A QUALITATIVE UNCERTAINTY PRINCIPLE FOR FUNCTIONS
GENERATING A GABOR FRAME ON LCA GROUPS

GITTA KUTYNIOK

ABSTRACT. Let G be a locally compact abelian group. In this paper we study
in which way the qualitative uncertainty principle is modified when we consider
only functions f € L?(G) which generate a Gabor frame associated with a uniform
lattice K in G. This provides us with sharp lower bounds for the measure of the
support of such functions and their Plancherel transforms.

1. INTRODUCTION

Let G be a locally compact abelian (LCA) group equipped with a Haar measure
mgq. The dual group is denoted by GG. Let the Haar measure on GG, Ba, be normalized

so that the Plancherel formula holds. The Fourier transform f of any function
f € L'(G) is defined by

f(w) = /G £ (B () dme(1).

The transformation f — f, L'(G) — Co(G) extends to a Hilbert space isomorphism

~

of L?(G) onto L?(G), the so-called Plancherel isomorphism. The Plancherel trans-
form shall also be denoted by f. For f € L2(@), let supp f = {z € G : f(z) # 0}
and supp f = {w e G : f(w) # 0}

Uncertainty principles were studied extensively during the last fifty years. Al-
though there exists an abundance of different types of them the common statement
is that a nonzero function and its Fourier transform cannot both be sharply local-
ized. The first qualitative uncertainty principle was derived in 1973 by Matolcsi and
Sziics [MS73]. It states the following. Given a LCA group G, for f € L*(G), we
have

ma(supp f)pc(supp f) > 1.

For L!-functions this result was proven by Smith [Smi90]. Following Benedicks
[Ben85] the appropriate formulation of the qualitative uncertainty principle which
seems to be the right setting for LCA groups G' and which is referred to as QUP is

ma(supp f) < ma(G) and pg(supp f) < pua(G) = f=0.
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Hogan [Hog88| proved that the QUP holds for a non-compact non-discrete LCA
group with connected component Gy if and only if Gy is non-compact. An infinite
compact abelian group satisfies the QUP if and only if it is connected (see [Hog93]).
There exists an abundance of extensions. For an excellent survey we refer to [FS97].

Frames were introduced in 1952 by Duffin and Schaeffer [DS52]. Since then, they
have become a major tool in signal and image processing, data compression and
sampling theory. Given a LCA group G, a sequence {g;}ic; in L*(G) is a frame, if
there exist constants 0 < A < B < oo such that

AIFIP < D IKF.ga* < BIFIP for all f € L*(G).
iel
A and B are called the frame bounds. In this paper we will focus on Gabor frames
associated with some uniform lattice K in G, which are frames of the form

S(f,K) = {z = v(z)f(zk) : (k,7) € K x G/K},

where f € L?(G). Speaking of a uniform lattice we mean a discrete and cocompact
subgroup Further recall that pr0v1ded H is a closed subgroup of G, we can 1dent1fy

G/H with the annihilator A(H,G) = {w € G : w(h) =1 forall h € H} of H in G
(compare [HR63/70, Theorem 23.25)).

In dealing with frames, it is especially interesting to know in which way uncer-
tainty principles are modified when we consider only functions generating a frame.
For example studying the QUP for such functions f establishes lower bounds for
me(supp f) and pg(supp f). This helps us to understand to which extent we can
localize in time and frequency when constructing a frame. An important exam-
ple for this approach is the Balian-Low Theorem, which was originally stated by
Balian [Bal81] and independently by Low [Low85]. It shows that restriction to func-
tions generating a frame maximizes the classical Heisenberg uncertainty principle.
The first approach on other versions of uncertainty principles was made by Korn
[Kor00]. He studied different types of uncertainty principles, e.g. the uncertainty
principles of Donoho-Stark [DS89] and Landau-Pollak-Slepian [LP61, PS61], accord-
ing to their modification when considering only functions in L?(R) which generate
a Gabor frame.

In this paper we investigate in which way the QUP is modified when we consider
only functions in L?(G), G a LCA group, which generate a Gabor frame associated
with a uniform lattice in G.

In the second section of this paper we start with some basic results. Let G be
a LCA group and let K be a uniform lattice in G. For f € L?(G), we prove that
provided S(f, K) forms a frame the measure of the support of f and f is bounded
from below by the measure of fundamental domains. In the case of a LCA group
G with non-compact connected component, which in particular includes G = R”,
one of those bounds always equals infinity, whereas the measure of a fundamental
domain is a sharp bound for the measure of the other support. Hence the interesting
case to look at are LCA groups with a compact connected component. Moreover, we
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deal with the question, whether one can classify all functions f € L?(G) for which
me(supp f)ug(supp f) attains the infimum, i.e. mg(supp f)pe(supp f) =1. We
give a complete answer in the general situation as well as in the situation where we
restrict to functions f € L?(G) for which S(f, K) forms a frame for L?(G).

To obtain more precise exact bounds in the case of LCA groups with compact
connected component, we first deal with compact abelian groups G in Section 3.
Provided that K is a finite subgroup of G which is contained in Gy and f € L*(G) we
calculate lower bounds for the measure of the support of f and f if S(f, K) is a frame
and prove that they are sharp. In particular, we show that mg(supp f) = mg(G)
if pe(supp f) < oo and that pg(supp f) > |K|ug(1), where 1 denotes the neutral
element in G. If the hypothesis is not fulfilled we give examples of functions which
do not satisfy these bounds.

In Section 4 we use these results to obtain lower bounds for general LCA groups
which have a compact connected component. Provided that there exist some com-
pact open subgroup H of G such that HN K is contained in Gy and f € L?(G) with
supp f compact we have mg (supp f) > [G : HK|mg(H) and a similar result for the
dual side. These bounds are sharp. Again there exist examples of functions which
do not satisfy the bounds if the hypotheses are not fulfilled. Moreover, we obtain
a sharp bound for the product mg(supp f)ug(supp f) which does not depend on
some compact open subgroup H. We finish with a result for the case that supp f is
not compact.

2. BASIC RESULTS

Let G be a LCA group, which we always assume to be second countable, and let
K be a uniform lattice in G. A fundamental domain for K is a Borel subset S of
G such that every x € G can be uniquely written in the form x = sk where s € S
and k € K. The existence of a fundamental domain for K is always guaranteed by
[KK98, Lemma 2]. A useful tool for studying frames is the so-called Zak transform

associated with K of some function f € L?(G), which is defined on G x G by

Zf(z,w) = flzk)w(k).

keK
By [KK98, Lemma 3|, the Zak transform Z : L*(G) — L*(S x Q) is an isometry,

——

where S and 2 be fundamental domains for K and G/K in G and @, respectively.
The following property of this transform will be used very often throughout the
paper, because it provides us with a condition for S(f, K) being a frame for L*(G)
which is easy to check. For a proof compare [Gro98, Corollary 6.4.4].

Theorem 2.1. Let G be a LCA group, let K be a uniform lattice in G and let
f € L*(G). Then S(f,K) is a frame for L*(G) with frame bounds A and B if and
only if A< |Zf|*> < B a.e.. In this case S(f, K) is an ezact frame.

Let us begin with a simple lemma which shows, provided S(f, K) forms a frame,
that the measure of the support of f and f is bounded from below by the measure
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of fundamental domains. In the sequel we will use the following notation. For
A, B C G, A = B almost everywhere always means x4 = xp almost everywhere or
equivalently the measure of the symmetric difference of A and B equals zero, where
x. denotes the characteristic function.

Lemma 2.2. Let G be a LCA group, let K be a uniform lattice in G and let

f € L*(G). Let S and Q be fundamental domains for K and CT/?( in G and @,
respectively. If S(f, K) is a frame for L?(G), we have

ma(supp f) > ma(S) and pa(supp f) > pa(Q).

Proof. If the first claim is proven, the second follows immediately by just using
the Plancherel isomorphism and the same arguments on the dual side. To prove
mea(supp f) > ma(S), let S be some arbitrarily fixed fundamental domain for K

in G. On the one hand supp (y(-)f(-k)) = k' - supp f for each (k,7) € K x G/K.
Therefore, since S(f, K) is a frame for L*(G), we have G = U, k - supp f a.e..
This implies immediately that mg(zK Nsupp f) # 0 for almost all z € G. On the
other hand we know that G is the disjoint union of the sets k£ - S, where k£ runs
through K. By normalizing the Haar measure on G/K, mg/k, in an appropriate
way, Weil’s formula yields

me(S) = /G (@) dma /G /KZXS(xk)dmg/K(acK)z /G ).

keK
So we get,

ma(supp f) = /G/K > xsupp r(k)dmek (¢K) > /G/K ldmg, k(¢ K) = ma(S).

keK
0

Concerning the measure of the support of f and f we start with the situation of
a LCA group G with connected component GGy being not compact. Notice that this
case in particular includes G = R" as a special case. We will see that the measure
of at least one of supp f or supp f is infinite.

Proposition 2.3. Let G be a LCA group such that Gy is non-compact.

(i) For f € L*(G), f # 0 we have mg(supp f) = oo or ug(supp f) =
(i) If K is a uniform lattice in G, then there exist functions g,h € L*(G) such
that S(g, K) and S(h, K) are frames for L*(G) and which satisfy mg(supp g) =

mea(S), pe(supp §) = oo, mg(supp h) = 0o and pg(supp h) = pg(Q).
Proof. The first claim follows immediately from [Hog88, Theorem 1] For the second

part let S and €2 be fixed fundamental domains for K and G’/K in G and G,
respectively. We define ¢ and h by ¢ := xg and h := xqo. Obviously, we have
mea(supp g) = mg(S). Moreover, [Hog88, Theorem 1] implies pg(supp §) = oc.
Finally, for each (z,w) € S x Q, we obtain |Zg(z,w)| = |w(e)| = 1. By Theorem 2.1,
the set S(g, K) is a frame for L?(G). This shows that g fulfills the assertion. Using
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the Plancherel isomorphism and the same arguments on the dual side, we obtain
the claim for A. O

This result provides us with sharp bounds if Gy is non-compact (see also Lemma
2.2). Therefore in the following we will focus on LCA groups G whose connected
component is compact, for example G = Z", T" or G finite.

Let G be a LCA group. Since for each f € L*(G), mg(supp f)uc(supp f) >1
[MS73], it is an interesting question whether we can classify all functions f € L*(G)
for which mg (supp f)pc(supp f) attains the infimum. The following theorem gives
a complete answer.

Theorem 2.4. Let G be a LCA group and let f € L*(G), f # 0. Then the following
conditions are equivalent:

(i) mg(supp f)uc(supp f) =1. )
(ii) There exists ¢ > 0 such that |f(x)| = ¢ and |f(w)| = mg(supp f) - ¢ for almost
all (z,w) € supp f X supp f and meg(supp f) < oo.
(iii) There exist a compact open subgroup H of G and some point (zg,wo) € G X G

such that supp f = xoH and supp fz wOCT/?{ a.e..

Moreover, (1) implies that Gy is compact.

Proof. The last claim follows from [Hog93, Corollary 2.5].
Provided that mg(supp f) < oo, we have

1 Al A (2 A (3) .
1712 < petsupp AIFIZ < palupp HIFE < pelupp Fmesup £IFIE

Hence (i) holds if and only if we have equality in (1), (2) and (3) and moreover
mea(supp f) < oo. In the following we will study the inequalities (1), (2) and
(3) more detailed. For this, suppose that mg(supp f) < co. We start examining
inequality (1). Note that

1712 = 1712 = / 1 @) Pduc(w)
supp f
and

pe(supp )| f1% = pe(supp f) max |f(w)[*
wesupp f

Thus we have equality in (1) if and only if there exists some d > 0 such that
|f(w)| = d for almost all w € supp f. Concerning inequality (3), it always hold

£ = Il fxsupp £]IT and mg (supp FIIFNZ = If1I2]|Xsupp £113-

So we get equality in (3) if and only if there exists ¢ > 0 with |f(x)| = ¢ for almost
all z € supp f. Now suppose that we already have equality in (1) and (3). Then

2
VAI% = & and ||f||%=( / |f(af)|dmc:(:v)) — ma(supp £)%¢
supp f
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This implies that provided we have equality in (1) and (3), we also have equality in
(2) if and only if d = mg(supp f)c. This proves (i) < (ii).

Next suppose that (iii) holds. Since H is a compact open subgroup, we have
mea(H) /LG(CT/?I ) = 1, which immediately implies (i).

Finally suppose there exists ¢ > 0 such that |f(z)| = ¢ and | f(w)| = mg(supp f)-c
for almost all (z,w) € supp f X supp f and me(supp f) < oco. We will show that
this implies (iii). Without loss of generality we can assume that ¢ = 1. For almost

all w € supp f, we have
| faa@dnea)| = [f@)] = maGup )= [ |7 @@ dna(a).
supp f supp f

Now [HR63/70, Theorem 12.4] implies that there exists some constant A, such that

f(z)w(z) = A, for almost all (z,w) € supp f x supp f.

Hence, for almost all (z,w) € supp f X supp f, we obtain

(1) flw)= / L S@Eima(s) = Aama(supp f) = S@)olema(supp )

Without loss of generality we can assume that 1 € supp f , since otherwise we may
consider g € L*(G) with § = f(wp-) for some wy € supp f. Then 1 € supp g and
g(x) = wo(z) f(x). Hence supp g = supp f and supp ¢ = wq - supp f.

Therefore equation (4) implies f(1) = f(z)mg(supp f) for almost all = € supp f.
Thus we can assume that f is constant on its support, i.e. f(z) = cxsupp f(2)
for some |¢| = 1, and hence f(w) = cfsuppfw(x)dmg(x). Now let w € G. If
w ¢ supp f, by the previous equation, there has to exist some x € supp f with
w(z) # 1. If w € supp f, then

c / 0@ dma(z)| = | F(w)| = me(supp f),
supp f

which implies w|supp s = 1. This proves

supp f = A(supp f,G),

which shows that supp f coincides almost everywhere with a subgroup of G. This
subgroup has to be compact, since otherwise ug(supp f ) would not be finite. More-
over, it has to be open, because the measure of the support of f has to be non-zero.

Now we turn our attention to the support of f. The smallest closed subgroup con-
taining supp f, which we will denote by J, satisfies A(J, @) = A(supp f, @) Since
me())pc(A(J, G)) as well as mg(supp f)puc(supp f) equals 1, we have supp f = J
a.e.. ]

Now we restrict ourselves to functions f € L?(G) such that S(f, K) forms a frame
for L?(G) and ask the same question.
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Theorem 2.5. Let G be a LCA group and let K be a uniform lattice in G. Let
f € L*(G) be such that S(f, K) is a frame for L*(G). Then the following conditions

are equivalent.
(i) ma(supp f)pa(supp f) =1,
(ii) There ezist a closed subgroup S of G, which is a fundamental domain for K in

G, and some (zg,wq) € G X G such that supp f = z¢S and supp f = woGT/\S
a.e..

Proof. First let f € L?(G) be such that S(f, K) is a frame for L*(G) and such
that it satisfies mg(supp f)pe(supp f) = 1. Theorem 2.4 implies that there exist
a compact open subgroup H of G and some point (zg,wy) € G x G such that
supp f = zoH and supp f = woG/H a.e.. Since S(f, K) is a frame for L?(G), there
exists a fundamental domain S and €2 for K and G/K in G and G respectlvely,
with S C supp f and Q C supp f. This implies S C zoH and QC wOG/H Since
it is well-known thathQ(S),uG(Q) = 1 and mG(on),uG(wOG/H) = 1, we obtain

S =x0H and Q = wyG/H a.e.. Hence also H is a fundamental domain for K in G.
Since S is compact and open, the implication (ii) = (i) follows immediately from
Theorem 2.4. [

Corollary 2.6. Let G be a LCA group and let K be a uniform lattice in G. Then
the following conditions are equivalent.

(i) There exists some f € L*(G) such that S(f,K) is a frame for L*(G) and

ma(supp f)ua(supp f) = 1.
(ii) There ezists a closed subgroup S of G such that G = K x S.

(iii) There eists a closed subgroup Q) of G such that G = CT/?{ x Q.

Proof. This follows immediately from Theorem 2.5. O

3. COMPACT GROUPS

Let G be a LCA group. An element x € G is said to be compact, if the smallest
closed subgroup of G containing z is compact. Let G° denote the set of compact
elements in G, which is a closed subgroup of G [HR63/70, Theorem 9.10].

In this section we consider only compact abelian groups G. For such G, let mg
denote some Haar measure on G. In the next section we will prove generalizations
to LCA groups of the results obtained here by reducing to the situation of compact
groups.

We start with a basic property of functions on compact abelian groups, which
gives rise to lower bounds for the measure of functions which generate a Gabor
frame associated with a uniform lattice. Moreover, it will turn out to be useful in
the next section.
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Lemma 3.1. Let G be a compact abelian group, and let f € L?(G) such that supp f
is finite. Then either mg(supp f) = mg(G) or f vanishes on a coset of some open
subgroup.

Proof. By hypothesis, we have f = 2?21 ajX.w; for certain w; € G and a; € C
Then [ = Z;.L:l a;wj. Since G is a projective limit of Lie groups [HR63/70, (28.61)
(c)], there exists a closed subgroup C of G such that G/C is a Lie group and
wj € CT/E‘ for all j. Let m¢ be induced by the Haar measure on GG and let the
Haar measure on ¢ /C be normalized so that Weil’s formula holds. Define g on
G/C by g(zC) = [, f(zc)dmc(c). An easy calculation shows that § = f|5/z, Now,
(G/C)o = T™ for some m € N, whence G/C = F-T™ for some finite set F. For any
a € F, 2+ g(az) = Y7, ajwj(a)w;(2) is an analytic function on T™. However, a
nonzero analytic function on T™ cannot vanish on a set of positive measure. Thus,
for each a € F, either glyym = 0 or glgym # 0 ae.. Let H := ¢~ '(T™), where
q : G — G/C denotes the quotient map. Then G = SH, S finite, and, for each
s € S, either goglsg =0 or go q\sH # 0 a.e.. Then the same holds for f, since
f=gogq. Indeed f=gogon G/C’ f=0on G\G/C’ and gog =0 on G\G/C’
because g o q(T fG/Cg (20) [ T(zc)dme(c)dmac(xC) and [, 7(zc)dme(c) =

fc dmc = 0 whenever 7|¢ # 1. O

Let f € L? (G) be such that f generates a Gabor frame associated with a uniform
lattice. The following proposition gives exact bounds for the measure of the support
of f and its Fourier transform. Obviously, each uniform lattice K in a compact
abelian group is finite. In the sequel the number of elements of K is denoted by |K]|.

Proposition 3.2. Let G be a compact abelian group, let K be a finite subgroup of G
which is contained in Gy, and let f € L*(G) with supp f finite be such that S(f, K)
is a frame for L*(G). Then the following hold.

(i) ma(supp f) = me(G).

(i) pe(supp f) = [K|pa(l).

(iii) mq(supp f)pa(supp f) = [K].
Proof. Tt suffices to prove (i), since (ii) is Lemma 2.2 and (iii) follows immediately
from (i) and (ii). For this, let f € L2(G) such that supp f is finite and S(f, K)

is a frame for L*(G). Assume that mg(supp f) < mg(G). Then, by Lemma 3.1,

f vanishes on a coset of some open subgroup H, i.e. there exists some zy € G
with flzomr = 0. Now Gy C H, hence K is a subgroup of H. Thus Zf(zgy,1) =
> wex f(kxoy) = 0 for all y € H. By Theorem 2.1, this is a contradiction. O

The next question we have to deal with is whether the bounds are sharp. This is
confirmed by the next result.

Proposition 3.3. Let G be a compact abelian group and let K be a finite subgroup
of G which is contained in Gy. Then there ezists a function f € L*(G) such that

(i) S(f, K) is a frame for L*(G),
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(ii) me(supp f) = ma(G), and
(i) pa(supp f) = [K|pa(1).
In particular, we have
ma(supp f)pc(supp f) = |K|.

Proof. Let 2 be a fixed fundamental domain for G//?( in G. Then we choose fe
L?(G) such that f = xq, which clearly satisfies (iii). Obviously, S(f,G/K) is a
frame for L?(G). By the Plancherel isomorphism, S(f, K) is a frame for L*(G).
This proves (i). Now we may apply Proposition 3.2 to obtain (ii). O

It remains to study the case when K is not contained in Gj.
Proposition 3.4. Let G be a compact abelian group and let K be a finite subgroup
of G which is not contained in Gy. Then there exists a function f € L*(G) with

(i) S(f, K) is a frame for L*(Q),

(ii) mg(supp f) < mg(G), and

(iii) pa(supp f) = [K|pa(1).
In particular, we have

ma(supp f)pc(supp f) < |K|.

Proof. We start constructing a special fundamental domain for CT/?{ in G. First
recall that [G : G/K] |K|. For the sake of brevity we denote [G : (G)°G/K]

by N. Since GO G/( ) [HR63/70, Theorem 24.17], by hypothesis, (@)c is not
contained in G’/K Hence % > 2. Let {w, : 1 =1,... |K‘} be a fundamental

domain for (G)° N G/K in (G)° and let m1,..., 7y be a representative system for
the (G)°G/K-cosets in G. Then we set

K]

T; 1= MW, ifiz(k—l)w—i—l, 1<i<|K|.

Obviously, {r; : i = 1,...,|K|} is a fundamental domain for CT/?( in G. Now we

define the function f by its Plancherel transform f = Z‘Zﬂ AiXr, Where \; # 0,
1 < i < |K|, are chosen later on. Notice that (iii) is satisfied automatically.
To prove (ii), we first calculate the function f itself. We obtain

K] N
=) Ami(e) =) Z)"”wl (),
i1 k=1 | 1=1

where the numbers Ay, have to be chosen in an appropriate way. Since w; € (@)c
forall1 <[ < %, it follows that the order of each wj is finite and hence wl_l(l) is

K]
an open subgroup of G for each [. Then we define Gy by Gy :=(,F, w; (1), which
is an open subgroup with w;(z) = 1forallz € G;, 1 <1 < % We now fix the
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K|
numbers A, in such a way that Y, Ay, = 0 for each k and A, # 0 for all £,{. Then
f(z) =0 for all z € G4. Thus supp f C G\G;. Since mg(G1) > 0, this proves (ii).
It remains to show (i). For this, let S be a fundamental domain for K in G. As a
fundamental domain for G / K in G we choose Q:= {7 :i=1,...,|K|}. Then, for
(z,7;) € S x Q, we obtain

K|
1Zf (@, 75) = D 7i(k) fak)| = Y m(k) Y Aemi(wk)
keK keK i=1
|K| | K|
Z/\ 7i(x Z 7;7:)( ] Z/\TZ [\K|XG/K(T]T,)] = | K||\;].
keK
Now we can apply Theorem 2.1. O

Notice that we cannot find a function f € L?(G) generating a Gabor frame
associated with a finite subgroup K of G, which does not satisfy the bound on the
dual side pg(supp f) > |K|pue(1) because of Lemma 2.2.

4. GENERAL LCA GROUPS WITH COMPACT CONNECTED COMPONENT

Throughout this section let G' be a LCA group with compact connected component
equipped with a Haar measure mg and let K be a uniform lattice in G.

Let H be some open compact subgroup of G. The Haar measure my on such a
subgroup shall always be induced by the Haar measure on G. We start by choosing
a special fundamental domain Sy for K in G with respect to H, which will make
the following calculations much easier. Since H N K is a finite subgroup of H, there
exists a fundamental domain Sy for HNK in H. Moreover, we have [G : HK] < oc.
Thus we can choose a finite representative system {yl(,f,) :1<i<[G: HK]} for the
H K-cosets in GG, which shall be fixed during this section. Without loss of generality

we may assume that yg) = e. Then we define the fundamental domain Sy by

GHK
U Yl

Notice that this union is disjoint. It is stralghtforward to show that Sy is indeed a
fundamental domain for K in G. o R

We choose a fundamental domain Qy for G/K in G in a similar way, i.e. by
choosing Q5 and 72),1 <j<[G:G/HG/K] = |H N K]| in an analogous way and
then following exactly the same steps on the dual side.

In the following we will consider functions f € L*(G) with supp f being compact.
Therefore we first extend Lemma, 3.1 to LCA groups, since it explores the structure
of such functions. For f € L*(Q) and xy € G, let Ly, f be the left-translation of f,

ie. Ly f(z) = f(zg'z).
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Lemma 4.1. Let f € L*(G) such that supp f 1s compact. Then, for each xg € G
and for each compact open subgroup H of G, we have either my(supp (Ly, f)|n) =
ma(H) or (L, f)|u vanishes on a coset of some open subgroup of H.

Proof. By hypothesis, f = Z] 1thT GIH

L*(G) with supp h; C TjG/H. Let the Haar measure on G/H, ta/u, be induced by
tg. Then, for x € G,

-/ Do), g (elinole Z / )(&)dicy ().

For each zp € G and o € ﬁ, this implies
(Lo f) |1 () = /H [Z /G//TJ hj(Tjw)(w)(zg 1fv)dMG/H(w)] a(z)dmy (z)
o=

= [ [ e [ [ emiine]

for 7; € G and certain functions h; €

Since [, (7;@)(z)dmg(z) = 1 if and only if & = 7|5 and equal to zero otherwise, it
follows that the support of (L, f)|x is finite. Thus we may apply Lemma 3.1. This
yields the claim. O

Let f € L?(GQ) be a function which generates a Gabor frame associated with K.

Then Lemma 2.2 tells us that mg(supp f) > mq(Sy) =[G : HK] Tlfég‘) However,

under weak conditions we can obtain an even better bound.

Theorem 4.2. Suppose there exists some compact open subgr:oup H of G such that
HNK is contained in Gy. Further, let f € L?>(G) with supp f compact be such that
S(f,K) is a frame for L*(G). Then we have

meg(supp f) > [G: HK|mg(H).
Proof. Let the fundamental domains Sy and Qy and the representative system

{yg) :1 <4 < [G: HK]|} be chosen as in the beginning of this section. Let
i € {1,...,|G : HK]} be arbitrarily fixed. Obviously, it suffices to show that

ma(supp fl, ) > ma(H).

Let 7 € Sy and @ € Qp. Moreover, let F be a fixed representative system for the
H N K-cosets in K. Then we have

> o(k)f (yy Th)

keK

Z ZG) yH lxk
keHNK I€F

=N otk fy k)

leF keHNK

Zf(y0 5, @) =

= Zinx

Zwa)f(y;?z-)] @),

leF
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where ZH_ . denotes the Zak transform associated with H N K in H. For the sake

of brevity, we set gz := >, 0(I) f(y (i)l -). Note that, since the Zak transform is a
Hilbert space isomorphism (compare [KutOO Theorem 3.1.7]), g5 € L?*(H). Since
supp f is compact, we can write f in the form f Ek 1h’€XT G Supp h, C

TkG/H, where 73, € G, 1 <k < N be such that TkG/H are pairwise different. With
this notation we can write f as

Lzhk 'rkG/H ) d'uG =

k=1

-

[/(}/Hhk Tiw)w(z)dpc(w)| 7i(z)

for all x € G. For simplicity we set f(x) =: Z/Icvz1 Ae(z)7%(z). Then, for o € H, we
get

Gl = /H F@1z)a@)dmy (z)

- /H M) al@) dm (2)
S [Z OMely H>Z>Tk<y§?z>] [ /| (mex)de(x)] .

Since [, (7x@)(z)dmg(z) = 1 if and only if @ = 7|y and equal to zero otherwise,
we know that |supp gz| < oo for almost all . We may now apply Lemma 3.1 to
H and g;. Hence we have my(supp gz) = mg(H) or there exist an open subgroup
Lg of H and some zy € H such that gz|sr, = 0 a.e.. By hypothesis, H N K is a
subgroup of Gy = Hy. Thus either my (supp g5) = mg(H) or |Zpx(95)(zoy, 1)| =
0 for all y € L; (compare the proof of Proposition 3.2). The latter case implies
|Zf(yH zoy,)| = 0 for all y € Ly, which contradicts S(f, K) being a frame for
L?(G). Hence the first case holds true. This implies Y, my(supp f(yg)l-)) >
ma(H). We conclude mg(supp f|y§}')HK) > mg(H). This finishes the proof. O

We also obtain a lower bound on the dual side. In particular, this gives rise to a
lower bound for the product of the measures of the support of f and f.

Corollary 4.3. Suppose there exists some compact open subgroup H of G such that

G/H N G/K is contained in (G) Further, let f € L*(G) with supp f compact be
such that S(f, K) is a frame for L?>(G). Then

pa(supp f) > |H 0 K|pa(G/H).

If, in addition, H N K 1is contained in Gy and supp f 15 compact, we have

ma(supp fue(supp f) > [G : G°K|[G : (G)°G/K].
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Proof. Using similar arguments as in the proof of Theorem 4.2, we obtain the lower
bound for pg(supp f).
It remains to prove the lower bound for the product mg(supp f)ug(supp f).

——

Suppose G/H N G/K C (G)o. Since G/(G/HNG/K) = HK and G/(G)o = G
[HR63/70, Theorem 24.17], this implies G¢* C HK. It always holds H C G¢. Thus
HK = G°K, which gives [G : HK| = |G : G°K]. Using the same arguments on the

o — L~

dual side yields |H N K| = [G : G/HG/K] = |G : (G)°G/K]. Applying Theorem
4.2 and the first part of Corollary 4.3 finishes the proof. O

Note that the lower bound for mg(supp f)uc(supp f) does not depend on the
fixed subgroup H anymore. This is not astonishing, since also the product of the
Haar measures of G and G does not depend on the normalization.

The next step is to check whether the bounds are sharp.

Theorem 4.4. Suppose there exists some compact open subgroup H of G such that

H N K s contained in Gy or 5/?[0 CT/?( s contained in (@)0. Then there exists a
function f € L?(G) with the following properties.
(i) S(f, K) is a frame for L*(G).

(ii) supp f and supp f are compact.
(iii) mg(supp f) =[G : HK|mg(H).

(iv) pe(supp f) = |H N K|pe(G/H).

In particular, we have
mea(supp f)ug(supp f) =[G : GCK][é : (@)CG/K].

Proof. It suffices to deal with the case that H N K is contained in Gy. If CT/?{ ﬂG//?{

~

is contained in (G)g, we can construct f in a similar way.
Since H is compact, we may apply Proposition 3.3. Hence there exists a function
g € L?(H) such that

(") S(g, HN K) is a frame for L?(H),
(i) mp (supp g) = mp(H), and
(iii") pr(supp g) = [H N K |py(1).

Consider Sy, Qp, {y%¥ 1 1<i<[G: HK]}, and {7 :1 < j < |HN K|} as fixed
in the beginning of this section. We define the function f € L?(G) by

Fz) = 0 x%yg)H forall1 <i<|[G:HK],
g(h) - xzyg)h for some i € {1,...,[G: HK]},h € H.

Obviously, the support of f is compact. Moreover, by (ii’) we have

mg(supp f) =[G : HK|mg(supp g9) = [G: HK|my(H) =[G : HK|mg(H),
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which proves (iii). Then the Fourier transform of f is given by

G:HK [G:HK]

[G:HK] - .
fr= 3 [ amemimuetl) = il > vl

i=1

Thus, (iii’) implies ug(supp f) =|HN K|,uc;(67/?l). Also supp f is compact.
It remains to prove (i). For this, let (z,w) € Sy x Qg. By choice of Sy and Qy,

we can write z = yg):?: and w = 72')&; with Z € Sy and @ € Qp. Then

Zf (z,w)| = | > wlk) f (4 Tk) = |28 k9@ AP n)|.

keK

PRI AGIED

kEHNK

Now (i’) implies the existence of 0 < A < B < oo with A < Z8 9@ 79 |)| < B
for almost all Z € Sy and for all 1 < j < |HN K|. Hence A < |Zf(z,w)| < B for
almost all (z,w) € Sy X Qy. By Theorem 2.1, it follows that S(f, K) is a frame for
L3(@G). O

We still have to deal with the case when there exists some compact open subgroup
H such that H N K is not contained in G,.

Theorem 4.5. Suppose there exists some compact open subgroup H of G such that
H N K is not contained in Gy. Then there exists a function f € L*(G) with the
following properties.

(i) S(f, K) is a frame for L*(G).

(ii) supp f and supp f are compact.

(iii) meg(supp f) < [G : HK]mG/(Ii).

(iv) pe(supp f) = [H N K|ue(G/H).
In particular, we have

ma(supp f)uc(supp f) < [G : G°K][G : (G)°G/K].

Proof. Since H is compact, we may apply Proposition 3.4. This shows that there
exists a function g € L*(H) with

(i’) S(g, HN K) is a frame for L?(H),

(ii") my (supp g) < my(H), and
(iii’") pw(supp 9) = |H N K|pr(1).
We choose f € L*(GQ) by

0 : x%yg)H forall1 <i<|[G: HK],
flz) = N O) : :
g(h) : z=ygh forsomeie€ {1,...,[G:HK]|},he€H,

where {yg) :1 <i <[G: HK]} is the representative system chosen in the beginning
of this section. Following exactly the same steps as in the proof of Theorem 4.4 yields
the claim. ]



A QUALITATIVE UNCERTAINTY PRINCIPLE FOR GABOR FRAMES 15

Let us mention that we may transfer this result to the dual side to obtain a
function which does not satisfy the bound for the measure of the support of the
Plancherel transform.

We further have to ask, what happens in case that supp f is not compact. Un-
fortunately, in some of these cases we loose our lower bound.

Theorem 4.6. Suppose there exists some compact open subgroup H of G such that
H N K is contained in Gy. Then the following conditions are equivalent.

(i) For each f € L*(G) with supp f not compact such that S(f, K) is a frame for
L*(G), we have mg(supp f) > [G : HK|mg(H).
(i) [ HNK|=1.

Proof. Let Sy be the fixed fundamental domain. Suppose that |[H N K| > 1. Then

define f € L*(G) by f = Xs,- Obviously, S(f,K) is a frame for L?(G). But
me(supp f) = ma(Sy) = [G : HK]™<W < (G . HK]mg(H). Moreover, by

HOK|

Theorem 4.2, supp f is not compact.

To prove the opposite direction let |[HNK| = 1. Then mg(Sy) =[G : HK] THGrE;

=[G : HK|mg(H). Now we can apply Lemma 2.2. O

Let us remark that this theorem gives rise to similar results concerning the mea-
sure of the support of f and concerning the product me(supp f)ug(supp f)
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