LINEAR INDEPENDENCE OF TIME-FREQUENCY SHIFTS
UNDER A GENERALIZED SCHRODINGER REPRESENTATION

GITTA KUTYNIOK

ABSTRACT. Let pr be the classical Schrodinger representation of the Heisen-
berg group and let A be a finite subset of R x R. The question of when the
set of functions {t — 2™ f(t + z) = (pr(z,y,1)f)(t) : (z,y) € A} is linearly
independent for all f € L2(R), f # 0, arises from Gabor analysis. We investigate
an analogous problem for locally compact abelian groups G. For a finite subset A
of Gx G and pg the Schridinger representation of the Heisenberg group associated
with G, we give a necessary and in many situations also sufficient condition for
the set {pg(z,w,1)f : (z,w) € A} to be linearly independent for all f € L*(G),

f#0.

1. INTRODUCTION

An important problem in Gabor analysis is the implementation of frames [1].
In fact, any practical implementation has to be finite. Since any finite collection
of linearly independent vectors is a Riesz basis for its linear span, the following
question arises. Let A be a finite subset of R x R and let f € L*(R), f # 0. When
is the set of functions

tes 2 f(t 4+ 2), (7,y) € A,

in L?(R) linearly independent?

This problem has been investigated by Heil, Ramanathan and Topiwala in [5]. In
particular, they proved that such a set is linearly independent, if A is a finite subset
of a unit lattice in Rx R. This case is especially important for questions concerning
frames. Later Linnell [9] extended this result to finite subsets A of discrete subgroups
of R x R.

In [5] it was pointed out that this problem should be studied for more general
locally compact abelian groups, since often frames in Hilbert spaces other than
L*(R) have to be considered. Now, this problem admits a natural generalization to
these groups. R

Let G be a locally compact abelian group, let G denote its dual group and let
pc denote the Sc}lrédinger representation associated with G. For which finite
subsets A of G x G and for which functions f € L*(G), f # 0, is the subset
{pg(z,w,1)f : (z,w) € A} of L?(G) linearly independent?

Heil, Ramanathan and Topiwala conjectured in [5], that {pr(z,v,1)f : (z,y) € A}
is linearly independent for all finite subsets A of RxR and for all functions f € L*(R),
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f # 0. It turns out (see Theorems 1 and 2) that the appropriate conjecture for locally
compact abelian groups should be the following one.

ConJecture Let G be a locally compact abelian group, let A be a finite subset
of G x G and let G¢ and (G) denote the set of compact elements in G and G
respectively. Then the following conditions are equivalent.

(I) The subset {pa(z,w,1)f : (z,w) € A} of L*(G) is linearly independent for all
feL*G), f#0. ~
(IT) The elements (z,w)(G° x (G)°), (z,w) € A, are pairwise different.

The first theorem proves, in particular, the implication (I) = (II) of the conjecture.

Theorem 1. Let G be a locally compact abelian group and let A be a finite subset
of G x G. Suppose that, for each f € C.(G), f # 0, the subset

{pG(x,W, 1)f : (l‘,U)) € A}
of L*(Q) is linearly independent. Then (11) holds.

We did not succeed to prove the converse direction. This remains even open for
G = R (compare [5]). But we are going to establish the sufficiency of (I) in the
following case, which is especially important for applications.

Theorem 2. Let G be a locally compact abelian group, let K be a uniform lattice
in G and let A(K, G) denote the annihilator of K in G. Furthermore, let A be a
finite subset of K x A(K,G). Then (1) is equivalent to (II).

The proofs of Theorem 1 and Theorem 2 are given in Sections 3 and 4, respectively.
Both theorems will be proven by first reducing to locally compact abelian Lie groups
and then to compactly generated locally compact abelian Lie groups. Note that the
set of compactly generated locally compact abelian Lie groups coincides with the
set of elementary LCA groups dealt with in [3, Chapter 7]. Finally, in Section 5 we
conclude with some remarks.

2. PRELIMINARIES

Let G be a locally compact group. If G = Hy X ... X H,, n € N, then let z; € H;
denote the i" component of x € G for all 1 < i < n. Let C(G) denote the space of
continuous functions on G, C.(G) the space of continuous functions with compact
support on G and L?(G) the space of square integrable functions on G.

An element z € G is said to be compact, if the smallest closed subgroup of G
containing z is compact. Let G denote the set of compact elements in G. When G
is abelian, G¢ is always a closed subgroup [6, Theorem 9.10].

Remark 2.1. Let G be a locally compact group, K a compact normal subgroup of G
and ¢ : G — G/K the quotient homomorphism. Then G¢ = ¢~((G/K)¢), and hence
for any two elements z,y € G, G¢ # yG© if and only if ¢(z)(G/K)°® # q(y)(G/K)°".

Throughout the paper let G be a locally compact abelian group with dual group
denoted by G. As a general reference to duality theory of locally compact abelian
groups we mention [6].

A subgroup K of G will be called a uniform lattice, if it is discrete and cocompact.
The subgroup A(K,G) = {w € G : w(k) =1 for all k € K} is called the annihilator
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of K in G. Let K be a uniform lattice in G. Then, since AK,G) = (?/?( and
G/A(K,G) = K and since the dual of a compact abelian group is discrete and vice
versa, the subgroup A(K,G) is a uniform lattice in G.

The Heisenberg group associated with G, H(G), is the set G x G x T with multi-
plication defined by

(z,w,2) (2", W', 2") = (z2', wd', 22'W' ().

In the following we will consider the so-called Schrédinger representation, which is
the irreducible unitary representation of H(G) on L?(G) defined by

(pa(z,w, 2) f)(t) = zw(t) f(xt).

This is the natural generalization of the Schrédinger representation of H(R) dealt
with in Gabor analysis.

3. PROOF OF THEOREM 1

We shall begin with the special case of a compactly generated locally compact
abelian Lie group.

Proposition 3.1. Let G be a compactly generated locally compact abelian Lie group.
Then the conclusion of Theorem 1 holds.

Proof. Suppose that the functions pg(z,w,1)f, (z,w) € A, are linearly independent
for every f € C.(G), f # 0. Towards a contradiction, assume that there are two
distinct elements (z,w) € A and (2',w") € A such that

(2,w)(G° x (G)) = (2, ) (G° x (G)°).

The structure theorem for compactly generated locally compact abelian Lie groups
implies that G is of the form G =RP x Z? x T" x F, where F is a finite group and
D, q,r € Ny. Hence the assumption says that x; = ', 2 = 7}, w1 = W] and w3 = wj,.

Now we have to construct a function f € C.(G), f # 0, such that pg(z,w,1)f
and pg(z',w',1)f are linearly dependent. For that, fix f; € C.(RP), f1 # 0, and let
fi: F = C, fy # 0, be arbitrary. f4 will be specified later. Then consider a function
f € CQ), f #0, of the form

filt)fa(ts) = t2=0,
1) ::{ ()(]():tg#()

for all t € G. Let A € C?, A # 0. Using the definition of the representation pg and
the assumption that z; = 2, z = 2}, wy = w] and w3 = wj, we obtain that

M (pa(z,w,1)f)(t) + Xa(pg(z’,w', 1) f)(t) =0 for almost all t € G
is equivalent to

(1) Awa(to)wa(ts) f(x1 + t1, T2 + to, T3ts, Tats)
+ )\Qwé(tQ)wﬁl(t4)f(m1 =+ tl, ZTo + tQ, .Z'gtg, .Tﬁltzl) =0 forallted.

By the construction of f and the fact that f; # 0, (1) holds if and only if
(2) )\1M2($2)W4(t4)f4($4t4) + )\26«)&(1‘2)0&2(154)]‘.4(3?2154) =0 for all t4 € F.
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In order to simplify this equation, replace ¢4 by xﬁl_lt4 and define A € C? by \; =

Aws(x9) wy () and Ay := Aow)(x9) wj(z}). Then (2) is equivalent to

5\1w4(t4)f4(($4$2_1)t4) + 5\2&)2(154)‘][4(754) =0 for all ty € F.

Thus, towards a contradiction, it remains to show that for arbitrary z € F and
w € F there exist some p € C, u # 0, and a function g : FF — C, g # 0, such that

(3) g(xt) = pw(t)g(t) forallte F.

Since F is finite, there exists a minimal N € N such that 2"V = e and then H :=
{z" : 0 <n < N — 1} is a subgroup of F. Define u € C such that

N(N-1)

plo(z) = =1,
and define g : FF — C by
ot) = prw) 5 L t=a"€ H 0<n<N-1,
' 0 ¢ H.

Then (3) holds for all ¢t € F\H, because then zt € F\H. If, on the other hand,
t =2a" € H, we have that

n(n+1)
g(a"™) = p"w(@) 2 = pw(")g(z")

in the case 0 <n < N — 1. And in the case n = N — 1 we obtain

N(N-1)

g(@")=g(z°) =1=p w(z)” 7 =pwE" "g"").
Thus equation (3) is fulfilled, which finishes the proof. O

Now we can complete the proof of Theorem 1 using Proposition 3.1. Let GG be a

locally compact abelian group. Suppose that there are two distinct elements (z,w)
and (z',w") of A such that

(2, w)(G° x (G)) = (2/,w)(G" x (G)°).
We intend to construct a suitable function f € C.(G), f # 0, in such a way that
pc(z,w, 1) f and pg(2’,w',1)f are linearly dependent.

This will be achieved by first reducing to locally compact abelian Lie groups and
then to compactly generated locally compact abelian Lie groups, in which situation
Proposition 3.1 applies.

Since there exists a compact subgroup K of G such that G/K is a Lie group and
since each compact abelian group is a projective limit of Lie groups (compare [6,

28.61 (c¢)]), also G is a projective limit of Lie groups. Therefore there exists a system
H of compact subgroups H of G, H downwards directed and () new ! H = {e}, such

that G/H is a Lie group for for every H € H. Since G = Unen G / H, there exists

H € H such that w,w' € G/H. Let 7 : G — G/H denote the quotient map. Then,
by Remark 2.1, z2' " € G¢ = 7~ 1((G/H)*®), hence 7 (z)7(z')~" € (G/H)*. Similarly,
ww' € (G)*NG/H = (G/H)°. So we obtain that

(n(@),w) ((G/H)* x (G/H)) = (n(a'), ) ((G/H)" x (G/HY).
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Suppose that we have found g € C.(G/H), g # 0, such that pg/u(7(x),w,1)g and
pa/u(m(a'),w’, 1)g are linearly dependent. Let f = gom. Then f € C.(G), f # 0,
and

(pa/u(m(y), x;1)g) o™ = pa(y, x, 1) f

for all (y,x) € G x G/H. Hence we can assume that G is a Lie group.
For the next step let L be an open, compactly generated subgroup of G, with the
property that z, ' € L. Then zz' ' € G implies that zz' ' € L°. We also have

-~

that w| W], € (L)¢, because the restriction map G — L is continuous. Hence
(2, w|) (L x (L)) = (@', &' 1) (L x (L)°).

Now we may apply Proposition 3.1 to this situation. This yields a function g €
Ce(L), g # 0, and A € C?, A # 0, such that

(4) Apr(z,wlp, 1)g + Xopr(a, W', 1)g = 0.

Let f € C.(G) be the function which equals g on L and is zero on G\L. Then
suppf C L. Since x and z’ are elements in L, for every ¢ € G, we have that
xt,z't € L if and only if ¢ € L. So it follows from (4) that

AIIOG("Ea w, 1)f + Ang(x', wl, 1)f = 0’

a contradiction.

4. PROOF OF THEOREM 2

As before, we first consider compactly generated locally compact abelian Lie
groups.

Proposition 4.1. Let G be a compactly generated locally compact abelian Lie group.
Then the conclusion of Theorem 2 holds.

Proof. The implication (I) = (II) was already proven in Proposition 3.1. Thus it
remains to show that (II) implies (I).

For this let A be a finite subset of K x A(K, @) Let f € L*(G), f # 0, and
()\(z,w))(z,w)eA g C be such that

Z )‘(;c,w)(pG(l‘a w, 1)f) =0
(z,w)EA

on G. Suppose that the elements (z,w)(G* % (G)°), (z,w) € A, are pairwise different.
We have to prove that A, =0 for all (z,w) € A.

By [7, Lemma 2], there exists a relatively compact fundamental domain Sk of
K in G which means that Sk is a relatively compact Borel subset of G such that
every y € G can be uniquely written in the form y = sk where s € Sk and k € K.
By Section 2, the subgroup A(K, @) is a uniform lattice in @, hence there similarly
exists a relatively compact fundamental domain Qj of A(K, @) in G. The map
Z: LZ(G) — LQ(SK X QK) defined by

Zf(y,x) =D Fyk)x(k), (y,x) € Sk x Q,

keK
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is called the Zak transform associated with K ([3, Definition 6.4.1], [7, p.3566]).
Since this transform is isometric (see [7, Lemma 3]), we have that

Z Z Aaw)(pa(@,w,1)f) | (y,x) = 0 for almost all (y, x) € Sk x Qk.

(z,w)EA

Hence, by a simple calculation,

Z Azwyw(¥)x(@) | Zf(y,x) =0 for almost all (y,x) € Sk x Q.

(z,w)EA

Of course, since f # 0, the set W := supp(Zf) C Sk x Qk has positive measure.
Since the elements in GG are continuous, it follows that

Z Az wyw(¥)x(z) = 0 for all (y,x) € W.
(z,w)EA

Now by the structure theorem for compactly generated locally compact abelian Lie
groups, G is of the form G = RP X Z?xT" x F', where F is a finite group and p, ¢, r are
positive integers or zero. Applying Fubini’s theorem yields the existence of elements
ko € Z9,mg € F,my € T" = Z7, 7y € F and a measurable set U, C R? x T" x RP x T¢
such that U; x {ko} X {mo} X {71'0} X {T()} cCw and /’LGxé(Ul X {ko} X {m()} X {71'0} X
{m}) > 0. Thus

Z /\(m,w)wl(yl)WZ(kO)w3(y3)w4(m0)Xl(xl) Xa(72) mo(w3) T0(24) = 0
(zw)eEA

for all (y1,ys, x1, x2) € Ur. To simplify this equation let

:\(w,w) = Naw)wa(ko)ws(mo)mo(x3) To(2s), (z,w) € A.
Then

Z 5\(;c,w)wl(yl)UJ3(.7J3)Xl(»’L"l) X2(22) = 0 for all (y1, y3, X1, x2) € Us.
(zw)EA

Now decompose the set A into maximal disjoint subsets A,,, 1 < m < s, such that
wy = W'y for all (z,w), (¢',w') € Ap. This allows us to write the above equation in
a more convenient form:

8§

Z Z 5‘(m,w)wfi(ys)xl(961)Xz(fvz) wi(y1) =0

m=1 | (z,w)EAm

for all (y1,ys, X1, X2) € Ui Fix the elements ys, x1, x2 and let the element y; vary.
By Fubini’s theorem, the measurable set

U2 = {(y?nXl:XQ) eT xRP x T MRP({yl eR: (ylay35X15X2) € Ul}) > 0}

has positive measure. Now a trigonometric polynomial on RP which is zero on a set
of positive measure has all coefficients equal to zero. Hence

Z Aww)ws(ys)x1(21) X2(z2) = 0 for all (ys, X1, x2) € Up, 1 <m < s.
(z,w)EAm
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For the next step fix any m € {1,...,s}. Now decompose the set A,, as before into
maximal disjoint subsets Ay, 1 <1 < s, such that wy = w'; for all (z,w), (2/,w') €
Ay, Then we may write the last equation in the form

ST DD Aewxa@) xales) | wslys) =0
I=1 | (z,w)€EAm,

for all (ys, x1,x2) € Us. Fix x; and x and let y3 vary. Notice that again by using
Fubini’s theorem the set

Us :={(x1,x2) € R xT?: prr({yz € T" : (y3, X1, x2) € Ua}) > 0}

is a set of positive measure. A trigonometric polynomial on T" which is zero on a
set of positive measure can be lifted to a trigonometric polynomial on R" which is
zero on a set of positive measure. So again the coefficients are equal to zero. Hence

Z :\(z,w)Xl(xl) Xg(.’Ez) = 0 for all (Xl,Xg) € U3, 1 S l S Sm-
(zw)EAm,

Now repeating such a step once more with the sets A,,, yields sets Amlk, 1<k < sy,
and a set of positive measure Uy, C T?. Moreover, the same arguments as before
lead to

Y Awwxe(rs) =0forall xo € U, 1 Sm < 5,1 <1< 5, 1 <k < 5y
(@w)€Am;

By condition (II), the elements (1,2, w1, ws), (z,w) € A, are pairwise different.
Hence, for all (z,w), (z',w') € Amlk, we obtain xe # x4 for each index my,. The

same argument concerning trigonometric polynomials as above yields S\(WJ) =0 and
S0 A(zw) = 0 for all (z,w) € A. This finishes the proof. O

Now we will prove the result for an arbitrary locally compact abelian group G
by using the previous proposition. The implication (I) = (II) is an immediate
consequence of Theorem 1. Thus we only have to prove that (II) implies (I).

For this let A be a finite subset of K x A(K, G) such that the elements (z, w)(GE x
(6’)0), (z,w) € A, are pairwise different. Let pg : G X G — G and pg: G X GG
denote the projection onto the first and second component, respectively. Let f €
L*(G), f #0, and (Azw))(zwer € C be such that

(5) Z )\(zc,w)(pG(l"w’ 1)f) =0.

(z,w)EA

The proof will consist of two steps. First the problem will be reduced to locally
compact abelian Lie groups and afterwards to compactly generated locally compact
abelian Lie groups. Then Proposition 4.1 can be applied.

Recall that locally compact abelian groups are projective limits of Lie groups.
Hence as in the proof of Theorem 1, a compact sutgiup H of G can be chosen in

such a way that G/H is a Lie group and that w € G/H for all w € ps(A). Now let
7 : G — G/H denote the quotient homomorphism.
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Notice first that since H is compact, the subgroup n(K) = KH/H < G/H is a
uniform lattice in G/H. One can easily check that

A(n(K),G/H)={x e G/H : xor € AK,G)} < G/H

is also a uniform lattice. By the choice of H, it is clear that w € A(7w(K), CT/?J) for
all w € pg(A). Since H C G, we have that (G/H)® = 7(G¢). Hence

7(z)(G/H)¢ = 7(2')(G/H)® if and only if zG® = 2'G*

for all z,2" € pg(A). Observe that (CT/-?J)C = (G)n CT/-TJ, and so we also obtain
that

W(G/H)® = ' (G/H)® if and only if w(G)° = w'(G)°
for all w,w' € ps(A). By (II), we can conclude that the elements
(m(2), w)((G/H)® x (G/H)%), (2,w) €A,

are pairwise different.

Next we have to construct from f a function fg on G/H with analogous proper-
ties. Let the Haar measures on G and G/H, ug and pig g, be normalized so that
Weil’s formula holds, if we take on H the Haar measure pg with py(H) = 1. By
using Weil’s formula and the Cauchy-Schwarz inequality together with the fact that
H is compact, we obtain that

Iz = [ ., ([ 170 ducyn(ac)
> /G ; ( /H |f(th>|duH(h>)QduG/H(m))

> /G B /| Fe)dun(h)|

dpcyu (m(t)).
Now we define a function fg: G/H — C by

fu(m(t)) = /H F(th)dug ()., 1€ G.

As we have just shown, fi € L?(G/H). Without loss of generality we can assume
that fg # 0 on G/H. By equation (5),

Z Azwyw(t) f(xt) = 0 for pg-almost all ¢ € G.
(z,w)eA
Now observe that the map G x H > (t, h) — th € G is continuous and maps ug X ity
onto ug. Hence it follows that

z Azw)w(t) f(xth) = 0 for pg X pg-almost all (¢,h) € G x H.
(z,w)eA
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Therefore we obtain that

3" Aew (poyu(n(x),w,1) fir) (n(2))

(z,w)EA

- Z Aaww(m(t)) fr (7 (at))
(z,w)eEA
H (z,w)EA

= 0

for almost all 7(t) € G/H. So we can assume that G is a Lie group.
For the last step let L be an open, compactly generated subgroup of G such that
{z:2€pg(A)} C Land f|, #0on L. Then zz'™" ¢ G implies that z2'~" ¢ L¢ for

all z, 2" € pg(A). Recall that (G)° = = Uwm<a, mopen G/M Thus we can assume that
L also fulfills the property that w|pw!| & (L) if ww' € (G)° for all w,w’ € pa(A).
By (II), this shows that the elements

(@L8,w|r(L)%), (w,w) € A,
are pairwise different. Finally, equation (5) implies that

3" Ay (pr(@,w]z,1)f]2) = 0 on L.
(zw)eEA

Applying Proposition 4.1 yields A ) = 0 for all (z,w) € A.
5. SOME REMARKS

We finish the paper by adding remarks concerning generalizations and special
cases of the theorems.

Remark 5.1. Let G be a locally compact abelian group. Concerning Theorems 1
and 2 it appears to be more natural to consider finite subsets of H(G) instead of
finite subsets of G x G, since the Schrodinger representation is defined on H(G).
But actually this turns out to be equivalent.

To show this, let A be a finite subset of H(G) and let ¢ : H(G) — H(G)/T
denote the quotient map. First, Remark 2.1 implies that for any two elements
(z,w,2), (2, w' 2") € A, we have (z,w, 2)H(G)¢ # (¢/,w', 2)H(G)° if and only if
(z,w) (G x (G)°) # (2,w')(G° x (G)). Secondly, if q|4 is injective, then, for each
f e L3Q), f # 0, the following conditions are equivalent.

(i) {pe(z,w,2)f : (z,w, z) € A} is linearly independent.

(ii) {pc(z,w,1)f: (z,w) € ¢(A)} is linearly independent.
This is an immediate consequence of the definition of the Schrédinger representa-
tion. Now it is easy to check that these two statements imply the claim.

Remark 5.2. The uniform lattices in R are precisely the subgroups of the form pZ,
p € R*. Hence, for G = R, Theorem 2 covers exactly the situation of A being a finite
subset of pZ x %Z, p € R*. This does not include all unit lattices in Rx R. However,
generalizing the notion of metaplectic transform to locally compact abelian groups
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we can prove a corollary of Theorem 2 which covers this case (compare [8, Corollary
4.3.11]).

The question whether a generalization to locally compact abelian groups of Lin-
nell’s result holds remains still open, since the set of unit lattices in Rx R is a proper
subset of the set of discrete subgroups of R x R.

Remark 5.3. As mentioned by the referee the case of finite abelian groups “is really
the situation one encounters in applications”. Let F' be a finite abelian group. Then
F°=F and F = F. This implies that condition (II) of the conjecture can never be
satisfied. Hence for each finite subset A of F' x F there exists a function f € L2(F),
f # 0, such that the set {pp(z,w,1)f : (z,w) € A} is linearly dependent.
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