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ABSTRACT. We derive fundamental lower bounds on the connectivity and the memory requirements of deep neural networks
guaranteeing uniform approximation rates for arbitrary function classes inL2(Rd). In other words, we establish a connection
between the complexity of a function class and the complexity of deep neural networks approximating functions from this
class to within a prescribed accuracy.

Additionally, we prove that our lower bounds are achievable for a broad family of function classes. Specifically, all
function classes that are optimally approximated by a general class of representation systems—so-called affine systems—can
be approximated by deep neural networks with minimal connectivity and memory requirements. Affine systems encompass a
wealth of representation systems from applied harmonic analysis such as wavelets, ridgelets, curvelets, shearlets, α-shearlets,
and more generally α-molecules. This result elucidates a remarkable universality property of neural networks and shows that
they achieve the optimum approximation properties of all affine systems combined. As a specific example, we consider the
class of 1/α-cartoon-like functions, which is approximated optimally by α-shearlets.

We also explain how our results can be extended to the case of functions on low-dimensional immersed manifolds.
Finally, we present numerical experiments demonstrating that the standard stochastic gradient descent algorithm gener-

ates deep neural networks providing close-to-optimal approximation rates at minimal connectivity. Moreover, these results
show that stochastic gradient descent actually learns approximations that are sparse in the representation systems optimally
sparsifying the function class the network is trained on.

1. INTRODUCTION

Neural networks arose from the seminal work by McCulloch and Pitts [34] in 1943 which, inspired by the function-
ality of the human brain, introduced an algorithmic approach to learning with the aim of building a theory of artificial
intelligence. Roughly speaking, a neural network consists of neurons arranged in layers and connected by weighted
edges; in mathematical terms this boils down to a concatenation of (potentially learned) affine linear functions and
relatively simple non-linearities.

Despite significant theoretical progress in the 1990s [28, 7], the area has seen practical advances only during the past
decade, triggered by the drastic improvements in computing power, and, in particular, the availability of vast amounts
of training data. Specifically, deep neural networks, i.e., networks with large numbers of layers are now state-of-the-art
technology for a wide variety of real-world applications, such as image classification [30], speech recognition [27], or
game intelligence [8], to name a few. For an in-depth overview, we refer to the survey paper by LeCun, Bengio, and
Hinton [33] and the recent book [19].

A neural network effectively implements a non-linear mapping and can be used to either perform classification
directly or to extract features that are then fed into a classifier, such as a support vector machine [44]. In the former
case, the primary goal is to approximate an unknown classification function based on a given set of corresponding
input-output value pairs. This is typically accomplished by learning the network’s weights through, e.g., the standard
gradient descent (via backpropagation) algorithm [41]. In a classification task with, say, two classes, the function to
be learned would take only two values, whereas in the case of, e.g., the prediction of the temperature in a certain
environment, it would be real-valued. It is therefore clear that characterizing to what extent deep neural networks are
capable of approximating general functions is a question of significant practical relevance.

Deep neural networks employed in practice often consist of hundreds of layers and may depend on billions of
parameters, see for example the work [26] on image classification. Training and operation of networks of this scale
entail formidable computational challenges which often still present a bottleneck. As a case in point, we mention
speech recognition on a smart phone such as, e.g., Apple’s SIRI-system, which operates in the cloud. Android’s
speech recognition system has meanwhile released an offline version that is based on a neural network with sparse
connectivity, meaning that the number of edges with nonzero weights is small.
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The desire to reduce the complexity of network training and operation naturally leads to the question of function
approximation through neural networks with sparse connectivity. In addition, the network’s memory requirements in
terms of the number of bits needed to store its topology and quantized weights are of concern in practice.

The purpose of this paper is to characterize the approximation-theoretic properties of deep neural networks under
connectivity and memory constraints. Specifically, defining the complexity of a signal class C as the number of bits
needed to describe any element in C to within a prescribed accuracy, we shall ask the following question:

Given a signal class C, how does the complexity of a neural network that approximates every function
in C to within a prescribed accuracy depend on the complexity of C?

Interpreting the network as an encoder in Donoho’s min-max rate distortion theory [14], we establish fundamental
lower bounds on connectivity and memory requirements for a network to guarantee uniform approximation rates
for a given signal class C. Moreover, we demonstrate that these bounds are saturated by a broad family of signal
classes, namely those that can be optimally approximated by a general class of representation systems—so-called
affine systems. Affine systems encompass a wealth of representation systems from applied harmonic analysis such as
wavelets, ridgelets, curvelets, shearlets, α-shearlets, and more generally α-molecules. Our result therefore reveals an
interesting universality property of neural networks; they achieve the optimum approximation properties of all affine
systems combined. The technique we develop to derive this result is interesting in its own right as it constitutes a
more general framework for transferring results on function approximation through representation systems to results
on approximation by neural networks.

1.1. Deep Neural Networks. While various network architectures exist in the literature, we focus on the following
setup.

Definition 1.1. Let L, d,N1, . . . , NL ∈ N. A map Φ : Rd → RNL given by

(1) Φ(x) = WLρ (WL−1ρ (. . . ρ (W1(x)))), x ∈ Rd,
is called a neural network. It is composed of affine linear maps W` : RN`−1 → RN` , 1 ≤ ` ≤ L, and non-linear
functions—often referred to as rectifiers—ρ acting component-wise. Here, d is the dimension of the input layer, L
denotes the number of layers, N1, . . . , NL−1 stands for the dimensions of the L − 1 hidden layers, and NL is the
dimension of the output layer.

The term “network” arises from the interpretation of the mapping Φ as a weighted acyclic directed graph with nodes
arranged in L hierarchical layers and edges only between adjacent layers. In fact, the affine linear map W` is defined
by a matrix A` ∈ RN`×N`−1 and an affine part b` ∈ RN` via W`(x) = A`x + b`. (A`)i,j is the weight associated
with the edge between the j-th node in the (`− 1)-th layer and the i-th node in the `-th layer, while (b`)i is the weight
associated with the i-th neuron in the `-th layer. This assignment is depicted in Figure 1. We refer to the nodes of the
graph as neurons and note that the total number of neurons is given by N := d+

∑L
j=1Nj .

The real numbers (A`)i,j and (b`)i are said to be the network’s weights and the total number of non-zero edge
weights, denoted by M , is the network’s connectivity. If M is small relative to the number of connections possible
(i.e., the number of edges in the graph that is fully connected between adjacent layers), we say that the network is
sparsely connected.

Throughout the paper, we consider the case Φ : Rd → R, i.e., NL = 1, which includes situations such as the
classification problem described above. Nonetheless, the results of Sections 2 and 3 as well as Theorem 4.12 can be
readily generalized to NL > 1.

We denote the class of networks Φ : Rd → R with no more than L layers, no more than M non-zero edge weights,
and rectifier ρ by NNL,M,d,ρ. Moreover, we let

NN∞,M,d,ρ :=
⋃
L∈N
NNL,M,d,ρ, NNL,∞,d,ρ :=

⋃
M∈N

NNL,M,d,ρ, NN∞,∞,d,ρ :=
⋃
L∈N
NNL,∞,d,ρ.

Now, given a function f : Rd → R, we can ask how well a neural network Φ ∈ NNL,M,d,ρ can approximate
f . Clearly, this depends on the algorithm chosen to learn the network’s weights. But one can also take the following
vantage point: The best possible approximation of f by NNL,M,d,ρ provides a fundamental lower bound on the
approximation error independently of the learning algorithm.

We shall be interested in the dependence of this lower bound on the connectivity M and on the number of bits
available to encode the network topology and the quantized weights. Clearly, smaller M entails lower computational
complexity in terms of evaluating (1) and a smaller number of bits translates to smaller memory requirements.
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FIGURE 1. Assignment of the weights (A`)i,j and (b`)i to the neurons and edges. The network has
sparse connectivity, i.e., most of the weights (A`)i,j equal zero.

1.2. Quantifying Approximation Quality. We next briefly review a widely used approach for characterizing the
approximation quality of functions given restricting conditions on the approximant, in our case the neural network
with the restrictions imposed by its connectivity and memory requirements.

Fix Ω ⊂ Rd. A common approach to function approximation is to consider a class of functions C ⊆ L2(Ω),
termed signal class and a corresponding complete system D := (ϕi)i∈I ⊆ L2(Ω), termed representation system, or
dictionary, with the restriction on the approximant imposed by a limit on the number of elements in D allowed to
participate in the approximation. One then studies the error of best M -term approximation of f ∈ C:

Definition 1.2. [13] Given d ∈ N, Ω ⊆ Rd, a signal class C ⊆ L2(Ω), and a representation system D, we define, for
f ∈ C and M ∈ N,

ΓDM (f) := inf
IM⊂I,#IM=M,(ci)i∈IM

‖f −
∑
i∈IM

ciϕi‖L2(Ω).(2)

We call ΓDM (f) the best M -term approximation error of f with respect to D. Every fM =
∑
i∈IM ciϕi attaining the

infimum is referred to as a best M -term approximation of f in the system D. The supremum of γ > 0 such that there
exists C > 0 with

sup
f∈C

ΓDM (f) ≤ CM−γ , for all M ∈ N,

determines the optimal M -term approximation rate of C in the system D, and will henceforth be referred to as
γ∗(C,D).

A wealth of structured representation systems D is provided by the area of applied harmonic analysis, starting with
wavelets [9], followed by ridgelets [3], curvelets [4], shearlets [25], parabolic molecules [24], and most generally α-
molecules [22], which include all previously named systems as special cases. Other examples include tensor product
wavelets [10], Gabor frames [20], and wave atoms [11].

For α-shearlet dictionaries D, optimal sparse approximation properties have been completely characterized for the
signal class C of so-called β-cartoon-like functions Eβ([0, 1]2), these are piecewise Cβ(R2) functions on the unit
square with a Cβ discontinuity curve and β ∈ [1, 2]. Under weak technical conditions on the α-shearlet system, it was
shown in [23, 39] that γ∗(C,D) = 1

2α for C = E 1
α ([0, 1]2).

1.3. Approximation by Deep Neural Networks. We now substitute the concept of M -term approximation with
representation systems by approximation through neural networks with M edges. In other words, sparsity in terms of
the number of participating elements of a representation system is replaced by sparsity in terms of connectivity.

More formally, we consider the following setup.

Definition 1.3. Given d ∈ N, Ω ⊆ Rd, a signal class C ⊆ L2(Ω), and ρ : R→ R, we define, for f ∈ C and M ∈ N,

ΓNNM (f) := inf
Φ∈NN∞,M,d,ρ

‖f − Φ(f)‖L2(Ω).(3)
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We call ΓNNM (f) the best M -edge approximation error of f . The supremal γ > 0 such that a C > 0 with

sup
f∈C

ΓM (f) ≤ CM−γ , for all M ∈ N,

exists, determines the optimal M -edge approximation rate of C achievable by neural networks NN∞,∞,d,ρ, and will
henceforth be referred to as γ∗NN (C).

We emphasize that the infimum in (3) is taken over all networks with no more than M edges of non-zero weight.
In particular, this means that the optimum is taken over all possible edge positions and associated edge weights.
Knowledge of the optimalM -edge approximation rate hence provides a bound on the approximation rate of a sparsely
connected deep neural network. This bound is fundamental as it must be met by all learning algorithms. While
we do not evaluate specific learning algorithms, our framework provides a means for assessing the quality of a given
learning algorithm in the sense of measuring how close the rate induced by the algorithm comes to the optimalM -edge
approximation rate.

1.4. Previous Work. The best-known results on approximation by neural networks are the universal approximation
theorems by Hornik [28] and Cybenko [7], stating that every measurable function f can be approximated arbitrarily
well by a single-hidden-layer (L = 2 in our terminology) neural network. The literature on approximation-theoretic
properties of shallow networks continuing this work is abundant. Without any claim of comprehensiveness, we men-
tion work on approximation error bounds for functions with bounded first moments [1], bounds in terms of the number
of nodes and in terms of the size of the training set [2], the non-existence of localized approximations [5], a funda-
mental lower bound on approximation rates [12, 3], lower bounds on the network’s sparsity—in terms of the number
of neurons [42], and on the approximation of specific function classes [36, 35].

Approximation-theoretic results for networks with multiple hidden layers were obtained in [29] for general func-
tions, in [18] for special function classes such as continuous functions, and for functions together with their derivatives
in [38].

In [5] it was shown that, although localized approximation is impossible for shallow networks, it can be accom-
plished using deeper networks. We also highlight two very recent papers, which investigate the benefit—from an
approximation-theoretic perspective—of multiple hidden layers. Specifically, in [16] it was shown that there exists a
function which although expressible through a small 3-layer network, can only be accurately represented through a
very large 2-layer network; here size is measured in terms of the number of nodes. In the setting of deep convolu-
tional neural networks, first results of a nature similar to those in [16] were derived in [37]. For survey articles on
approximation-theoretic aspects of neural networks, we refer the interested reader to [17, 40].

Relative to the above-mentioned contributions, the aim of this paper is to derive a universal optimality result con-
cerning approximation properties of deep neural networks in terms of connectivity and memory requirements.

Most closely related to our work is that by Shaham, Cloninger, and Coifman [43], which shows that for functions
that are sparse in wavelet frames the best M -edge approximation rate of a 3-layer neural network is at least as good as
the best M -term approximation rate by piecewise linear wavelet frames.

1.5. Contributions. Our contributions can be grouped into four threads.
• Fundamental lower bound on connectivity. Let d ∈ N be the dimension of the input layer, Ω ⊂ Rd, ρ : R→ R

an arbitrary rectifier, and C an arbitrary subset of L2(Ω). Consider a learning algorithm Learn which maps
each accuracy ε ∈ (0, 1/2) and function f ∈ C to a neural network Learn(ε, f) ∈ NN∞,∞,d,ρ such that

sup
f∈C
‖f − Learn(ε, f)‖L2(Ω) ≤ ε,(4)

where the weights of Learn(ε, f) can each be encoded (i.e., represented) withO(log2(1/ε)) bits. We demon-
strate in Theorem 2.8 that for all γ < γ∗(C), where γ∗(C) is the optimal exponent with respect to the minimax
code length of C as defined in [14, 21] (see Definition 2.1 below), all C > 0, and every sequence (εn)n∈N
converging to 0 such that εn/εn+1 is bounded, there exists a subsequence (εn′)n′∈N such that

sup
f∈C
M(Learn(εn′ , f)) ≥ Cε−γn′ , for all n′ ∈ N,(5)

whereM(Learn(ε, f)) denotes the number of edges of the network Learn(ε, f). This result quantifies the
minimum network connectivity needed to allow approximation of all elements in C to within a prescribed
error. In particular, it says that the minimum (complexity) exponent at which the number of edges in the
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network has to scale is given by γ∗(C). On a conceptual level, this statement establishes a universal link
between the connectivity of the approximating network and the complexity of the function class that it is to
approximate.

• Optimal M -edge approximation based on representation systems. We develop an abstract framework for
transferring optimal M -term approximation results with representation systems to optimal M -edge approx-
imation results for neural networks. These transfer results hold for dictionaries that are representable by
neural networks in the following sense: There exists R ∈ N such that for every dictionary element and every
ε > 0, there is a neural network with no more than R edges approximating this element with error at most
ε. Additionally, we show that a wide class of representation systems, coined affine systems, and including
as special cases wavelets, ridgelets, curvelets, shearlets, α-shearlets, and more generally, α-molecules, as
well as tensor-products thereof, are representable by neural networks. This result suggests an explanation for
the “unreasonable effectiveness” of neural networks: They effectively combine the optimum approximation
properties of all affine systems taken together.

For concreteness and to illustrate our general results, we consider the class C of 1/α-cartoon-like functions
E 1
α ([0, 1]2) ⊂ L2([0, 1]2) with α ∈ [ 1

2 , 1] and γ∗(C) = 2
α , and, for each ε > 0 and f ∈ C, we construct

a neural network Learn(ε, f) satisfying (4). This construction is based on α-shearlets, which are known to
provide optimalM -term approximation rate for C. For two classes of rectifiers, namely sigmoidal functions of
arbitrary order (Definition 4.1) and smooth approximations of rectified linear units (Definition 4.2), we show
that for all γ > γ∗(C) there exists C > 0 such that

sup
f∈C
M(Learn(ε, f)) ≤ Cε−γ , for all ε ∈

(
0,

1

2

)
,

i.e., the number of edges in the constructed approximating neural network grows at most at rate O(ε−γ) as
ε→ 0.

Finally, in Section 6 we show that our techniques and results can be extended to the approximation of
functions on immersed submanifolds of Rd.

• Quantization and memory requirements. The lower bound (5) holds under the assumption that the weights in
the network can each be encoded with O(log2(1/ε)) bits. That this is, indeed, possible is certainly not clear a
priori. To clarify this matter we proceed as follows. We first demonstrate that, if a signal class C is effectively
representable (Definition 2.2) with respect to a dictionary D and the dictionary is effectively representable
by neural networks (Definition 3.1), a certain best M -term approximation rate in D implies the same M -
edge approximation rate by a neural network with the weights of the network bounded by p(M), where p
is a polynomial. Then, we demonstrate that the so-bounded weights can be quantized to O(log2(1/ε)) bits
without incurring a considerable overall approximation error. This implies achievability of the bound (5) and
demonstrates that the network at the same time has minimal memory requirements.

• Realizability of optimal approximation rates. An important practical question is how networks trained by
gradient descent (via backpropagation) [41] perform relative to the fundamental bounds established in the
paper. Surprisingly, our numerical experiments indicate that, given a fixed network topology with sparse
connectivity, the stochastic gradient descent algorithm yields close-to-optimal approximation rates. Moreover,
for the approximation of functions f ∈ E 1

α ([0, 1]2) we observe that stochastic gradient descent generates
neural networks which mimic the classical M -term approximation of f in a dictionary of α-molecules.

1.6. Outline of the Paper. The fundamental lower bound on connectivity will be developed in Section 2. Section 3
introduces a general framework for transferring sparse approximation results in representation systems to approxima-
tion results by neural networks. In Section 4, we apply these techniques first to the broad class of affine systems and
then, in Section 5, to the class of 1/α-cartoon-like functions. Section 6 describes the extension of our main findings
to the approximation of functions defined on manifolds. Numerical results assessing the performance of stochastic
gradient descent (via backpropagation) relative to our lower bound on connectivity are reported in Section 7.

2. A FUNDAMENTAL LOWER BOUND ON CONNECTIVITY

We start by establishing a lower bound on the worst-case connectivity of neural networks approximating elements
from a given signal class C ⊆ L2(Rd) to within a prescribed accuracy of ε > 0.
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Let us first recall concepts and definitions from min-max rate distortion theory as introduced by Donoho in [14].
Specifically, we review fundamental bounds on the length of lossy compression by encoder-decoder pairs. We then
recall in Subsection 2.2 how dictionaries can be interpreted as encoders, and in Subsection 2.3 we analyze neural
networks from an encoder point of view.

2.1. Min-Max Rate Distortion Theory. Min-max rate distortion theory provides a theoretical foundation for deter-
ministic lossy data compression. We recall the following notions and concepts from [14, 21].

Let d ∈ N, Ω ⊆ Rd and consider the function class C ⊂ L2(Ω). Then, for each ` ∈ N, we denote by

E` := {E : C → {0, 1}`}
the set of binary encoders mapping elements of C to bit strings of length `, and we let

D` := {D : {0, 1}` → L2(Ω)}

be the set of binary decoders mapping bit strings of length ` to elements of L2(Ω). An encoder-decoder pair (E,D) ∈
E` ×D` is said to achieve distortion ε > 0 over the function class C, if

sup
f∈C
‖D(E(f))− f‖L2(Ω) ≤ ε.

This means that the worst case error incurred by applying the encoder-decoder pair (E,D) ∈ E` ×D` to an element
of C is upper-bounded by ε, often also expressed as the uniform error over C being bounded by ε.

A quantity of central interest is the minimal length ` ∈ N for which there exists an encoder-decoder pair (E,D) ∈
E` ×D` that achieves distortion ε > 0 over the function class C, and its asymptotic behavior as made precise in the
following definition.

Definition 2.1. Let d ∈ N and C ⊂ L2(Ω). Then, for ε > 0 the minimax code length L(ε, C) is

L(ε, C) := min{` ∈ N : ∃(E,D) ∈ E` ×D` : sup
f∈C
‖D(E(f))− f‖L2(Ω) ≤ ε}.

Moreover, the optimal exponent γ∗(C) is defined by

γ∗(C) := inf{γ ∈ R : L(ε, C) = O(ε−γ)}.

The optimal exponent γ∗(C) describes how fast L(ε, C) tends to infinity as ε decreases. For function classes C1 and
C2, γ∗(C1) < γ∗(C2) says that asymptotically, i.e., for ε → 0, the length of the encoding bit string for C2 is larger
than that for C1. In other words, a smaller exponent indicates smaller description complexity. The optimal exponent
γ∗(C) therefore determines the minimal memory requirements for storing signals f ∈ C such that reconstruction with
a uniformly bounded error is possible.

We mention that sometimes in the literature the reciprocal of γ∗(C) is termed the optimal exponent. The optimal
exponent is known for several function classes, such as subsets of Besov spaces Bsp,q(Rd) with 1 ≤ p, q <∞, s > 0,
and q > (s+1/2)−1, namely all functions inBsp,q(Rd) whose norm is bounded by a constant C > 0 [6]. For this class
we have γ∗(C) = d

s . We will be particularly interested in so-called β-cartoon-like functions, for which the optimal
exponent is given by 2

β , see Theorem 5.3.

2.2. Representation Systems as Encoders. For later use we recall well-known relations between the optimal M -
term approximation rate γ∗(C,D) for a signal class C with respect to a dictionary D = (ϕi)i∈I and the optimal
exponent γ∗(C) per Definition 2.1. In particular, we treat the question of how to build efficient encoders based on best
M -term approximations in a given dictionary.

This is formalized by the following definition which is a variation of the concept of “best M -term approximation
subject to polynomial-depth search” introduced in [14].

Definition 2.2. Let Ω ⊂ Rd. Consider the signal class C ⊂ L2(Ω) and the representation system D = (ϕi)i∈N ⊂
L2(Ω). C is said to be effectively representable in D, if there exist a univariate polynomial π and a constant D such
that for all γ < γ∗(C,D) there is a constantC > 0 so that for allM ∈ N and f ∈ C: there exist IM ⊂ {1, . . . , π(M)}
with #IM = M and (ci)i∈IM with maxi∈IM |ci| ≤ D such that

(6) ‖f −
∑
i∈IM

ciϕi‖L2(Ω) ≤ CM−γ .
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Remark 2.3. We note that the notion of effective representability depends on the ordering of the representation system
D.

The condition of having the index set IM of a best M -term approximation be contained in the set of the first π(M)
indices implies the following fundamental relationship between the best M -term approximation rate in representation
systems and the optimal exponent γ∗(C).

Theorem 2.4 ([14, 21]). Let Ω ⊂ Rd, C ⊂ L2(Ω) and assume that C is effectively representable in D = (ϕi)i∈N ⊂
L2(Ω). Then, we have

γ∗(C) ≤ 1

γ∗(C,D)
.

In light of this result, the following definition is natural (see also [21]).

Definition 2.5. Let Ω ⊂ Rd and assume that the signal class C ⊂ L2(Ω) is effectively representable in the system
D = (ϕi)i∈N ⊂ L2(Ω) with

γ∗(C) =
1

γ∗(C,D)
.

Then, the representation system D is said to be optimal for the signal class C.

2.3. Neural Networks as Encoders. The present section examines to which extent efficient encoders can be con-
structed from neural networks with limited connectivity. Interpreting neural networks as encoders in the sense of
Donoho’s min-max rate distortion theory leads us to the first main result of this paper, namely a fundamental lower
bound on the connectivity of a neural network approximating the elements of a given function class C to within accu-
racy ε > 0. We say that this lower bound is fundamental as it has to be met by all learning algorithms.

Remark 2.6. Throughout the paper, we are concerned with network connectivity in terms of the number of edges of
non-zero weight. Looking at the number of nodes instead would not be conceptually different as nodes that are not part
of any edge do not influence the underlying mapping Φ and we can bound the number of nodes by twice the number
of edges.

The main result of this section is as follows.

Theorem 2.7. Let Ω ⊂ Rd, d ∈ N, ρ : R→ R, c > 0, and C ⊂ L2(Ω). Further, let

Learn :

(
0,

1

2

)
× C → NN∞,∞,d,ρ

be a map such that, for each pair (ε, f) ∈ (0, 1
2 )×C, every weight of the neural network Learn(ε, f) can be encoded

with no more than −c log2(ε) bits while guaranteeing that

(7) sup
f∈C
‖f − Learn(ε, f)‖L2(Ω) ≤ ε.

Then,

(8) sup
ε∈(0, 12 )

εγ · sup
f∈C
M(Learn(ε, f)) =∞, for all γ < γ∗(C).

Proof. Let γ < γ∗(C) and assume to the contrary that

(9) sup
ε∈(0, 12 )

εγ · sup
f∈C
M(Learn(ε, f)) <∞.

In the course of the proof we show that the networks Learn(ε, f) lead to encoder-decoder pairs (E,D) ∈ E`(ε)×D`(ε)

achieving distortion ε over C with

`(ε) ≤ C0 · sup
f∈C

(M(Learn(ε, f)) log2(M(Learn(ε, f))) log(1/ε),

where C0 is a constant.
A contradiction to (9) is then produced through the following argument: Take δ > 0 with γ < γ + δ < γ∗(C). By

assumption there exists C ′ > 0 such that

C0 sup
f∈C
M(Learn(ε, f)) log2(M(Learn(ε, f))) log(1/ε) ≤ C ′ε−(γ+δ), for all ε ∈

(
0,

1

2

)
.
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FIGURE 2. Example of a natural numbering of neurons and edges.

This would, however, imply that L(ε, C) ≤ `(ε) = O(ε−(γ+δ)) which constitutes a contradiction to the optimality of
γ∗(C) and consequently yields (8).

The remainder of the proof is now devoted to establishing that the networks Learn(ε, f) lead to encoder-decoder
pairs (E,D) ∈ E`(ε) × D`(ε) with the aforementioned properties. We start by analyzing the code length of a neural
network-based encoder operating on C. More precisely, for given f ∈ C and ε > 0, we aim at encoding the neural
network Learn(ε, f), more specifically its topology and weights, by a bit string of length O(M(Learn(ε, f))). To
this end, we will frequently invoke the observation that the number of nodes of Learn(ε, f) is upper-bounded by
2M(Learn(ε, f)), see Remark 2.6. Also, trivially, the number of layers is upper-bounded byM(Learn(ε, f)).

We fix f ∈ C and enumerate the neurons and edges of Learn(ε, f) by assigning unique numbers, henceforth called
indices of the nodes and edges. This numbering can, for instance, simply assign increasing indices from left to right
in every layer as indicated in Figure 2. For the sake of notational simplicity, we also set

Φ := Learn(ε, f),

and
M :=M(Φ).

Without loss of generality we assume that M is a power of 2. We recall that the number of layers of Φ is denoted by
L, the number of neurons in these layers is N1, . . . , NL (see Definition 1.1), and d is the dimension of the input layer.
By Remark 2.6 we have

(10) d+

L∑
`=1

N` ≤ 2M,

which bounds the total number of neurons, and

(11) L ≤M,

which bounds the total number of layers.
We then construct a bit string representing Φ according to the following steps.
Step 1: We encode the number of edges, M , by starting the overall bit string with M 1’s followed by a single 0.
Step 2: We continue by encoding the number of layers in the network. Thanks to (11) this requires no more than

log2(M) bits. We thus reserve the next log2(M) bits for the binary representation of L. ∗

Step 3: For each layer `, we store the numberN` of neurons. Moreover, we store the dimension d of the input layer.
As by (10) N` ≤ 2M , for all `, we can encode (generously) each N` as well as d using log2(M) + 1 bits.

∗Here and in the remainder of the proof, we follow the convention that bit strings are zero-padded from the left, that is, for example, if the
number of layers L is equal to 2 and M = 8, we encode L by the bit string 010.
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In total, Step 3 requires a bit string of length

((L+ 1) · (log2(M) + 1)) ≤M +M · log2(M) + log2(M) + 1.

In combination with Steps 1 and 2 this yields an overall bit string of length at most

(12) 2M +M · log2(M) + 2 log2(M) + 2.

Step 4: We encode the topology of the graph associated with Φ. Recall that we assigned a unique index i to each
neuron. These indices range from 1 to N := d+

∑L
`=1N` and, by (10), can each be encoded by a bit string of length

log2(M) + 1. We denote the bit string corresponding to index i by b(i) ∈ {0, 1}log2(M)+1 and let n(i) be the number
of children of neuron i. For each neuron i = 1, . . . , N , we form a bit string of length (n(i) + 2) · (log2(M) + 1) by
concatenating the representations b(j) of the indices of all its children, followed by an all-zeros bit string of length
2(log2(M) + 1) to signal the transition to the neuron with index i+ 1. Overall, this yields a bit string of length

(13)
N∑
i=1

(n(i) + 2) · (log2(M) + 1) ≤ 6M · (log2(M) + 1),

where again we used (10).
Combining (12) and (13) it follows that we have encoded the full topology of the neural network Φ using at most

(14) 8M + 7M · log2(M) + 2 log2(M) + 2

bits.
Step 5: We encode the weights of Φ. By assumption, each weight can be encoded by a bit string of length

−bc′ log2(ε)c. For each node i = 1, . . . , N , we reserve exactly −bc′ log2(ε)c bits to encode its weight and, for
each of its children a bit string of length −bc′ log2(ε)c to encode the weight corresponding to the edge between that
child and its parent node. Concatenating the results in a bit string of length (n(i) + 1) · (−bc′ log2(ε)c) for each node
i, we get in total a bit string of length at most

(15) − 3M · bc′ log2(ε)c
representing the weights of the graph associated with the network Φ.

Summing up (14) for the number of bits needed to encode the topology of Φ and (15) for the number of bits needed
to encode the corresponding weights, we conclude that a bit string of length at most

8M + 7M · log2(M) + 2 log2(M) + 2 + 1− 3M · bc′ log2(ε)c,(16)

is needed to encode Φ. The network can be recovered uniquely from this bit string by simply reversing the steps above.
As (16) can be upper-bounded by

(17) C0 ·M · log2(M) · log2(1/ε)

for a constant C0 > 0 depending on c′ only, we have constructed an encoder-decoder pair (E,D) ∈ E`(ε) × D`(ε)

with `(ε) ≤ C0 ·M · log2(M) · log2(1/ε) and distortion uniformly bounded (for the class C) by ε. This concludes the
proof. �

We also offer a quantitative version of the above theorem which yields an explicit lower bound on the connectivity
induced by every learning procedure exhibiting a given uniform approximation rate for a given signal class.

Theorem 2.8. Let Ω ⊂ Rd, d ∈ N, ρ : R→ R, c > 0, and C ⊂ L2(Ω). Further, let

Learn :

(
0,

1

2

)
× C → NN∞,∞,d,ρ

be a map such that, for each pair (ε, f) ∈ (0, 1
2 ) × C, every weight of the neural network Learn(ε, f) can be

represented with no more than −c log2(ε) bits while guaranteeing (7).
Let γ < γ∗(C) and C > 0 and consider a zero-sequence (εn)n∈N ⊂ (0, 1

2 ) with (εn/εn+1)n∈N ∈ `∞. Then, there
exists a subsequence (εn′)n′∈N such that

(18) sup
f∈C
M(Learn(εn′ , f)) ≥ Cε−γn′ , for all n′ ∈ N.
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Proof. Let γ < γ∗(C) and take (εn)n∈N to be a zero-sequence such that (εn/εn+1)n∈N ∈ `∞. We will prove that there
does not exist C ′ > 0 so that

(19) sup
f∈C
M(Learn(εn, f)) ≤ C ′ε−γn , for all n ∈ N.

It is not hard to see that the non-existence of C ′ such that (19) holds yields (18). Assume towards a contradiction, that
there exists C ′ > 0 such that (19) holds. We can now construct a second learning algorithm

(20) Learn′ :

(
0,

1

2

)
× L2(Ω)→ NN∞,∞,d,ρ, Learn′(ε, f) := Learn(εn(ε), f),

where εn(ε) is the largest εn with εn ≤ ε < εn−1. We get

sup
f∈C
M(Learn′(ε, f)) = sup

f∈C
M(Learn(εn(ε), f))

≤ C ′ε−γn(ε) = C ′(εn(ε)/ε)
−γε−γ ≤ C ′‖εn/εn−1‖−γ∞ ε−γ ≤ C ′′ε−γ ,(21)

for a suitable constant C ′′ > 0 and all ε ∈ (0, 1
2 ). Additionally, we have that

sup
f∈C
‖f − Learn′(ε, f)‖L2(Ω) ≤ εn(ε) ≤ ε,

for every ε ∈ (0, 1
2 ), and every weight of Learn′(ε, f) can be represented with −c log2(εn(ε)) ≤ −c′ log2(ε) bits for

some c′ > 0. Applying Theorem 2.7 to the mapping Learn′ yields the desired contradiction. �

We note that the assumption on the encoding complexity of the weights of Learn(ε, f) in Theorem 2.8 is necessary
in order to be able to store the weights of the network Learn(ε, f) on a computer. We conclude that Theorem 2.8
exhibits a fundamental lower bound on the storage complexity of any neural network which uniformly approximates C
to within a given accuracy!

In Theorem 2.8 we established that a mapping Learn as in Theorem 2.8 such that for all γ > γ∗(C) there exists
C > 0 and

(22) sup
f∈C
M(Learn(ε, f)) ≤ Cε−γ , for all ε ∈

(
0,

1

2

)
,

yields neural networks Learn(ε, f)) whose number of edges scales asymptotically optimally in terms of the approxi-
mation accuracy ε. We cast this property into a definition.

Definition 2.9. We call a signal class C ⊂ L2(Ω) optimally representable by neural networks with rectifier function
ρ, if a mapping Learn as in Theorem 2.8 exists that additionally satisfies: For all γ > γ∗(C) there exists C > 0 such
that (22) holds.

We would like to emphasize that optimal representability as just defined is a much stronger statement than simply
providing a bound for γ∗NN (C) as per Definition 1.3. If a signal class C is optimally representable, Theorem 2.8
states that the memory requirements for storing a neural network that approximates any target function f ∈ C to
within a prescribed accuracy are minimal. We hasten to add that these minimal memory requirements are realized by
representing each of the weights in the network by the same number of bits—of order log(1/ε), a standing assumption
throughout the paper.

3. TRANSITIONING FROM REPRESENTATION SYSTEMS TO NEURAL NETWORKS

Given the benchmark result Theorem 2.8 we now ask the following question:
Which signal classes are optimally representable by (deep) neural networks?

The remainder of the paper is devoted to demonstrating that a large family of signal classes is optimally representable
by (deep) neural networks. This will be accomplished by establishing an upper bound on connectivity that matches
the lower bound in Theorem 2.8.

The mathematical technique we develop in the process is interesting in its own right as it constitutes a general frame-
work for transferring results on function approximation through representation systems to results for approximation
by neural networks. In particular, we prove that for a given signal class and associated representation system, under
certain technical conditions, there exists a neural network with no more than O(M) non-zero weights that achieves
the same approximation error as a best M -term approximation in that representation system. This is formalized in
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Theorem 3.4. By imposing slightly more stringent technical conditions this result can be sharpened to additionally
guarantee that the network’s weights can be represented with no more than −c log2(ε) bits. The proof is constructive
in the sense of making the quantizer used to encode the weights explicit. Specifically, we quantize by rounding to
εmZ ∩ [−ε−k, ε−k], for some m, k ∈ N. These weights can clearly be represented with no more than −c log2(ε) bits,
with a constant c > 0 depending upon m and k only.

We start by stating the technical conditions on the representation system needed for the aforementioned transference
results to hold. For X ⊂ Rd we say that A : X → R is polynomially bounded in x, if there exists a d-dimensional
polynomial p such that |A(x)| ≤ |p(x)|, for all x ∈ X . We call a collection of functions Ai, i ∈ I , uniformly
polynomially bounded, if all Ai are polynomially bounded with the same bounding polynomial.

Definition 3.1. Let Ω ⊂ Rd, ρ : R → R, and D = (ϕi)i∈N ⊂ L2(Ω) be a representation system. Then, D is said to
be representable by neural networks (with rectifier ρ), if there exists R ∈ N such that for all η > 0 and every i ∈ I
there is a neural network Φi,η ∈ NN∞,R,d,ρ with

‖ϕi − Φi,η‖L2(Ω) ≤ η.
If, in addition, the neural networks Φi,η ∈ NN∞,C,d,ρ have weights that are uniformly polynomially bounded in
(i, η−1), and if ρ is either globally Lipschitz continuous, or differentiable with polynomially bounded first derivative,
we call the representation system (ϕi)i∈N effectively representable by neural networks (with rectifier ρ).

Remark 3.2. We remark that, just like effective representability in a representation system (Definition 2.2), effective
representability by neural networks depends on the ordering of the elements in the representation system.

The following lemma demonstrates that for a network with weights and number of non-zero weights both polyno-
mially bounded in η−1, it is always possible to replace the network by one whose weights can be represented with no
more than −c log2(η) bits per weight without incurring an overall approximation error larger than η.

Lemma 3.3. Let d, L ∈ N, Ω ⊂ Rd be bounded and let ρ : R → R be either Lipschitz-continuous or differentiable
with polynomially bounded first derivative. Additionally, let 1/2 > η > 0, k ∈ N, and consider Φ ∈ NNL,M,d,ρ such
that M ≤ η−k with all weights of Φ bounded by η−k.

Then, there exist m ∈ N, depending on k, L, ρ only, and Φ̃ ∈ NNL,M,d,ρ such that

‖Φ̃− Φ‖L∞(Ω) ≤ η

and all weights of Φ̃ are elements of ηmZ ∩ [−η−k, η−k].

Proof. We present the proof for Lipschitz-continuous ρ only. The other case follows similarly but is slightly more
technical. Let m ∈ N, to be specified later, and, for a given network Φ, let Φ̃ denote the network that results by
replacing all weights of Φ by a closest element in ηmZ ∩ [−η−k, η−k]. Set Cmax := η−k and denote the total
number of non-zero weights in the network by CW . Note that CW ≤ 3M ≤ 3η−k, where the latter inequality is by
assumption. For ` = 1, . . . , L, define Φ` : Ω→ RN` as

Φ`(x) = W`ρ (W`−1ρ (. . . ρ (W1(x)))), x ∈ Ω,

and let

e` := ‖Φ` − Φ̃`‖L∞(Ω,RN` ).

Set C0 = max{1, sup{|x| : x ∈ Ω}}, denote the Lipschitz constant of ρ by Cρ, and let

C` = max{‖Φ`‖L∞(Ω), ‖Φ̃`‖L∞(Ω), 1}.
Then, it is not difficult to see that

e1 ≤ Cρ CW ηm, and e` ≤ e`−1 C`−1 Cmax CW + Cρ CW ηm, for all ` = 2, . . . , L.(23)

We now bound the quantity C` for ` = 1, . . . , L. A simple computation, exploiting the Lipschitz continuity of ρ,
yields that

C` ≤ (ρ(0) + CρCWCmaxC`−1), for ` = 1, . . . , L.

Since ρ(0) <∞ there exists C ′ > 0 such that

C` ≤ C ′C0(CρCWCmax)`, for ` = 1, . . . , L.
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As CW and Cmax are both polynomially bounded in η−1, it follows that C` is polynomially bounded in η−1. We
can therefore find n ∈ N such that C`−1CρCWCmax ≤ η−n. Invoking (23), we conclude that there exists a constant
C ′′ > 0 so that

e` ≤ C ′′ηm−`n, for ` = 1, . . . , L.

Finally, choosing m large enough yields eL ≤ η, which was to be established. �

The next theorem relates M -term approximation properties of representation systems to M -edge approximation
properties for neural networks.

Theorem 3.4. Let d ∈ N, Ω ⊆ Rd, and ρ : R → R. Suppose that D = (ϕi)i∈N ⊂ L2(Ω) is representable by neural
networks in the sense of Definition 3.1. Let f ∈ L2(Ω) and, for M ∈ N, let fM =

∑
i∈IM ciϕi, IM ⊂ N, #IM = M ,

satisfy
‖f − fM‖L2(Ω) ≤ ε,

where ε ∈ (0, 1/2). Then, there exists a corresponding neural network Φ(f,M) ∈ NN∞,M ′,d,ρ with M ′ = O(M),
satisfying

‖f − Φ(f,M)‖L2(Ω) ≤ 2ε.

In particular, for all signal classes C ⊂ L2(Ω) it holds that

γ∗NN (C) ≥ γ∗(C,D).

Proof. By the triangle inequality it suffices to show that there exists a neural network that approximates fM to within
ε. By representability according to Definition 3.1, it follows that there is R ∈ N such that for each i ∈ IM and for
η := ε/M , there exists a neural network Φi,η ∈ NN∞,R,d,ρ with

‖ϕi − Φi,η‖L2(Ω) ≤ η.(24)

Let then Φ(f,M) be a neural network consisting of the networks (Φi,η)i∈IM operating in parallel, all with the same
input, and summing their one-dimensional outputs with weights (ci)i∈IM according to

(25) Φ(f,M)(x) :=
∑
i∈IM

ciΦi,η(x).

Then, Φ(f,M) ∈ NNR,M ′,d,ρ, where M ′ = RM and, using (24), we can conclude that

‖fM − Φ(f,M)‖L2(Ω) ≤ ε,
which completes the proof. �

This result shows that we can restrict ourselves to the approximation of the individual elements of a representation
system by neural networks with the only constraint being that the number of edges in the individual networks must
admit a uniform upper bound.

The previous result does, however, not guarantee that the weights of the network Φ(f,M) can be represented with
−c log(ε) bits for a constant c > 0. To understand if the lower bound on the connectivity of Theorem 2.8 is sharp we
thus need to extend Theorem 3.4, which will, again, be accomplished through a transfer argument.

Theorem 3.5. Let Ω ⊂ Rd be bounded and suppose that C ⊂ L2(Ω) is effectively representable in the dictionary
D = (ϕi)i∈N ⊂ L2(Ω) according to Definition 2.2. Suppose that D is effectively representable by neural networks
according to Definition 3.1. Then, for all γ < γ∗(C,D) there exist constants c, C > 0 and a map

Learn :

(
0,

1

2

)
× L2(Ω)→ NN∞,∞,d,ρ,

such that for every f ∈ C the following statements hold:
(i) there exist m, k ∈ N such that each weight of the neural network Learn(ε, f) is an element of εmZ ∩

[−ε−k, ε−k],
(ii) the estimate

‖f − Learn(ε, f)‖L2(Ω) ≤ ε
holds true, and

(iii) the neural network Learn(ε, f) has at most C · ε−γ edges with non-zero weights.
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Specifically, ifD is effectively representable by neural networks, then optimality ofD for the signal class C in the sense
of Definition 2.5 implies that C is optimally representable by neural networks in the sense of Definition 2.9.

In Section 4 we provide a large class of dictionaries that are effectively representable by neural networks and yield
effective representations for relevant function classes.

Proof of Theorem 3.5. Let f ∈ C, M ∈ N, and γ < γ∗(C,D). Pick a subset IM ⊂ {1, . . . , π(M)} and coefficients
(ci)i∈IM according to Definition 2.2 such that (6) holds and, in the notation of (6), set εM/2 := CM−γ . Let Φ(f,M)
be constructed as in the proof of Theorem 3.4. Note that Φ(f,M) ∈ NNR,RM,d,ρ for some R ∈ N, independent of ε.
Next, note that by effective representability of C in D, the weights (ci)i∈IM in the last layer of Φ(f,M) are given by
(ci)i∈IM and, moreover, these weights are uniformly bounded, independently of f ∈ C. By the assumption ofD being
effectively representable by neural networks, the weights in the approximating networks Φi,η(x) in (25) are uniformly
polynomially bounded in (i, (M/εM )), and since i ≤ π(M), the weights in the approximating networks Φi,η(x) in
(25) are uniformly polynomially bounded in (M, ε−1

M ). Since M = (εM/(2C))−γ it follows that the weights in the
approximating networks Φi,η(x) in (25) are uniformly polynomially bounded in ε−1

M . Invoking Lemma 3.3 yields the
existence of m, k ∈ N such that there is Φ̃(f,M) satisfying

‖Φ(f,M)− Φ̃(f,M)‖L2(Ω) ≤ εM/2, for all f ∈ C,

and where all weights in Φ̃(f,M) are elements of εmZ ∩ [−ε−k, ε−k]. Moreover, by construction

‖f − Φ̃(f,M)‖L2(Ω) ≤ εM .

We set Learn(εM , f) := Φ̃(f,M). For general ε ∈ (0, 1/2), we let

Learn(ε, f) := Learn(εM(ε), f),

where εM(ε) is chosen such that εM(ε) ≤ ε < εM(ε)−1. Clearly,

‖f − Learn(ε, f)‖L2(Ω) ≤ ε,

and Learn(ε, f) has RM(ε) ≤ R((ε/(2C))−γ + 1) edges which yields the desired result. �

4. ALL AFFINE REPRESENTATION SYSTEMS ARE EFFECTIVELY REPRESENTABLE BY
NEURAL NETWORKS

This section shows that a large class of dictionaries, namely affine systems, as defined below, are effectively rep-
resentable by neural networks. Affine systems include as special cases wavelets, ridgelets, curvelets, shearlets, α-
shearlets, and more generally α-molecules. Combined with Theorem 3.5 the results in this section establish the
central conceptual fact that any signal class that is effectively representable in an arbitrary affine system is optimally
representable by neural networks in the sense of Definition 2.9.

Clearly, such strong statements are possible only under restrictions on the choice of the rectifier function for the
approximating neural network.

4.1. Choice of Rectifier Function. We consider two classes of rectifier functions, namely sigmoidal functions [7]
and smooth approximations of rectified linear units, both defined formally next.

We start with sigmoidal rectifiers as considered in [7, 5].

Definition 4.1. A continuous function ρ : R→ R is called a sigmoidal function of order k ∈ N, k ≥ 2, if there exists
K > 0 such that

lim
x→−∞

1

xk
ρ(x) = 0, lim

x→∞

1

xk
ρ(x) = 1, and |ρ(x)| ≤ K(1 + |x|)k, for x ∈ R.

The function ρ is called a strong sigmoidal function of order k, if there exist constants a, b,K > 0 such that∣∣∣∣ 1

xk
ρ(x)

∣∣∣∣ ≤ K|x|−a, for x < 0,

∣∣∣∣ 1

xk
ρ(x)− 1

∣∣∣∣ ≤ Kx−a, for x ≥ 0, |ρ(x)| ≤ K(1 + |x|)k, for x ∈ R,

and ∣∣∣∣ ddxρ(x)

∣∣∣∣ ≤ K|x|b, for x ∈ R.
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One of the most commonly used rectifier functions is the so-called rectified linear unit (ReLU) given by x 7→
max{0, x}. The second class of rectifiers we consider are smooth versions of the ReLU.

Definition 4.2. Let ρ : R→ R+, ρ ∈ C∞(R) satisfy

ρ(x) =

{
0, for x ≤ 0,
x, for x ≥ K,

for some constant K > 0. Then, we call ρ an admissible smooth rectifier.

The reason for considering these two specific classes of rectifiers resides in the fact that neural networks based
thereon allow effective representations of multivariate bump functions. We demonstrate in the sequel, that the effective
representation of multivariate bump functions by neural networks leads to the effective representation of all affine
systems by neural networks. Approximation of multivariate bump functions using sparsely connected neural networks
is a classical topic in neural network theory [32]. What is new here is the aspect of quantized weights.

In [5] it was shown that B-splines can be well approximated by neural networks with sigmoidal rectifiers. It is
instructive to recall this result. To this end, for m ∈ N, we denote the univariate cardinal B-spline of order m ∈ N by
Nm, i.e., N1 = χ[0,1], and Nm+1 = Nm ∗ χ[0,1], for all m ≥ 1. Multivariate B-splines are simply tensor products of
univariate B-splines. Specifically, we define, for d ∈ N, the d-dimensional B-spline of order m by Nd

m.

Theorem 4.3 ([5], Thm. 4.2). Let d,m, k ∈ N, and take ρ to be a sigmoidal function of order k ≥ 2. Further, let
L := dlog(md − d)/ log(k)e + 1. Then, there is M ∈ N, possibly dependent on d,m, k, such that for all D, ε > 0,
there exists a network ΦD,ε ∈ NNL,M,d,ρ with

‖Nd
m − ΦD,ε‖L2([−D,D]d) ≤ ε.

This result alone does, however, not establish that dictionaries based on B-splines are effectively representable by
neural networks. For this to hold we need the weights in the approximating neural network ΦD,ε to be polynomially
bounded in 1/ε. We next show that this is, indeed, possible for strongly sigmoidal rectifiers.

Theorem 4.4. Let d,m, k ∈ N, and ρ strongly sigmoidal of order k ≥ 2. Further, let L := dlog(md−d)/ log(k)e+1.
Then, there exists M ∈ N, possibly dependent on s,m, k, such that for all D, ε > 0, there is a network ΦD,ε ∈
NNL,M,d,ρ with

‖Nd
m − ΦD,ε‖L2([−D,D]d) ≤ ε.

Moreover, the weights of the network ΦD,ε are polynomially bounded in (D, ε−1).

Proof. The neural network ΦD,ε in Theorem 4.3 is explicitly constructed in [5]. Carefully following the steps in that
construction and making explicit use of the strong sigmoidality of ρ, as opposed to plain sigmoidality as in [5], yields
the desired result. �

Likewise, taking ρ to be an admissible smooth rectifier, we can ensure that a neural network with only 3 layers
yields a smooth bump function. The corresponding result is as follows.

Theorem 4.5. Let ρ be an admissible smooth rectifier. Then, for all d ∈ N, there exist M ∈ N and a neural network
Φρ ∈ NN3,M,d,ρ such that

(i) Φρ is compactly supported,
(ii) Φρ ∈ C∞(R), and

(iii) Φ̂ρ(ξ) 6= 0, for all ξ ∈ Rd, with |ξ| ≤ 3.

Proof. For simplicity of exposition we consider the case d = 2 only; the general case requires minor modifications.
We start by constructing an auxiliary function as follows. For 0 < p1 ≤ p2 ≤ p3 such that p1 + p2 = p3, define
t : R→ R as

t(x) := ρ(x)− ρ(x− p1)− ρ(x− p2) + ρ(x− p3).(26)

Then, t is smooth and compactly supported. Letting q = ‖t‖L∞(R), we choose g : R2 → R according to

g(x1, x2) := ρ(t(x1) + t(x2)− q).(27)
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By construction, g is smooth and compactly supported. Moreover, the two-step design of g per (26) and (27) allows
the realization of g by a three layer neural network. Since g > 0, it follows that |ĝ(0)| > 0. Hence, there exists a δ > 0
such that |ĝ(ξ)| > 0 for all ξ ∈ Bδ(0). We now set

ϕ := g
( ·

3δ

)
,

which can then also be constructed by a neural network Φρ ∈ NN3,M,2,ρ for some M ∈ N. Since, by construction,
|ϕ̂(ξ)| > 0 for all ξ ∈ B3(0), the function ϕ and hence Φρ indeed satisfy the desired assumptions. �

4.2. Invariance to Affine Transformations. We next leverage the approximation results for bump functions to
demonstrate that a wide class of representation systems is effectively representable by neural networks.

As a first step towards establishing this general result, we show in this section that representability of a function f
by neural networks in the sense of Definition 3.1 is invariant to affine transformations and finite linear combinations
of shifts of f . Moreover, we will see that if f can be approximated by a neural network to within an error of ε
and the network’s weights are polynomially bounded in ε−1, the same holds true for the approximating networks
corresponding to affine transformations and finite linear combinations of f .

Proposition 4.6. Let d ∈ N and ρ : R → R. Assume that there exist constants M,L ∈ N such that for all D, ε > 0
there is ΦD,ε ∈ NNL,M,d,ρ with

(28) ‖f − ΦD,ε‖L2([−D,D]d) ≤ ε.

Let A ∈ Rd×d be an expanding† matrix and b ∈ Rd. Then, there exists M ′ depending on M and d only such that
for all E, η > 0 there is ΨE,η ∈ NNL,M ′,d,ρ with

(29) ‖det(A)1/2f(A · −b)−ΨE,η‖L2([−E,E]d) ≤ η.

If the weights of ΦD,ε are polynomially bounded in ε−1, then the weights of ΨE,η are polynomially bounded in
(|det(A)|, E, |b|, η−1).

Proof. The proof proceeds by noting that for every Φ ∈ NNL,M,d,ρ, we have

‖det(A)1/2f(A · − b)− det(A)1/2Φ(A · − b)‖L2([−E,E]d) = ‖f − Φ‖L2(A·[−E,E]d− b),

and there exists M ′ depending on M and d only such that det(A)1/2Φ(A · − b) ∈ NNL,M ′,d,ρ. Since the matrix A is
expanding, there exists a constant c > 0 independent of d such that

A · [−E,E]d − b ⊂ [−c · (|det(A)| · E + |b|), c · (|det(A)| · E + |b|)]d.
Therefore, the network ΨE,η := det(A)1/2Φdet(A)·E+|b|,η(A · −b) meets the desired properties. �

Next, we show that effective representability by neural networks is preserved under finite linear combinations of
translates.

Proposition 4.7. Let d ∈ N and ρ : R → R. Assume that there exist constants M,L ∈ N such that for all D, ε > 0
there is ΦD,ε ∈ NNL,M,d,ρ with

(30) ‖f − ΦD,ε‖L2([−D,D]d) ≤ ε.

Let r ∈ N, (ci)
r
i=1 ⊂ R and (di)

r
i=1 ⊂ Rd. Then, there exists M ′ depending on M,d, and r only such that for all

E, η > 0 there is ΨE,η ∈ NNL,M ′,d,ρ with

(31)

∥∥∥∥∥
r∑
i=1

cif(· − di)−ΨE,η

∥∥∥∥∥
L2([−E,E]d)

≤ η.

If the weights of ΦD,ε are polynomially bounded in ε−1, then the weights of ΨE,η are polynomially bounded in
(
∑r
i=1 |ci|, E,maxri=1 |di|, η−1).

†A matrix A ∈ Rd×d is said to be expanding if all its eigenvalues are greater than or equal to 1.
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Proof. We first note that for Φ ∈ NNL,M,d,ρ satisfying (30), the function

Ψ(·) :=

r∑
i=1

ciΦ(· − di)

is in NNL,M ′,d,ρ with M ′ depending on d, r, and M only. Moreover, by the triangle inequality, we have for all
D, ε > 0 that∥∥∥∥∥

r∑
i=1

cif(· − di)−
r∑
i=1

ciΦD,ε(· − di)

∥∥∥∥∥
L2([−E,E]d)

≤

(
r∑
i=1

|ci|

)
· max
i=1,...,r

‖f − ΦD,ε‖L2([−(E+|di|),(E+|di|)]d).

Setting D = E + maxi=1,...,r |di| and ε = η/(
∑r
i=1 |ci|), the network

ΨE,η(·) :=

r∑
i=1

ciΦD,ε(· − di)

exhibits the desired properties. �

The operations introduced in Propositions 4.6 and 4.7 can be used to construct neural networks which approx-
imate functions with a given number of vanishing moments. This property will turn out crucial in demonstrating
representability of affine systems.

Definition 4.8. Let R, d ∈ N, and k ∈ {1, . . . , d}. A function g ∈ C(Rd) is said to possess R directional vanishing
moments in xk-direction, if∫

R
x`kg(x1, . . . , xk, . . . , xd)dxk = 0 for all x1, . . . , xk−1, xk+1, . . . , xd ∈ R, ` ∈ {0, . . . , R− 1}.

The next lemma establishes that an arbitrary number of vanishing moments in a given coordinate direction can be
generated by suitable linear combinations of translates of a given function of compact support.

Lemma 4.9. Let R, d ∈ N, B > 0, k ∈ {1, . . . , d}, and f ∈ C(Rd) with compact support. Then, the function

(32) g(x1, . . . , xd) :=

R−1∑
`=0

(
R− 1

`

)
(−1)`f(x1, . . . , xk − `/B, . . . , xd)

has R directional vanishing moments in xk-direction.
Furthermore, if f̂(ξ) 6= 0 for all ξ ∈ Rd with |ξ| < B, then

(33) ĝ(ξ) 6= 0, for all ξ ∈ Rd with 0 < |ξ| < B.

Proof. For simplicity of exposition, we consider the case B = 1 only. Taking the Fourier transform of (32) we see
that

ĝ(ξ) =

R−1∑
`=0

(
R− 1

`

)
(−1)`e2πi`ξk f̂(ξ) =

(
1− e2πiξk

)R−1 · f̂(ξ)(34)

which implies

∂ `

∂ξ`k
ĝ(ξ1, . . . , ξk−1, 0, ξk+1, . . . , ξd) = 0, for all ξ1, . . . , ξk−1, ξk+1, . . . , ξd ∈ R, ` ∈ {0, . . . , R− 1}.

But looking at Definition 4.8, this property precisely says that g possesses the desired vanishing moments. Statement
(33) follows by inspection of (34). �

Remark 4.10. Lemma 4.9 and Definition 4.8 consider vanishing moments in one coordinate direction only. It is
immediate that, along the same lines, vanishing moments in multiple coordinate directions according to∫

RK
x`1k1 · · · · · x

`K
kK
g(x)dxk1 . . . dxkK = 0

can be generated.
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4.3. Affine Representation Systems. In this section, we introduce a family of representation systems, coined affine
systems, that includes all representation systems based on affine scaling and translations of a given “mother func-
tion”. Special cases of affine systems are wavelets, ridgelets, curvelets, shearlets, α-shearlets, and more generally
α-molecules, as well as tensor products thereof.

The formal definition of affine systems is as follows.

Definition 4.11. Let d ∈ N, Ω ⊂ Rd bounded, and f ∈ L2(Rd) compactly supported. Let δ > 0, (csi )
r
i=1 ⊂ R, for

s = 1, . . . , S, and (di)
r
i=1 ⊂ Rd. Moreover, let (Aj)j∈N ⊂ Rd×d be expanding. Consider the compactly supported

functions

gs :=

r∑
i=1

csif(· − di), s = 1, . . . , S.

We define the corresponding affine system as

D :=
{
gj,bs := det(Aj)

1/2gs(Aj · − δ · b) · χΩ : s = 1, . . . , S, b ∈ Zd, j ∈ N, and gj,bs 6= 0
}
,

where χΩ denotes the indicator function of Ω.

For a given affine system according to Definition 4.11, we can establish a natural order of its elements by concate-
nating the sub-systems

(35) Ds,j =
{
gj,bs : b ∈ Zd, gj,bs 6= 0

}
as follows. First, we note that, as a consequence of the compact support of the functions gs, all sub-systems Ds,j have
their cardinality bounded by

(36) |Ds,j | = O(|det(Aj)|),
where the implicit constant depends on δ and Ω only. Each sub-system Ds,j may be ordered arbitrarily. The overall
representation system D is organized according to

(37) D = (ϕi)i∈N = (D1,1, . . . ,DS,1,D1,2, . . . ,DS,2, . . . ) .
This ordering is assumed in the remainder of the paper and will sometimes be referred to as canonical ordering.

The next result establishes that all affine systems are (effectively) representable by neural networks in the sense of
Definition 3.1.

Theorem 4.12. Suppose that Ω ⊂ Rd is bounded and D = (ϕi)i∈N ⊂ L2(Ω) is an affine system according to
Definition 4.11. Suppose further that for the rectifier function ρ : R → R there exists a constant M such that for all
D, ε > 0 there is ΦD,ε ∈ NNL,M,d,ρ with

(38) ‖f − ΦD,ε‖L2([−D,D]d) ≤ ε,
where f is as in Definition 4.11. Then, D is representable by neural networks with rectifier function ρ in the sense of
Definition 3.1.

If, in addition, the weights of ΦD,ε are polynomially bounded in (D, ε−1), and if there exist a > 0 and c > 0 such
that for all j ∈ N

(39)
j−1∑
k=1

det(Ak) ≥ c|det(Aj)|a,

then D is effectively representable by neural networks with rectifier function ρ.

Proof. Without loss of generality, we assume that Ω = [−D,D]d for some fixed D > 0, otherwise we pick D such
that Ω ⊂ [−D,D]d. We first show that (38) implies representability of D by neural networks with rectifier function ρ.
To this end, we need to establish the existence of a constant C > 0 such that for all i ∈ N and all η > 0 there exist
Φi,η ∈ NN∞,C,d,ρ with

‖ϕi − Φi,η‖L2(Ω) ≤ η.(40)

The elements of D are constructed through dilations and translations of f according to

(41) ϕi = det(Aj)
1/2

r∑
k=1

cskf(Aj · − δb− dk),
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for some s ∈ {1, . . . , S}, j ∈ N, and b ∈ Rd. One can now see that for all ϕi ∈ D we have |b| = O(|det(Aj)|) in
(41). Thus (40) follows directly from Propositions 4.6 and 4.7.

It remains to show that a polynomial bound in D · ε−1 on the weights of ΦD,ε in (38) implies that D is effectively
representable by neural networks with rectifier function ρ. By Definition 3.1 this means that the coefficients of Φi,η
grow at most polynomially in (i, η−1). Consider ϕi as in (41). Propositions 4.6 and 4.7 state that the weights of Φi,η
are polynomially bounded in (

|det(Aj)|, D, |b|,
r∑
i=1

|ci|, E, max
i=1,...,r

|di|, η−1

)
.

Since |b| = O(|det(Aj)|) and the quantities D,
∑r
i=1 |ci|, E, and maxi=1,...,r |di| do not depend on i, we can absorb

them into a fixed constant and conclude that the weights of Φi,η are polynomially bounded in

(42) (|det(Aj)|, η−1).

It remains to show that the quantities |det(Aj)| are polynomially bounded in i. To see this, consider the canonical
ordering (37) and observe that ϕi according to (41) satisfies ϕi ∈ Ds,j for some s ∈ {1, . . . , S}, where Ds,j was
defined in (35). Together with the bound (36) it follows that, thanks to the canonical ordering, there exists a constant
c > 0 such that

i ≥ c ·
j−1∑
k=1

|det(Ak)|.

We finally appeal to (39) to conclude that |det(Aj)| is polynomially bounded in iwhich, together with (42), establishes
the desired result. �

Note that condition (39) is very weak and we are not aware of an affine representation system that would violate it.
We now present the main technical result of this paper, namely that neural networks provide optimal approximations

for all signal classes that are optimally approximated by any affine system!

Theorem 4.13. Assume that Ω ⊂ Rd is bounded and D = (ϕi)i∈N ⊂ L2(Ω) is an affine system according to
Definition 4.11. Assume further that for a rectifier function ρ : R → R there exists a constant M such that for all
D, ε > 0 there is ΦD,ε ∈ NNL,M,d,ρ satisfying (38). Then, for all signal classes C ⊂ L2(Ω), we have

γ∗NN (C) ≥ γ∗(C,D).

If, in addition, the weights of ΦD,ε in (38) are polynomially bounded in (D, ε−1), and if there exist a > 0 and c > 0
such that for all j ∈ N

(43)
j−1∑
k=1

det(Ak) ≥ c|det(Aj)|a,

and, if C ⊂ L2(Ω) is effectively representable inD (according to Definition 2.2), then, for all γ < γ∗(C,D) there exist
c, C > 0 and a mapping

Learn :

(
0,

1

2

)
× L2(Ω)→ NN∞,∞,d,ρ,

such that for every f ∈ C
(i) each weight of the neural network Learn(ε, f) can be represented with at most −c log2(ε) bits,

(ii) the estimate
‖f − Learn(ε, f)‖L2(Ω) ≤ ε

holds, and
(iii) the neural network Learn(ε, f) has at most C · ε−γ edges.

Specifically, optimality of D for the signal class C implies optimal representability of C by neural networks.

Proof. The proof follows directly by combining Theorem 4.12 with Theorems 3.4 and 3.5. �

Theorem 4.13 reveals a remarkable universality property of neural networks. In particular, it provides an answer to
the question posed at the beginning of Section 3: As soon as a signal class can be optimally represented by an affine
system, the bound in Theorem 2.8 is tight!
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5. α-SHEARLETS AND CARTOON-LIKE FUNCTIONS

We next present a pair (C,D) of signal class and dictionary such that γ∗NN (C) = γ∗(C,D). Specifically, we
consider α-shearlets as representation systems in L2(R2) and (1/α)-cartoon-like functions as signal class. We point
out that the definition of α-shearlets in this paper differs slightly from that in [22]. Our definition replaces 1/α by α
such that α-shearlets are α-molecules, whereas in [22] α-shearlets are a special case of 1/α-molecules. We will need
scaling and shearing matrices defined as

Dα,a =

(
a 0
0 aα

)
, J =

(
0 1
1 0

)
, and Sk =

(
1 k
0 1

)
.

This leads us to the following definition which is a slightly modified version of the corresponding definition in [39].

Definition 5.1 ([39]). For δ ∈ R+, α ∈ [0, 1], and f, g ∈ L2(Rd), the cone-adapted α-shearlet system SHα(f, g, δ)
generated by f, g ∈ L2(R2) is defined as

SHα(f, g, δ) := SH0
α(f, g, δ) ∪ SH1

α(f, g, δ),

where

SH0
α(f, g, δ) : =

{
f(· − t), t ∈ δZ2

}
,

SH1
α(f, g, δ) : =

{
2`(1+α)/2ψ(SkDα,2`J

τ · − t), ` ∈ N0, |k| ≤ d2`(1−α)e, t ∈ δZ2, k ∈ Z2, τ ∈ {0, 1}
}
.

We mention that α-shearlets fall into the framework of α-molecules [22]. Our interest in α-shearlets stems from
the fact that they yield optimal M -term approximation rates for β-cartoon-like functions defined as follows.

Definition 5.2. Let β ∈ [1, 2), and ν > 0. Define

Eβ(R2; ν) = {f ∈ L2(R2) : f = f0 + χBf1},

where f0, f1 ∈ Cβ0 ([0, 1]2), B ⊂ [0, 1]2, ∂B ∈ Cβ , and ‖f1‖Cβ , ‖f2‖Cβ , ‖∂B‖Cβ < ν. The elements of Eβ(R2; ν)
are called β-cartoon-like functions.

This function class was originally introduced in [15] as a model class for functions governed by curvilinear dis-
continuities of prescribed regularity. In this sense, β-cartoon-like functions provide a convenient model for images
governed by edges or for the solutions of transport equations which are often governed by singularity curves.

The optimal exponent γ∗(Eβ(R2; ν)) was found in [15, 23]:

Theorem 5.3. For β ∈ [1, 2), and ν > 0, we have

γ∗(Eβ(R2; ν)) =
2

β
.

Proof. The proof of [15, Thm. 2] demonstrates that C ⊂ L2(R2) has optimal exponent γ∗(C) = 2p
2−p if C contains a

copy of `p0. The result now follows, since by [23], the function class Eβ(R2; ν) does, indeed, contain a copy of `p0 for
p = 2

β+1 . �

Using Theorem 2.8 this result allows us to conclude that, independently of the learning algorithm employed, and
asymptotically in ε, there always exists a function f ∈ Eβ(R2; ν) such that the learned network approximating f with
an accuracy of ε < M−β/2 must have more than O(M) edges. It will turn out that a neural network exists which
admits precisely this optimal number of edges.

The following theorem now shows that α-shearlets yield best M -term approximation rates for 1/α-cartoon-like
functions.

Theorem 5.4 ([39], Thm. 6.3 and Rem. 6.4). Let 1/2 ≤ α ≤ 1, ν > 0, f ∈ C12(R2), g ∈ C32(R2), both compactly
supported such that

(i) f̂(ξ) 6= 0, for all |ξ| ≤ 1,
(ii) ĝ(ξ) 6= 0, for all ξ = (ξ1, ξ2)T ∈ R2 such that 1/3 ≤ |ξ1| ≤ 3 and |ξ2| ≤ |ξ1|,

(iii) g has at least 7 vanishing moments in x1-direction, i.e.,∫
R
x`1g(x1, x2)dx1 = 0, for all x2 ∈ R, ` ∈ {0, . . . , 6}.
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Then, there exists a constant δ∗ > 0 such that, for all δ < δ∗, the system SHα(f, g, δ) is optimal for the signal class
E1/α(R2; ν) in the sense of Definition 2.5.

Remark 5.5. The assumptions on the smoothness and vanishing moments of f and g in Theorem 5.4 follow from [39,
Equation 4.9] with s1 = 3/2, s0 = 0, p0 = q0 = 2/3, and |β| ≤ 4. While these particular choices allow the statement
of the theorem to be independent of α, it is possible to weaken the assumptions, if a fixed α is considered. For example,
for α = 1/2 the smoothness assumptions on f and g reduce to f ∈ C11, g ∈ C28.

We proceed to the main statement of this section.

Theorem 5.6. Suppose that ρ : R → R is either a strongly sigmoidal function of order k ≥ 2 (see Definition 4.1) or
an admissible smooth rectifier (see Definition 4.2). Then, for every β ∈ [1, 2), the signal class Eβ(R2; ν) is optimally
representable by a neural network with rectifier function ρ.

Proof. In view of Theorem 5.4 all we have to show is that, for suitable f and g, SHα(f, g, δ) is a subset of an affine
system satisfying the assumptions of Theorem 4.13.

First, note that by Theorems 4.4 and 4.5 a function f satisfying the assumptions of Theorem 5.4 can be approxi-
mated arbitrarily well by a neural network that has its number of edges and its weights polynomially bounded in the
inverse of the approximation error. Furthermore, by Lemma 4.9 it is possible to construct from this f a function g
which satisfies the assumptions of Theorem 5.4. In view of Definition 4.11, we put g1 = f and g2 = g so that for
suitable matrices (Aj)j∈N the system SHα(f, g, δ) is a subset of an affine system with generators g1 and g2. Specifi-
cally, these matrices Aj are of the form SkDα,2`J

τ for ` ∈ N0, |k| ≤ d2`(1−α)e, τ ∈ {0, 1} and we order them such
that their determinants increase monotonically. It is easily verified that (43) is satisfied and therefore we can apply
Theorem 4.13 to infer the optimality of neural networks for the approximation of 1/α-cartoon functions. �

6. GENERALIZATION TO MANIFOLDS

Frequently, a target function f to be approximated by a neural network models functions that live on a (possibly
low-dimensional) immersed submanifold Γ ⊂ Rd of dimension m < d. We next briefly describe how our main results
can be extended to this situation. Since analogous results are already contained in [43] for the case of wavelets we will
allow ourselves to be somewhat informal in certain places.

Suppose that f : Γ→ R is compactly supported. Let (Ui)i∈N ⊂ Γ be an open cover of Γ such that for each i ∈ N
the manifold patch Ui can be parametrized as the graph of a function over a subset of the Euclidean coordinates, e.g.
there exist coordinates xd1 , . . . , xdm , open sets Vi ⊂ Rm, and smooth mappings

γ` : Rm → R, ` ∈ {1, . . . , d} \ {d1, . . . , dm}
such that

Ui = {Ξi(xd1 , . . . , xdm) := (γ1(xd1 , . . . , xdm), . . . , xd1 , . . . , γd(xd1 , . . . , xdm)) : (xd1 , . . . , xdm) ∈ Vi} .
Pick a smooth partition of unity (hi)i∈N, where hi : Γ→ R is smooth with supp(hi) ⊂ Ui and

∑
i∈N hi = 1. Define

the localization of f to Ui by fi := f · hi such that

(44) f =
∑
i∈N

fi.

Every fi : Ui → R can be reparametrized to

f̃i :

{
Rm → R

(xd1 , . . . , xdm) 7→ fi ◦ Ξi(xd1 , . . . , xdm).

Suppose that there exists a neural network Φ̃i ∈ NNL,M,m,ρ with

(45) ‖f̃i − Φ̃i‖L2(Vi) ≤ ε.
Then, we can construct a neural network Φi ∈ NNL,M+m·d,d,ρ according to

Φi(x) := Φ̃i(Pix),

where Pi denotes the orthogonal projection of x onto the coordinates (xd1 , . . . , xdm). Since P is linear, Φi is a neural
network. Moreover, since Pi is the inverse of the diffeomorphism Ξi, we get

‖Φi − fi‖L2(Ui) ≤ C · ε,
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withC > 0 depending on the curvature of Γ|Ui only. Now we may build a neural network Φ by setting Φ :=
∑
i∈N Φi.

Combining (45) with the observation that, owing to the compact support of f , only a finite number of summands
appears in the definition of f , we have constructed a neural network Φ which approximates f on Γ. We thus observe
the following.

Whenever a signal class C is invariant w.r.t. diffeomorphisms (in our construction the functions Ξi) and multipli-
cation by smooth functions (in our construction the functions hi), then approximation results on Rm can be leveraged
to approximation results on m-dimensional submanifolds Γ ⊂ Rd.

Such invariances are, in particular, satisfied for all signal classes characterized by a particular smoothness behavior;
for example, the class of cartoon-functions as studied in Section 5. Somewhat informally we thus summarize that
neural networks are optimal for the approximation of piecewise smooth functions on manifolds.

7. NUMERICAL RESULTS

Our theoretical results in Section 2 show that, for every function class C ⊆ L2(Rd), the number of edges of a
neural network stemming from a fixed learning algorithm must obey a fundamental lower bound. One of the most
widely used learning algorithms is stochastic gradient descent with the gradient computed via backpropagation [41].
The purpose of this section is to investigate how the stochastic gradient descent algorithm fares relative to our lower
bound.

Surprisingly, our numerical experiments indicate that for a fixed sparsely connected network topology inspired by
the construction of bump functions in Equations (26) and (27) and with the ReLU as rectifier, the stochastic gradient
descent algorithm generates neural networks that achieve high M -edge approximation rates. In particular, we identify
two classes where these rates are optimal.

The topology that we prescribe is depicted in Figure 3. Let us briefly explain why we chose this network topology.
As mentioned before, admissible smooth rectifiers consist of smooth functions which equal a ReLU outside a compact
interval. For this class of rectifiers, the appropriate shearlet generators were constructed from a function g as specified
in (27). Choosing p1 = p2 = 1 and p3 = 2 in (26) yields hat functions t. This construction implies that we only
require six nodes in the first layer in each subnetwork. Additionally, the derivative of the resulting functions t does
not vanish on the support of t. Both properties are beneficial in terms of the learning speed of the stochastic gradient
descent algorithm.

FIGURE 3. Left: Topology of the neural network trained using stochastic gradient descent. The
network consists of a weighted sum of four subnetworks. The four inputs are x1, x2 ∈ [−1, 1] plus
two inputs set to 1. Right: A single subnetwork.

In Figure 3, we see four network realizations of g in parallel. The input layer consists of four inputs. The first
two inputs represent x1, x2, whereas the third and fourth inputs are constant. The first four neurons in the first layer
correspond to the construction (26). The first neuron in the second layer corresponds to (27). In the output layer, all
incoming signals are added to yield a sum of the subnetworks.
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We now train the network using the backpropagation algorithm. Following (27) the weights associated with the
edges between the first and the second layer remain fixed, and only the weights of the edges between the input and
the first layer as well as the edges between the second layer and the output layer are trained. Training is performed for
two different functions, where one is a function with a line singularity (Figure 4(a)), and the other one is a cartoon-
like function (Figure 5(a)). We train the network by drawing samples (x1, x2) ∈ [−1, 1]2 from an equispaced grid
in [−1, 1]2 to which we then apply the network. The error determined by comparing to the original function is
backpropagated through the network. We repeat this procedure for different network sizes, i.e., for different numbers
of subnetworks.
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FIGURE 4. (a): Function with a line singularity. (b): Approximation error as a function of the
number of edges. (c)-(e): Depiction of the functions obtained by restricting to the subnetworks with
the largest weights in modulus in the final layer.

We start by discussing the results for the function with a line singularity in Figure 4(a). The approximation error
corresponding to the trained neural network is shown in Figure 4(b). The super-linear decay of the error in the semi-
logarithmic scale indicates super-exponential decay of the error with respect to the number of edges.

Also, interestingly, the trained subnetworks yield α-molecules for α = 0 (see Figures 4(c)-(e)). These functions
are constant along one direction and vary along another, hence can be considered part of a ridgelet system, which
is, in fact, an optimally sparsifying system for line singularities. Moreover, the orientation of the three learned ridge
functions matches that of the original function.

In the second experiment, we draw samples from the function depicted in Figure 5(a) below, which exhibits a curvi-
linear singularity. Figures 5(c)-(e) show that the corresponding trained subnetworks resemble anisotropic molecules
with different scales and of different orientations. Concerning the approximation error, we report that the expected
decay rate of O(N−1) was not visible when simply training with different network sizes. However, with a slight
adaptation one obtains the result of Figure 5(b), which demonstrates a decay of roughly N−1. The specifics of this
adaptation are as follows: We first train a large network with ∼ 10000 edges, again by stochastic gradient descent.
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Then, the weights in the last layer are optimized using the Lasso [45] to obtain a sparse weight vector c∗. Consid-
ering networks built from a combination of the subnetworks associated with the N largest coefficients of c∗ yields a
sequence of networks with corresponding errors according to Figure 5(b). Finally, we investigate whether the approx-
imation delivered by this procedure is similar to what would be obtained by best N -term approximation with standard
shearlet systems, where it is known [31, 25] that shearlet elements on high scales tend to cluster around singularities.
We analyze this behavior in Figures 5(g)-(i). Here, we depict in Figure 5(g) the weighted sum of those subnetworks
that have the largest support. In Figure 5(h) we show weighted sums of subnetworks with medium-sized support, and
in Figure 5(i) we sum up only the subnetworks with the smallest supports. We observe that, indeed, subnetworks of
large support approximate the smooth part of the underlying function, whereas the small-sized subnetworks resolve
the jump singularity.
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FIGURE 5. (a): Function with curvilinear singularity to be approximated by the network. (b): Ap-
proximation error in terms of edges. (c)-(f): Shearlet-like subnetworks. (g): Reconstruction using
only the 10 subnetworks with the largest supports. (h): Reconstruction using only subnetworks with
medium-sized support. (i): Reconstruction using only subnetworks with very small support.
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