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Abstract. For a large class of irregular wavelet frames we derive a fundamental relation-
ship between the affine density of the set of indices, the frame bounds, and the admissibility
constant of the wavelet. Several implications of this theorem are studied. For instance, this
result reveals one reason why wavelet systems do not display a Nyquist phenomenon analo-
gous to Gabor systems, a question asked in Daubechies’ Ten Lectures book. It also implies
that the affine density of the set of indices associated with a tight wavelet frame has to be
uniform. Finally, we show that affine density conditions can even be used to characterize
existence of wavelet frames, thus serving in particular as sufficient conditions.

1. Introduction

Provided that a wavelet ψ ∈ L2(R) gives rise to a classical wavelet frame {a−j/2ψ(a−jx−
bk) : j, k ∈ Z} with parameters a > 1, b > 0 and with frame bounds A, B, a result by Chui
and Shi [4] and by Daubechies [7] establishes the following intriguing relationship between

the parameters, the frame bounds, and the admissibility constant
∫ ∞
−∞

|ψ̂(ω)|2
|ω| dω:

A ≤
1

2b ln a

∫ ∞

−∞

|ψ̂(ω)|2

|ω|
dω ≤ B. (1)

In particular, this leads to the exact value of the frame bound for tight classical wavelet
frames in terms of the parameters and the admissibility constant.

In this paper we discuss necessary and sufficient conditions for wavelets to generate a
frame involving the explicit values of the frame bounds in a much more general setting
motivated by the following observation. Provided that {a−j/2ψ(a−jx − bk) : j, k ∈ Z}
forms a frame for L2(R), then each f ∈ L2(R) can be reconstructed in a numerically stable
way from the sampling points {(aj, bk) : j, k ∈ Z} of the continuous wavelet transform
Wψf : R+ × R → C, Wψf(x, y) = 〈f, 1√

x
ψ( ·

x
− y)〉. However, sampling points may vary

in practice and the question arises whether and how perturbing the set of dilation indices
and the set of translation indices affects the results obtained for classical wavelet frames.
In particular, we are interested in studying necessary conditions involving the frame bounds
and also sufficient conditions depending only on the set of perturbed dilations.

Throughout this paper we will study systems consisting of arbitrary time shifts and ar-
bitrary scale shifts of some wavelet ψ ∈ L2(R). In detail, given an arbitrary countable set
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of dilations S ⊂ R+ and an arbitrary countable set of translations T ⊂ R, we will consider
irregular wavelet systems with respect to scale-time shifts Λ = S × T , regarded as a subset
of the affine group A, of the form

W(ψ,Λ) = { 1√
s
ψ(x

s
− t) : (s, t) ∈ Λ}. (2)

In this context, affine density conditions have turned out to be an especially useful and
elegant approach [10, 12, 15, 16]. For wavelet frames of the form (2) we derive, under some
mild condition on the set T , the following relation of affine density to the frame bounds:

A ≤
1

2
D−(Λ)

∫ ∞

−∞

|ψ̂(ω)|2

|ω|
dω ≤

1

2
D+(Λ)

∫ ∞

−∞

|ψ̂(ω)|2

|ω|
dω ≤ B, (3)

where D−(Λ) and D+(Λ) denote, respectively, the lower and upper affine density as defined in
[10]. This result can indeed be shown to generalize (1). It further generalizes several results
known for classical wavelet frames and also leads to new surprising results, for example,
showing that the affine density of a tight wavelet frame (2) necessarily has to be uniform,
i.e., D−(Λ) = D+(Λ). Recently, some results in the same spirit have been derived for Gabor
frames [2, 13].

Interestingly, this result has direct impact on the well-known question initially stated by
Daubechies [7, Sec. 4.1], namely, why wavelet systems do not satisfy a Nyquist phenomenon
analogous to Gabor systems. In short, in terms of necessary conditions for Gabor frames
there is a critical or Nyquist density for the set of indices separating frames from non-frames,
and furthermore the Riesz bases sit exactly at this critical density (compare [3, 14]). It is
natural to ask whether wavelet systems share similar properties, and the immediate answer
is that there is clearly no exact analogue of the Nyquist density for wavelets, even given
constraints on the norm or on the admissibility condition of the wavelet, see the example
of Daubechies in [6, Thm. 2.10] and the more extensive analysis of Balan in [1]. Our result
now reveals one reason why there does not exist a critical density for orthonormal wavelet
bases. In brief, the set of indices of an orthonormal wavelet basis has indeed uniform affine
density. However, (3) implies that for these systems

D−(Λ) = D+(Λ) = 2‖ψ̂‖−2

L2(R, dω
|ω|

)
,

which can be shown to attain each positive value.
Conceptually, density conditions seem to be capable only of delivering necessary conditions

for the existence of wavelet frames, since they are independent of the wavelet itself and do
not capture local features of the set of indices. Hence they appear almost too weak to serve
as a sufficient condition. And in fact, to date, the notion of affine density was only employed
to derive necessary conditions. However, we show that under some mild decay condition on
a band-limited wavelet ψ, the existence of a set T ⊂ R such that W(ψ, S × T ) constitutes
a frame for L2(R) is in fact equivalent to the set S ⊂ R

+ having positive lower and finite
upper affine density.

This paper is organized as follows. In Section 2 we introduce the notion of density for
subsets of A, R+, and R and recall the basic notation for frames. Section 3 contains the
fundamental theorem (Theorem 3.1) on the relation among the affine density, frame bounds,
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and the admissibility constant for wavelet frames. Further we discuss several of its applica-
tions. A detailed analysis of the impact of this result on the non-existence of the Nyquist
phenomenon for wavelet systems is then presented in Remark 3.5. Finally, in Section 4 we
study the extent to which density conditions can serve as sufficient conditions for the ex-
istence of wavelet frames thereby presenting in Theorem 4.2 a situation, where this indeed
can be achieved.

2. Notion of density and frames

2.1. Density of subsets of the affine group A. In Rn, Beurling density is a measure of the
“average” number of points of a set that lie inside a unit cube. In [10] the authors defined
a Beurling density that is suited to the geometry of the affine group with the interesting
property that classical wavelet systems W(ψ, {(aj , bk) : j, k ∈ Z}), a > 1, b > 0 enjoy
a uniform density equal to the ubiquitous constant 1

b ln a
([10, Prop. 4.3]) as was already

conjectured by Daubechies in [7, Sec. 4.1]. Also Sun and Zhou [15] simultaneously introduced
a density notion for the affine group, but unlike the one from [10] a weighted form has to be
used to derive the same uniform density for the classical wavelet systems. Thus in this paper
we will employ the density notion from [10]. For a comparison between the two different
notions in [10] and [15] we refer the reader to [12].

Let A = R+ × R denote the affine group, endowed with the multiplication (x, y) · (a, b) =
(xa, y

a
+ b). For h > 0, we let Qh denote a fixed family of neighborhoods of the identity

element e = (1, 0) in A chosen as Qh = [e−h, eh)× [−h, h). For (x, y) ∈ A, we define Qh(x, y)
by

Qh(x, y) = (x, y) ·Qh = {(xa, y
a

+ b) : a ∈ [e−h, eh), b ∈ [−h, h)},

and let µ = dx
x
dy denote the left-invariant Haar measure on A. Since µ is left-invariant,

µ(Qh(x, y)) = µ(Qh) =

∫ h

−h

∫ eh

e−h

dx

x
dy = 4h2.

Let Λ be a subset of A. Then the upper affine density of Λ is

D+(Λ) = lim sup
h→∞

sup(x,y)∈A #(Λ ∩Qh(x, y))

4h2
,

and the lower affine density of Λ is

D−(Λ) = lim inf
h→∞

inf(x,y)∈A #(Λ ∩Qh(x, y))

4h2
.

If D−(Λ) = D+(Λ), then we say that Λ has uniform affine density and denote this density
by D(Λ).

Since in the sequel we will study subsets of A of the form Λ = S × T , where S ⊂ R+ and
T ⊂ R, the definition of density for subsets of R+ and R will become important. Notice that
we use the same notion for all three densities. The type of density is then always completely
determined by the set to which it is applied.
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2.2. Density of subsets of R+. Adapting the definition of Beurling density to the geometry
of the multiplicative group R+ with Haar measure defined by µ = dx

x
in a similar way as it

was done in the previous subsection for the affine group yields the following density notion.
For S ⊂ R+, the upper density of S is

D+(S) = lim sup
h→∞

supx∈R+ #(S ∩ x[e−h, eh))

2h
,

and the lower density of S is

D−(S) = lim inf
h→∞

infx∈R+ #(S ∩ x[e−h, eh))

2h
.

If D−(S) = D+(S), then S has uniform density, which is denoted by D(S).
In a similar way as for the affine density [10, Prop. 2.2 and Prop. 2.3], the following two

results are useful reinterpretations of finite upper and positive lower density. We include a
short proof for the first lemma for completeness. Lemma 2.2 can be proven in a similar way.

Lemma 2.1. Let S ⊂ R+. Then the following conditions are equivalent.

(i) D+(S) <∞.
(ii) There exists an interval I ⊂ R

+ with 0 < µ(I) < ∞ and some NI < ∞ such that
#(S ∩ xI) < NI for all x ∈ R+.

(iii) For every interval I ⊂ R+ with 0 < µ(I) < ∞, there exists NI < ∞ such that
#(S ∩ xI) < NI for all x ∈ R+.

Proof. (i) ⇒ (ii) and (iii) ⇒ (ii) are trivial.
In the following we prove (ii) ⇒ (i), (iii). Suppose there exists an interval I ⊂ R+ with

0 < µ(I) < ∞ and some constant NI < ∞ such that #(S ∩ xI) < NI for all x ∈ R+. Let
J be another interval with 0 < µ(J) < ∞ in R+. If there exists y ∈ R+ with yJ ⊂ I, then
#(S ∩ xJ) < NI for all x ∈ R+. On the other hand, if there exists y ∈ R+ with yI ⊂ J ,
then µ(J) = rµ(I) for some r ≥ 1, and J is covered by a union of at most r + 1 sets of the
form xI. Consequently,

sup
x∈R+

#(S ∩ xJ) ≤ (r + 1) sup
x∈R+

#(S ∩ xI) ≤ (r + 1)NI .

Thus statement (iii) holds. Furthermore, choose z ∈ R+ and h > 1 with z[e−h, eh) = I.
Then there exists a ∈ R+ so that J = az[e−rh, erh). Hence

D+(S) ≤ lim sup
r→∞

supx∈R+ #(S ∩ xJ)

2rh
≤ lim sup

r→∞

(r + 1)NI

2rh
=
NI

2h
<∞,

so statement (i) holds as well. �

Lemma 2.2. Let S ⊂ R
+. Then the following conditions are equivalent.

(i) D−(S) > 0.
(ii) There exist an interval I ⊂ R+ with 0 < µ(I) < ∞ and some NI > 0 such that

#(S ∩ xI) > NI for all x ∈ R+.

The following result shows that this density is robust against perturbations.
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Lemma 2.3. Let S ⊂ R+ and ǫ > 0. For each S̃ = {δss : s ∈ S, δs ∈ [e−ǫ, eǫ]}, we have
D−(S) = D−(S̃) and D+(S) = D+(S̃).

Proof. For h > 0 and x ∈ R+, we obtain the following estimates for #(S ∩ x[e−h, eh)):

#(S̃ ∩ x[e−(h−ǫ), eh−ǫ)) ≤ #(S ∩ x[e−h, eh)) ≤ #(S̃ ∩ x[e−(h+ǫ), eh+ǫ)).

Dividing the terms by 2h, and observing that

lim sup
h→∞

supx∈R+ #(S̃ ∩ x[e−(h−ǫ), eh−ǫ))

2h
= D+(S̃) = lim sup

h→∞

supx∈R+ #(S̃ ∩ x[e−(h+ǫ), eh+ǫ))

2h
,

proves D+(S) = D+(S̃).
The claim concerning the lower density can be treated similarly. �

2.3. Density of subsets of R. Since in this paper we are concerned with subsets of R,
we will state the definition of Beurling density only for this special case. Notice that the
definition extends canonically to higher dimensions. For more details on the Beurling density
in higher dimensions and its connections to Gabor frames we refer the reader [2], [3], and
[13].

For a subset T of R, the upper Beurling density of T is

D+(T ) = lim sup
h→∞

supx∈R
#(T ∩ x+ [−h, h))

2h
,

and the lower Beurling density of T is

D−(T ) = lim inf
h→∞

infx∈R #(T ∩ x+ [−h, h))

2h
.

If we have D−(T ) = D+(T ), then T is said to possess the uniform density D(T ).

2.4. Connection between these densities. Under some mild density conditions on T ⊂
R, the density of S × T can be computed immediately from the densities of S and T .

Lemma 2.4. Let S ⊂ R+ and T ⊂ R. If T possesses a uniform density D(T ), then
D−(S × T ) = D−(S)D(T ) and D+(S × T ) = D+(S)D(T ).

Proof. Fix ǫ > 0. Since T possesses a uniform density, there exists h0 > 0 with
∣

∣

∣

∣

#(T ∩ x+ [−h, h))

2h
−D(T )

∣

∣

∣

∣

< ǫ for all x ∈ R, h ≥ h0. (4)

For each (x, y) ∈ A,

#((S × T ) ∩Qh(x, y)) = #((S × T ) ∩ {(xa, y
a

+ b) : a ∈ [e−h, eh), b ∈ [−h, h)})

=
∑

s∈S∩x[e−h,eh)

#(b ∈ [−h, h) : xy
s

+ b ∈ T ).

Observing that

#(b ∈ [−h, h) : xy
s

+ b ∈ T ) = #(T ∩ xy
s

+ [−h, h)),
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dividing by 4h2, taking the infimum over all (x, y) ∈ A, and employing (4), yields

inf
x∈R+

#(S ∩ x[e−h, eh))

2h
(D(T ) − ǫ) ≤ inf

(x,y)∈A

#((S × T ) ∩Qh(x, y))

4h2

≤ inf
x∈R+

#(S ∩ x[e−h, eh))

2h
(D(T ) + ǫ)

for all h ≥ h0. Applying the liminf as h → ∞ and noting that we can choose ǫ arbitrarily
small, proves D−(S × T ) = D−(S)D(T ).

The second claim can be treated similarly. �

2.5. Notation for frames. A system {fi}i∈I in a separable Hilbert space H is called a
frame for H, if there exist 0 < A ≤ B < ∞ (lower and upper frame bounds) such that
A ‖f‖2

2 ≤
∑

i∈I |〈f, fi〉|
2 ≤ B ‖f‖2

2 for all f ∈ H. If A,B can be chosen such that A = B,
then {fi}i∈I is a tight frame, and if we can take A = B = 1, it is called a Parseval frame.

3. Necessary density conditions for wavelet frames

3.1. The fundamental relationship. Given r > 0 and T ⊂ R, we denote the correspond-
ing sequence of exponentials by

E(T, r) = {x 7→ e2πitx : t ∈ T, x ∈ [−r, r]}.

Further, recall that a wavelet ψ ∈ L2(R) is called admissible, if
∫

R

|ψ̂(ω)|2
|ω| dω <∞.

The following result establishes a fundamental relationship between affine density, the
frame bounds, and the admissibility constant for wavelet frames.

Theorem 3.1. Let Λ = S × T ⊂ A, and let ψ ∈ L2(R) be admissible. If W(ψ,Λ) is a
frame for L2(R) with frame bounds A and B, and E(T, r) is a frame for L2[−r, r] with frame
bounds Ar and Br for some r > 0, then

A

Br
≤ D−(S)

∫ ∞

0

|ψ̂(ω)|2

ω
dω ≤ D+(S)

∫ ∞

0

|ψ̂(ω)|2

ω
dω ≤

B

Ar
(5)

and

A

Br
≤ D−(S)

∫ 0

−∞

|ψ̂(ω)|2

|ω|
dω ≤ D+(S)

∫ 0

−∞

|ψ̂(ω)|2

|ω|
dω ≤

B

Ar
. (6)

Moreover, if E(T, r) is a tight frame for L2[−r, r] for some r > 0, then

A ≤ D−(Λ)

∫ ∞

0

|ψ̂(ω)|2

ω
dω ≤ D+(Λ)

∫ ∞

0

|ψ̂(ω)|2

ω
dω ≤ B (7)

and

A ≤ D−(Λ)

∫ 0

−∞

|ψ̂(ω)|2

|ω|
dω ≤ D+(Λ)

∫ 0

−∞

|ψ̂(ω)|2

|ω|
dω ≤ B. (8)
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Proof. We first show that the moreover-part follows from (5) and (6). It was proven in [9]
that E(T, r) being a tight frame for L2[−r, r] for some r > 0 with frame bound C implies
that T has uniform density D(T ) = C. Therefore, by Lemma 2.4, we obtain

D−(S) =
D−(Λ)

D(T )
=

D−(Λ)

Ar
=

D−(Λ)

Br

and a similar result holds for the upper density. This shows that (7) and (8) follow from (5)
and (6). Thus in the following we restrict our attention to the first two claims. In fact, we
will only prove (5). The relation (6) can be treated similarly.

Now suppose W(ψ,Λ) is a frame for L2(R) with frame bounds A and B, and E(T, r) is a
frame for L2[−r, r] with frame bounds Ar and Br for some r > 0. Then [17, Thm. 1] implies
that

A

Br
≤

∑

s∈S
|ψ̂(sω)|2 ≤

B

Ar
for a.e. ω ∈ R

+. (9)

For the sake of brevity, in this proof we will denote the boxes used in the definition of density
for subsets of R+ by Kh(x), i.e., Kh = [e−h, eh) and Kh(x) = xKh, where h > 0 and x ∈ R+.

Let ǫ > 0. Since ψ is admissible, we can choose c > 0 such that
∫

R+\Kc

|ψ̂(ω)|2
ω

dω < ǫ. Further,

fix y ∈ R+ and h > c. Dividing inequality (9) by ω and integrating each term in (9) over
the box Kh(y

−1) yields

2h
A

Br
≤

∑

s∈S

∫

Kh(y−1)

|ψ̂(sω)|2

ω
dω ≤ 2h

B

Ar
. (10)

Then we make the decomposition

∑

s∈S

∫

Kh(y−1)

|ψ̂(sω)|2

ω
dω = I1(y, h) − I2(y, h) + I3(y, h) + I4(y, h),

where

I1(y, h) =
∑

s∈S∩Kh−c(y)

∫ ∞

0

|ψ̂(sω)|2

ω
dω,

I2(y, h) =
∑

s∈S∩Kh−c(y)

∫

R+\Kh(y−1)

|ψ̂(sω)|2

ω
dω,

I3(y, h) =
∑

s∈S∩(Kh+c(y)\Kh−c(y))

∫

Kh(y−1)

|ψ̂(sω)|2

ω
dω,

I4(y, h) =
∑

s∈S∩(R+\Kh+c(y))

∫

Kh(y−1)

|ψ̂(sω)|2

ω
dω.

Since W(ψ,Λ) is a frame for L2(R), [16, Thm. 2.1 (1)] implies that D+(S) < ∞. By
Lemma 2.1, there exists N < ∞ such that, for each t > 0, we have #(S ∩ Kt(x)) ≤
(t+1) supx̃∈R+ #(S∩K1(x̃)) ≤ (t+1)N for all x ∈ R+. Notice that this immediately implies
that also #(xS ∩Kt) ≤ (t+ 1)N for all x ∈ R

+.
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We first observe that

I1(y, h) = #(S ∩Kh−c(y))

∫ ∞

0

|ψ̂(ω)|2

ω
dω.

To estimate I2(y, h), note that if s ∈ Kh−c, then s(R+\Kh) = R+\Kh(s) ⊆ R+\Kc. There-
fore the contribution of I2(y, h) to the sum in (10) can be controlled by

I2(y, h) =
∑

s∈y−1S∩Kh−c

∫

R+\Kh

|ψ̂(sω)|2

ω
dω

=
∑

s∈y−1S∩Kh−c

∫

R+\Kh(s)

|ψ̂(ω)|2

ω
dω

≤ #(y−1S ∩Kh−c)

∫

R+\Kc

|ψ̂(ω)|2

ω
dω

≤ (h− c+ 1)Nǫ.

Since Kh+c\Kh−c can be covered by a union of at most 2c + 1 intervals of the form K1(x),
the term I3(y, h) can be estimated as follows:

I3(y, h) =
∑

s∈y−1S∩(Kh+c\Kh−c)

∫

Kh

|ψ̂(sω)|2

ω
dω ≤ (2c+ 1)N

∫ ∞

0

|ψ̂(ω)|2

ω
dω.

To estimate I4(y, h), note that if s 6∈ Kh+c, then sKh = Kh(s) ⊆ R+\Kc. Furthermore, each
interval in {Kh(s) : s ∈ S} can intersect at most h+ 1 of the others. Hence the contribution
of I4(y, h) can be controlled by

I4(y, h) =
∑

s∈y−1S∩(R+\Kh+c)

∫

Kh

|ψ̂(sω)|2

ω
dω

=
∑

s∈y−1S∩(R+\Kh+c)

∫

Kh(s)

|ψ̂(ω)|2

ω
dω

≤ (h+ 1)N

∫

R+\Kc

|ψ̂(ω)|2

ω
dω

≤ (h+ 1)Nǫ.

Combining these estimates, we see that

2h
A

Br
≤ #(S∩Kh−c(y))

∫ ∞

0

|ψ̂(ω)|2

ω
dω+(h−c+1)Nǫ+(2c+1)N

∫ ∞

0

|ψ̂(ω)|2

ω
dω+(h+1)Nǫ.
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Therefore

A

Br
= lim inf

h→∞

2h A
Br

2h

≤ lim inf
h→∞

inf
x∈R+

#(S ∩Kh−c(y))

2h

∫ ∞

0

|ψ̂(ω)|2

ω
dω + lim sup

h→∞

(h− c+ 1)Nǫ

2h

+ lim sup
h→∞

(2c+ 1)N

2h

∫ ∞

0

|ψ̂(ω)|2

ω
dω + lim sup

h→∞

(h+ 1)Nǫ

2h

= D−(S)

∫ ∞

0

|ψ̂(ω)|2

ω
dω +Nǫ.

Now letting ǫ go to zero yields A
Br

≤ D−(S)
∫ ∞
0

|ψ̂(ω)|2
ω

dω. The claim D+(S)
∫ ∞
0

|ψ̂(ω)|2
ω

dω ≤
B
Ar

can be treated similarly. This settles (5). Hence the theorem is proved. �

Remark 3.2. (a) In general the hypothesis that E(T, r) is a frame for L2[−r, r] for some
r > 0 is not restrictive, since it was shown by Jaffard in [11, Lem. 2] that E(T, r) is a frame
for L2[−r, r] for some r > 0 if and only if T is the disjoint union of a sequence with a uniform
density and a finite number of uniformly discrete sequences, i.e., of sequences ∆ which satisfy
inft1,t2∈∆,t1 6=t2 |t1 − t2| > 0. This is easily seen to be equivalent to 0 < D−(T ) ≤ D+(T ) <∞
(see, for instance, [9]).

However, W(ψ,Λ) being a frame for L2(R) does not imply E(T, r) being a frame for
L2[−r, r] for some r > 0. A counterexample for this fact was derived by Sun and Zhou in
[16, Ex. 2.1].

(b) Consider the case S = {aj : j ∈ Z}, a > 1 and T = bZ, b > 0. Then [10, Prop. 4.3]
shows that D−(S×T ) = D+(S×T ) = 1

b ln a
. Therefore Theorem 3.1 contains (1) as a special

case.

3.2. Some corollaries. Theorem 3.1 yields several results interesting in their own right,
which are all direct implications of this theorem.

It was stated as a conjecture in [10] and [15] that W(ψ,Λ) being a frame for L2(R) implies
D−(Λ) > 0. Several partial results have already been discovered. The following corollary in
fact generalizes the result from [16, Thm. 2.1 (2)], which states that W(ψ, S × T ) being a
frame for L2(R) implies D−(S) > 0.

Corollary 3.3. Let Λ = S×T ⊂ A, and let ψ ∈ L2(R) be admissible. If W(ψ,Λ) is a frame
for L2(R), and E(T, r) is a tight frame for L2[−r, r] for some r > 0, then D−(Λ) > 0.

The second corollary shows that a wavelet system can only form a tight frame provided
that the associated set of indices possesses a uniform affine density, thereby also delivering
the exact value of the frame bound in terms of the affine density of the set of indices and the
admissibility constant for the wavelet. This should be compared with the fact that the set of
indices of classical wavelet systems always possesses a uniform affine density [10, Prop. 4.3].
The following result moreover does provide one reason, why there does not exist a Nyquist
phenomenon for affine systems (see Subsection 3.3).
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Corollary 3.4. Let Λ = S × T ⊂ A, and let ψ ∈ L2(R) be admissible. If W(ψ,Λ) is a tight
frame for L2(R) with frame bound A, and E(T, r) is a tight frame for L2[−r, r] for some
r > 0, then Λ has uniform affine density and

A = D(Λ)

∫ ∞

0

|ψ̂(ω)|2

ω
dω = D(Λ)

∫ 0

−∞

|ψ̂(ω)|2

|ω|
dω. (11)

3.3. The Nyquist phenomenon. The following remark discusses the impact of Corollary
3.4 on the existence of a Nyquist density for affine systems.

Remark 3.5. We can view the necessary density condition (11) for W(ψ,Λ) to be a Parseval
frame for L2(R), where E(T, r) is a tight frame for L2[−r, r] for some r > 0, also from the
following perspective:

D(Λ) = 2‖ψ̂‖−2

L2(R, dω
|ω|

)
. (12)

Thus once W(ψ,Λ) constitutes an orthonormal basis for L2(R), and E(T, r) is a tight frame
for L2[−r, r] for some r > 0, we obtain (12) as a necessary condition. The wavelet system

being an orthonormal basis implies ‖ψ̂‖2 = 1. However, we do not have any control over the

constant ‖ψ̂‖−2

L2(R, dω
|ω|

)
. Thus although Λ has a uniform affine density in this case, the value of

it can range over the whole positive axis. In fact it can be shown that for each dilation factor
a > 1, there exists a wavelet ψ ∈ L2(R) such that W(ψ, {aj : j ∈ Z} ×Z) is an orthonormal
basis for L2(R) ([5, Ex. 4.5, Part 10]). Since D({aj : j ∈ Z} × Z) = 1

ln a
by [10, Prop. 4.3],

the affine density can attain each positive value. Thus Corollary 3.4 reveals one reason, why
wavelet systems do not possess a Nyquist density.

This consideration should be compared to recent results for Gabor systems [2], which show
that if a Gabor system G(g,Λ), where g ∈ L2(R) and Λ ⊂ R

2, forms an orthonormal basis
for L2(R), it has to satisfy

D(Λ) = ‖ĝ‖−2
2 .

In this situation ‖ĝ‖2 = 1 immediately implies D(Λ) = 1 in contrast to the wavelet systems,

for which the norm of ψ̂ needed for the computation of the uniform density is equipped with
a different measure.

4. Sufficient density conditions for wavelet frames

Up to now density conditions have only served as necessary conditions. In this section we
now show that density conditions can in fact be used to characterize the existence of wavelet
frames. To prove this result we need the following technical lemma.

Lemma 4.1. Let S ⊂ R+, and let f be in L1(R) with f ≥ 0 and f(x) ≤ a|x|α as |x| → 0
for some a, α > 0. If D+(S) <∞, then, for each ǫ > 0, there exists γ ∈ (0, 1) such that

∑

s∈S
f(sx)χ[0,γ)(s|x|) < ǫ for a.e. x ∈ R.
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Proof. Fix ǫ > 0, and let ν ∈ (0, 1) be chosen so that f(x) ≤ a|x|α for almost every
|x| ≤ ν. Since D+(S) < ∞, Lemma 2.1 shows the existence of some N[ν,1) < ∞ such that
#(S ∩ x[ν, 1)) ≤ N[ν,1) for all x ∈ R

+. Then, for each n ∈ N and almost every x ∈ R,
∑

s∈S
f(sx)χ[0,νn)(s|x|) ≤ a

∑

s∈S∩[0,|x|−1νn)

(s|x|)α

= a|x|α
∞

∑

j=n

∑

s∈S∩|x|−1[νj+1,νj)

sα

≤ a|x|α
∞

∑

j=n

N[ν,1)(|x|
−1νj)α

= aN[ν,1)

∞
∑

j=n

(να)j ,

which is finite. Thus we can choose n0 ∈ N such that
∑

s∈S
f(sx)χ[0,νn0 )(s|x|) < ǫ.

Setting γ = νn0 settles the claim. �

The next result shows that the existence of frames of band-limited admissible wavelets
with a certain decay condition can be characterized by using a condition on the density of
the set of dilations.

Theorem 4.2. Let S ⊂ R+, and let ψ be in L1(R)∩L2(R) and admissible with |ψ̂(ω)| ≤ a|ω|α

as |ω| → 0 for some a, α > 0, where ω = 0 is an isolated zero of ψ̂, and |ψ̂(ω)| = 0 for any
|ω| ≥ Ω. Then the following conditions are equivalent.

(i) There exists T ⊂ R such that E(T, r) is a frame for L2[−r, r], where r > 2Ω, and
W(ψ, S × T ) is a frame for L2(R).

(ii) 0 < D−(S) ≤ D+(S) <∞.

Moreover, if (ii) holds, then W(ψ, S×T ) is a frame for L2(R) for any T ⊂ R satisfying that
E(T, r) constitutes a frame for L2[−r, r], where r > 2Ω.

Proof. The implication (i) ⇒ (ii) follows immediately from Theorem 3.1.
Now suppose (ii) holds. First we will prove that D+(S) <∞ implies the existence of some

B <∞ satisfying
∑

s∈S
|ψ̂(sω)|2 ≤ B for all ω ∈ R. (13)

Employing Lemma 4.1 shows that for some ǫ > 0 there exists 0 < γ < 1 such that
∑

s∈S
|ψ̂(sω)|2χ[0,γ)(s|ω|) < ǫ for all ω ∈ R.

We now focus on the sum
∑

s∈S |ψ̂(sω)|2χ[γ,Ω)(s|ω|). Our hypotheses imply that there exists

M > 0 satisfying |ω||ψ̂(ω)| ≤M for each ω ∈ R. By Lemma 2.1, we have #(S ∩ ω[γ,Ω)) ≤
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N[γ,Ω) <∞ for all ω ∈ R+. Hence, for each ω ∈ R, we get
∑

s∈S
|ψ̂(sω)|2χ[γ,Ω)(s|ω|) ≤

∑

s∈S∩|ω|−1[γ,Ω)

M2s−2|ω|−2

≤ M2(|ω|−1γ)−2N[γ,Ω)|ω|
−2

= M2N[γ,Ω)γ
−2.

This settles (13).
Secondly, we employ the hypothesis D−(S) > 0. We claim that this implies that there

exists A > 0 such that
∑

s∈S
|ψ̂(sω)|2 ≥ A for all ω ∈ R. (14)

Since ω = 0 is an isolated zero of ψ̂, we can choose ǫ > 0 with ψ̂(ω) 6= 0 for each ω ∈ (0, ǫ).
Now Lemma 2.2 implies the existence of some interval I ⊂ R

+ of positive finite measure and
some positive constant NI satisfying

#(S ∩ ωI) > NI for all ω ∈ R
+. (15)

Let ω0 ∈ R+ be chosen so that ω0I ⊂ (0, ǫ). Since ψ̂ is continuous, we have |ψ̂(ω)| ≥ δ on
ω0I for some δ > 0. Now fix some ω ∈ R+. Then (15) implies the existence of some s0 ∈ S
such that s0 ∈ ω−1ω0I. This immediately yields

∑

s∈S
|ψ̂(sω)|2 ≥ |ψ̂(s0ω)|2 ≥ δ2,

thereby proving (14). Now the implication (ii) ⇒ (i) and the moreover-part follows from
(13) and (14) and [17, Cor. 1]. �

Remark 4.3. We point out that a related result on sufficient conditions for irregular
(weighted) wavelet frames was derived by Gröchenig in [8]. To emphasize the difference
to our Theorem 4.2, we observe that the focus in [8, Thm. 1] is on the introduction of
adaptive weights to compensate for local variations of the set of indices, thereby deriving a
weighted wavelet frame. The two results are distinct and complementary.

Next we briefly remark on whether it is possible to weaken the hypotheses of the previous
proposition and on a possible improvement.

Remark 4.4. (a) If ω is not an isolated zero of ψ̂, it is easy to check that the implication
(ii) ⇒ (i) does not automatically hold. For instance, if we let S = {2j : j ∈ Z}, for which

D−(S) = D+(S) = 1
ln 2

, and define ψ ∈ L2(R) by ψ̂ = χ[1, 3
2
), then W(ψ, S × T ) is not even

complete, since
⋃

j∈Z
2j[1, 3

2
) does not cover R. Thus it follows that there does not exist a

frame E(T, r), T ⊂ R, for L2[−r, r] for any r > 0 such that W(ψ, S×T ) is a frame for L2(R).

(b) One might further ask, whether it is possible to include the values of the frame bounds
of the frame from (i) in condition (ii). However, it is not too difficult to see that this is not
possible. One reason is that in fact there exists an abundance of possibilities for choosing
E(T, r) with different frame bounds as indicated by the moreover-part of Theorem 4.2, thus
changing the frame bounds of W(ψ, S × T ) while S remains the same.
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Now the question arises, whether it is also sufficient to consider density conditions con-
cerning the existence of Parseval frames, i.e., whether we can obtain a similar equivalence
in the situation of Parseval frames. However, the following result shows that this would
be too much to hope for. One reason for this is that Parseval frames are very sensitive to
perturbations of the indices, but density is not (see Lemma 2.3).

Proposition 4.5. For any ψ ∈ L1(R) ∩ L2(R) with |ψ̂(ω)| ≤ a|ω|α as |ω| → 0 for some

a, α > 0, where ω = 0 is an isolated zero of ψ̂, and |ψ̂(ω)| = 0 for any |ω| ≥ Ω, and for any
T ⊂ R satisfying that E(T, r) is a frame for L2[−r, r], where r > 2Ω, there exists S ⊂ R+

with positive finite uniform density such that W(ψ, S × T ) does not form a Parseval frame
for L2(R).

Proof. Let ψ ∈ L2(R) and T ⊂ R be chosen such that they satisfy the hypotheses of the
proposition. Let Ar and Br denote the frame bounds of E(T, r) in L2[−r, r]. By the hypothe-

ses, ψ̂ is continuous, hence there exists an interval I ⊂ R and δ > 0 such that |ψ̂(ω)| ≥ δ for all
ω ∈ I. Without loss of generality we can assume that I ⊂ R+ and that there exists j0 ≥ 2 so
that I is a proper subset of ( Ω

2j0−1 ,
Ω

2j0−2 ]. Let 0 < ǫ < 1
Br

. Setting m := ⌈( 1
Ar

− 1
Br

+ǫ)/δ2⌉+1,

we can choose m disjoint elements ak, 1 ≤ k ≤ m such that there exists U ⊂ ( Ω
2j0+1 ,

Ω
2j0

] of
positive measure satisfying that akU ⊂ I for all 1 ≤ k ≤ m. In particular, this implies that
ak > 2 for 1 ≤ k ≤ m. Now define S ⊂ R+ by S := {2j}j∈Z ∪{ak}

m
k=1. An easy computation

shows that S has a positive finite uniform density equal to 1
ln 2

. By [17, Thm. 1], it suffices
to show that provided

∑

s∈S
|ψ̂(sω)|2 ≥

1

Br

for all ω ∈ R
+,

there exists a set U ⊂ R of positive measure with

∑

s∈S
|ψ̂(sω)|2 >

1

Ar
for all ω ∈ U.

Lemma 4.1 proves that there exists some 0 < γ < 1 with

∑

s∈S
|ψ̂(sω)|2χ[0,γ)(sω) < ǫ for all ω ∈ R

+.

Noting that we can assume that γ = 2−j1Ω for some j1 ∈ Z by choosing γ slightly smaller if
necessary, we obtain that, for all ω ∈ (Ω

2
,Ω],

1

Br
≤

∑

s∈S
|ψ̂(sω)|2 =

0
∑

j=−∞
|ψ̂(2jω)|2 ≤

0
∑

j=−j1
|ψ̂(2jω)|2 + ǫ. (16)
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Now let ω ∈ U . Using (16), we compute

∑

s∈S
|ψ̂(sω)|2 =

j0
∑

j=−∞
|ψ̂(2jω)|2 +

m
∑

k=1

|ψ̂(akω)|2

≥

j0
∑

j=j0−j1
|ψ̂(2jω)|2 +

m
∑

k=1

|ψ̂(akω)|2

=

0
∑

j=−j1
|ψ̂(2j2j0ω)|2 +

m
∑

k=1

|ψ̂(akω)|2

≥
1

Br

− ǫ+mδ2 >
1

Ar
.

Hence the proposition is proved. �

Notice that once there exists one frame E(T, r) for L2[−r, r], where T ⊂ R and r > 2Ω,
such that W(ψ, S × T ) is a frame for L2(R), the moreover-part of Theorem 4.2 implies that
W(ψ, S×T ) is a frame for any such system E(T, r). Thus the previous result indeed proved
that we cannot expect a similar equivalence as in Theorem 4.2 for Parseval frames.
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