 0.9589 0.9706 0.9703
jpgt 0.7685 0.8409 0.8493 0.8475 0.8512 0.8283 0.8543 0.8610 0.9216 0.8886

jpg2kt 0.8883 0.8761 0.8828 0.8889 0.9182 0.8788 0.9165 0.8919 0.9228 0.9239
pn 0.6863 0.7720 0.7821 0.7968 0.8130 0.8315 0.7967 0.7937 0.8060 0.8227

bdist 0.1552 0.5306 0.5720 0.4801 0.6418 0.2812 0.4722 0.5532 0.1713 0.4598
ms 0.7671 0.6276 0.7752 0.7906 0.7875 0.6450 0.6562 0.7487 0.7700 0.7156

ctrst 0.4400 0.8386 0.3775 0.4634 0.4857 0.1972 0.4696 0.4679 0.4754 0.4569
ccs 0.0766 0.3099 0.4141 0.4099 0.3578 0.0575 0.3117 0.8359 0.8100 0.6307

mgn 0.8905 0.8468 0.7803 0.7786 0.8348 0.8409 0.8781 0.8569 0.9117 0.8892
cn 0.8411 0.8946 0.8566 0.8528 0.9124 0.9064 0.9259 0.9135 0.9243 0.9224

lcni 0.9145 0.9204 0.9057 0.9068 0.9563 0.9443 0.9608 0.9485 0.9564 0.9559
icqd 0.9269 0.8414 0.8542 0.8555 0.8973 0.8745 0.8810 0.8815 0.8839 0.9026
cha 0.8872 0.8848 0.8775 0.8784 0.8823 0.8310 0.8758 0.8925 0.8906 0.8709
ssr 0.9042 0.9353 0.9461 0.9483 0.9668 0.9567 0.9613 0.9576 0.9628 0.9642

CSIQ

gwn 0.9363 0.9575 0.8974 0.9471 0.9440 0.9541 0.9628 0.9359 0.9636 0.9659
jpeg 0.8881 0.9705 0.9546 0.9634 0.9632 0.9615 0.9671 0.9664 0.9618 0.9684

jpg2k 0.9362 0.9672 0.9606 0.9683 0.9648 0.9752 0.9773 0.9704 0.9694 0.9794
gpn 0.9339 0.9511 0.8922 0.9331 0.9387 0.9570 0.9520 0.9370 0.9638 0.9607
gblr 0.9291 0.9745 0.9609 0.9711 0.9589 0.9682 0.9767 0.9729 0.9679 0.9775
ctrst 0.8621 0.9345 0.7922 0.9526 0.9354 0.9207 0.9528 0.9438 0.9504 0.9500

The highest correlation in each row is written in boldface.
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Finally, it should be noted that for all results reported in this section, HaarPSI, as well as
most other image quality metrics, was preprocessing each image by convolving it with a 2 × 2
mean filter as well as a subsequent dyadic subsampling step, to simulate the viewing distance
between the participants and the presented images in the experimental setup.

5 Discussion

HaarPSI is a novel and computationally inexpensive image quality measure based solely on the
coefficients of four stages of a discrete Haar wavelet transform. Its validity with respect to the
human perception of image quality was tested on four large databases containing more than
5000 differently distorted images, with very promising results. When restricted to grayscale
conversions, HaarPSI outperforms all state-of-the-art algorithms considered in Section 4 on
all four databases, while for color images, it only comes second to VSI when tested on TID
2013 (see Table 1). Along with its simple computational structure and its comparatively short
execution time, this suggests a high applicability of HaarPSI in real world optimization tasks.
In particular, image quality metrics like PSNR, SSIM, or SR-SIM, that outperform HaarPSI
with respect to speed, achieve considerably inferior correlations with human opinion scores (see
Table 2). Regarding the applicability of HaarPSI in specific optimization tasks, we would like to
mention that HaarPSI has consistently high correlations with human opinion scores throughout
all databases with respect to distortions caused by the JPEG and JPEG 2000 compression
algorithms (see Table 3).

As it was already noted in Section 3, HaarPSI can conceptually be understood as a simplified
version of FSIM. Both HaarPSI and FSIM rely on the construction of two maps, where one
map measures local similarities between a reference image and a distorted image and the other
map assesses the relative importance of image areas. However, in HaarPSI, both maps are
defined only in terms of a single Haar wavelet filterbank, while FSIM utilizes an implementation
of the phase congruency measure that not only requires the images to be convolved with 16
complex-valued filters but also contains several non-trivial computational steps, like adaptive
thresholding. Furthermore, FSIM uses the phase congruency measure both as a weight function
in (5) and as a part of the local similarity measure (4). In HaarPSI, the weight function (10)
and the local similarity measure (9) are strictly separated. These conceptual simplifications
not only decrease the execution time by a factor of approximately five (see Table 2), but also
pave the way for significantly higher correlations with opinion scores of human viewers (see
Tables 1 and 3). In particular, it seems to be an important step to split the measurements
regarding horizontal structures and vertical structures in both the local similarity measure (9)
and the weight function (10).

Other visual quality metrics emphasize the application of concepts motivated by neurophys-
iological findings, like phase congruency or visual saliency. Besides the fact that simple cells
in the primary visual cortex were found to serve as edge detectors and hence yield responses
structurally not too different from the responses of Haar wavelet filters, HaarPSI cannot be said
to have a strong connection to computational models of human perception. That being said,
it is interesting to note that the local similarity measure (9) only considers the high-frequency
responses of the Haar wavelet transform, while the weight function (10) strongly depends on
the low-frequency information yielded by the third and fourth scale of the discrete Haar wavelet
transform. This could indicate that the human visual system recognizes changes more signif-
icantly in the high-frequency range but uses low-frequency information to judge the overall
importance of an image area.

The definition of HaarPSI (11) contains two free parameters, namely a constant C1 that
stabilizes the local similarity measure (9) when the denominator in (3) is close to 0 and an
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exponent α. HaarPSIC adds a third constant, C2, that is required for the inclusion of the
chroma channels in the color-sensitive local similarity measure (14). These parameters were
fixed by the authors at C1 = 40, C2 = 250 and α = 0.03, in order to maximize the correlations
with human mean opinion scores with respect to all four databases considered in Section 4.
While the choices for the constants C1 and C2 are comparable to the values given to similar
parameters in other metrics like FSIM or VSI, it was quite surprising to see that an optimal
choice for the exponent α in (11) and (13) should be as small as 0.03. By selecting an exponent
that close to zero, all values in the local similarity map (9) are being mapped to a value
rather close to one. In particular, the ascent towards one is much steeper for values near zero.
Thus, with α = 0.03, only locations with a strong dissimilarity between the reference and the
distorted image will play a significant role in the overall measures (11) and (13) (see Figure 3).
This slightly resembles the effects of a discontinuous step-function or of a logistic function,
both of which are frequently used as transfer functions in artificial neural networks. It is quite
possible that a more exhaustive examination of this connection could lead to even better results
for HaarPSI and similar metrics. For instance, it might be beneficial to actually use a step
function or a logistic function instead of the exponent α in (11) and (13), or to directly apply
such functions to the coefficients obtained from the discrete wavelet transform.

(a) HS
(1)
f1,f2 (b)

(
HS

(1)
f1,f2

)α
Figure 3: (a) The local similarity measure (9) already shown in Figure 2. (b) Effect of the
exponent α = 0.03 when applied entry-wise to the local similarity map shown on the left.

As can be seen in Table 3, HaarPSI is sometimes outperformed by other IQA methods, when
only specific types of distortions are being considered. However, even in these cases, correlations
comparable or superior to the correlations of other state-of-the-art similarity measures might
be achieved by tuning the constants C1, C2, and α, which have originally been selected to
optimize the overall performance of HaarPSI. The influence of C1 and α on the correlation
with human opinion scores in the case of TID 2013 is shown in Figure 4 with respect to the
overall performance as well as for five specific distortions (JPEG, JP2K, Gaussian blur, additive
white Gaussian noise, and spatially correlated noise). Note that C2 = 250 remained constant
throughout all experiments depicted in Figure 4. Figure 4a reinforces the claim that setting
C1 = 40 and α = 0.03 optimizes HaarPSI with respect to distortion agnostic IQA. Figure 4b
indicates that increasing C1 also increases the SROCC for JPEG-distorted images, whereas the
performance is rather independent of α. IQA of images affected by JP2K or Gaussian Blur
would benefit from increasing both C1 and α, as can be seen in Figures 4c and 4d. However,
as shown in Figures 4a, 4e and 4f, increasing C1 and α is not beneficial in general. For quality
assessments of images degraded by Gaussian white noise or spatially correlated noise, increasing
C1 results in a sharp drop in the correlation with human opinion scores.

From a computational point of view, it is very beneficial to apply the Haar wavelet in a
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(a) All distortions (b) JPEG (c) JP2K

(d) Blur (e) AWGN (f) SCN

Figure 4: Spearman rank order correlations in dependance of the parameters C1 and α for images
affected by (a) all distortions, (b) JPEG compression, (c) JP2K compression, (d) Gaussian
Blur, (e) additive Gaussien white noise, and (f) spatially correlated noise. C2 = 250 for all
calculations. All correlations are with respect to TID2013.

method like HaarPSI instead of other wavelet filters. However, by simply changing h1D
1 and g1D

1

in (8) to the respective filters, the measure given in (11) can also be defined for other wavelets.
Table 4 shows the performance of such measures based on selected Daubechies wavelets [26],
symlets [27], coiflets [28] and the Cohen-Daubechies-Feauveau wavelet [29] with respect to the
four databases considered in Section 4. It is interesting to see that Haar filters not only seem
to be the computationally most efficient but also the qualitatively best choice for the measure
(11).

Table 4: SROCC With Human Mean Opinion Scores For Different Wavelet Filters

Grayscale Images

Daub2PSI Daub4PSI Sym4PSI CDFPSI Coif1PSI HaarPSI
LIVE 0.9593 0.9507 0.9527 0.9507 0.9579 0.9675

TID 2008 0.8852 0.8539 0.8746 0.8742 0.8828 0.9042
TID 2013 0.8022 0.7819 0.7962 0.7946 0.8019 0.8129

CSIQ 0.9492 0.9453 0.9453 0.9413 0.9482 0.9525

Color Images

Daub2PSI Daub4PSI Sym4PSI CDFPSI Coif1PSI HaarPSI
LIVE 0.9623 0.9572 0.9601 0.9594 0.9618 0.9685

TID 2008 0.8896 0.8612 0.8803 0.8822 0.8864 0.9079
TID 2013 0.8700 0.8569 0.8675 0.8672 0.8719 0.8791

CSIQ 0.9580 0.9548 0.9561 0.9564 0.9561 0.9567

The highest correlation in each row is written in boldface.

A MATLAB function implementing HaarPSI will be available at www.math.uni-bremen.

de/cda/software.html.
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