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Shearlets as Feature Extractor for Semantic Edge Detection: The

Model-Based and Data-Driven Realm

Héctor Andrade-Loarca1, Gitta Kutyniok1,2,3 and Ozan Öktem4

Abstract

Semantic edge detection has recently gained a lot of attention as an image processing task, mainly due
to its wide range of real-world applications. This is based on the fact that edges in images contain most
of the semantic information. Semantic edge detection involves two tasks, namely pure edge detecion and
edge classification. Those are in fact fundamentally distinct in terms of the level of abstraction that each
task requires, which is known as the distracted supervision paradox that limits the possible performance
of a supervised model in semantic edge detection. In this work, we will present a novel hybrid method to
avoid the distracted supervision paradox and achieve high-performance in semantic edge detection. Our
approach is based on a combination of the model-based concept of shearlets, which provides probably
optimally sparse approximations of a model-class of images, and the data-driven method of a suitably
designed convolutional neural netwok. Finally, we present several applications such as tomographic
reconstruction and show that our approach signifiantly outperforms former methods, thereby indicating
the value of such hybrid methods for the area in biomedical imaging.

Keywords: Multiscale geometric analysis, Harmonic analysis, Deep learning, Feature extraction.

Mathematics Subject Classification: 42Bxx, 35A18, 65T60, 68T10.

1 Introduction

In computer vision, semantic edge detection is the task of detecting edges and object boundaries in natural
images and classifying the points in those edges from a finite set of classes, which, for instance, represent the
objects the edges belong to [38] or the orientation of the edge at that particular point [3]. The recent interest
from the research community in semantic edge detection is mainly driven by its far-reaching applications in
imaging related tasks such as object recognition, semantic segmentation, and image reconstruction.

Semantic edge detection combines two different classification tasks. The first is classical category-agnostic
edge detection, which can be viewed as a pixel-wise binary classification for determining whether a pixel
belongs to an edge or not. The second is the recognition of the classes of pixels in an image that belong to
edges.

One can perform semantic edge detection using a model-based or a data-driven approach; each comes
with their strengths and shortcomings. The main idea presented here is to overcome the shortcomings by
combining elements of model-based and data-driven approaches for semantic edge detection. We remark that
this objective follows a common thread of current research, namely aiming for an optimal combination of
model-based or a data-driven methodologies.

Our conceptually general approach aims to combine advances from several fields. First, it utilizes properties
that the representation systems of shearlets has, foremost to optimally represent singularities in signals [13].
Second, it also takes advantage of microlocal analysis for describing how singularities transform when acted
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upon by a wide range of operators [17]. Finally, it in addition leverages on the proven track record that
convolutional neural networks has had in image classification [23].

1.1 Model-Based Semantic Edge Detection

Many approaches to identify singularities in images are model-based. These methods usually involve two
steps: a filtering step to enhance edge-like features and a classification step to identify pixels belonging to
edges.

The aforementioned features are extracted using simple rules and heuristics, e.g., convolution with local
difference filters correspond to operating on the image with Roberts [32], Sobel [33], and Prewitt [28] operators.
In a similar manner, the well-known Canny edge detector [9] corresponds to convolving the image with a
Gaussian kernel to further identify those pixels where the gradient is high.

There have been attempts in the past to also model the semantic information of detected edges as in [15].
This work was in fact among the first publications to propose a principled way to combine generic object
detectors with bottom-up contours for semantic edge detection.

Determining the orientation of an edge is particularly important in inverse problems, since this information
is essential in relating edges in data to those in the signal [17]. Wavefront set extraction refers to semantic
edge detection, where the classification of the edges is based on their orientation. The continuous theory
of wavefront set resolution via multiscale directional systems (e.g., shearlets [18]) allows one to design
model-based approaches for wavefront set extraction. These are essentially a digital implementation of the
continuous theory, which filters the images before performing the corresponding classification. In Section 3,
the concept of a wavefront set will be formally defined as well as the ability of shearlets to resolve it.

An example of such an approach is the shearlet-based algorithm in [36], which uses digital shearlets to
filter an image in order to highlight the features corresponding to different orientations and scales. One then
performs a simple clustering classification algorithm to classify the corresponding directions. A more recent
approach is [30, 31], where a general directional system, known as symmetric molecules, is used to filter the
directional features of images to then classify them to be edge, ridge, or blob.

These model-based approaches for semantic edge detection rely on ‘first principles’ from approximation
theory and are easy to interpret, hence can also easier to improve upon. On the other hand, the use of rigid
heuristics regarding the characterization of singularities makes it difficult to utilize these methods in real
world application, where the data represents empirically defined function classes.

1.2 Data-Driven Semantic Edge Detection

More recently, as part of the success stories of machine learning and its successes in addressing various tasks in
modern computer vision, a set of deep neural network architectures for semantic edge detection [38, 4, 24, 39]
have appeared. One needs to stress that these have set a new state-of-the-art of semantic edge detection.

In broad terms, these methods use similar principles as the model-based ones, i.e., learning filters using
convolutional layers and subsequently classifying the corresponding edge pixels by sigmoid or softmax
classifiers. Since each convolutional layer represents a level of abstraction of the features in the target images,
the initial layers will represent ‘simple’ edges, whereas deeper layers will represent more ‘complex’ features.
In that sense, the two steps involved in semantic edge detection, which are semantic-agnostic edge detection
and classification followed by edge classification, are conceptually far from each other. Therefore, there is no
straightforward way of jointly learning how to extract and classify the edges. This limitation in semantic
edge detection is known as the distracted supervision paradox [24].

1.2.1 The Distracted Supervision Paradox

As mentioned before, semantic-agnostic edge detection involves locating fine detailed edges by capturing
discontinuities among image regions. This makes mainly use of low level features, whereas edge classification
requires identifying high-level semantics by summarizing different appearance variations of the target classes.
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This distracted supervision paradox prevents state-of-the-art end-to-end semantic edge detection method
based on deep supervision.

On the other hand, one could directly use high-level convolution features for semantic classification and
low-level convolutional ones for non-semantic edge detection by jointly optimizing over the two corresponding
losses. However, such a straightforward approach was in [38] shown to actually decrease the performance
compared with directly learning semantic edges without deep supervision.

Given the seriousness of this limitation, researchers have tried non-standard ways to avoid the distracted
supervision paradox. In [38] the authors propose the CASENet architecture based on a concatenation of
convolutional residual networks. They used a new skip-layer architecture, where category-wise edge activations
at the top convolutional layers are shared and fused with the same set of bottom layer features. Training
such a network with a multi-label loss function on the fused activations leads to state-of-the-art on semantic
edge detection. In this case, the low-level features are used to augment top classifications. More recently,
a new training approach for CASENet was proposed in [39] that is referred to as the simultaneous edge
alignment and learning (SEAL). Here, one simultaneously aligns ground truth edges and learns semantic edge
detectors. Inspired by these approaches, [24] proposed an end-to-end architecture using convolutional residual
layers followed by an information converter layer to transform information coming from low-level features
and change it into different representations. This is needed for training category-agnostic edge detection and
semantic edge classification, respectively. It allows for a single deep convolutional neural network backbone
representation while outperforming CASENet and SEAL. The approach based on using information converter
is known as diverse deep supervision.

The main drawback of these approaches lies in the complexity of the related deep neural network
architectures, which represents an elaborate way to avoid the distracted supervision paradox. Furthermore,
the large number of network parameters makes those methods slow and difficult to train.

A new approach, based on a novel architecture DeNSE for wavefront set extraction was recently introduced
in [3]. In this work the digital shearlet transform is used to map the input image to a representation that is
well adapted for edge detection and further classification. The power of multiscale directional system for
representing singularities allows one to use a significantly smaller architecture to obtain state-of-the-art results
in semantic edge detection. Furthermore, if the specific semantic edge detection task has N target classes,
the full problem can be seen as a multi-label classification class with N + 1 target classes with the extra class
corresponding to the class of edge pixels. In addition to the heavy lifting performed by the shearlet transform
on the classification task by offering such a convenient representation of edges, the DeNSE architecture also
separates the multi-label classification task into N + 1 individual binary classifiers.

This strategy allows the network to achieve high accuracy, since binary classification is significantly
easier than the multi-label classification. In addition, the separation of the multi-label classification problem
into small binary classifiers avoids the model to encounter the distracted supervision paradox. The edge
detection and the edge classification, which originally needed different levels of abstraction, are now learned
independently. DeNSE was for these reasons able to outperform all other available semantic edge detection
methods where the classes were the orientations of the edges. In Section 3.3 we present a way to avoid the
distracted supervision paradox in the case of wavefront set extraction. Moreover, this concept is extended to
general semantic edge detection in Section 4.

We will however first introduce the important ideas that motivate using multiscale directional represen-
tations to sense a signal on different scales and directions. This will also show how these representations
optimally represent multidimensional data such as images by extracting information on their singularities.
This will provide the necessary background in understanding how multiscale directional representations, like
shearlets, help in reducing the complexity of edge detection and classification.

1.3 Multiscale Directional Systems as Feature Extractors

Multiscale systems play an important role in applied and computational harmonic analysis for the analysis of
multiscale features of a signal. In the case of 1D signals, wavelets and similar systems have been used to
detect the singular support [25]. This is achieved by studying the asymptotic behavior of the corresponding
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localized coefficients as the scale converges to zero. Rapid decay then translates to regularity properties of
the function itself.

One can in this sense regard the wavelet transform as a feature extractor that is well suited for detecting
singularities. The feature vector would then be the wavelet coefficients. However, singularities of 2D signals
are not necessarily point-like. In fact, they may very well be curve-like structures (curvilinear singularities).
Wavelet type expansions are, due to their isotropic nature, therefore less suitable for representing such
singularities.

Geometric multiscale analysis. The area of geometric multiscale analysis can be regarded as a sub-field
of applied and computational harmonic analysis for the study of directional multiscale systems, which address
the aforementioned limitation of wavelets. Among the first examples are curvelets [8], which use parabolic
(non-isotropic) scaling and rotation to efficiently represent curvilinear singularities.

Curvelets represented a breakthrough in the optimal approximation of curvilinear singularities — formalized
as the model of cartoon-like functions — and can be seen as the starting point of geometric multiscale analysis.
However, the system comes with a major practical drawback. The rotation operator used for varying the
orientation of the coefficients in the system does not have a digitization that results in an implementation,
which is consistent with the continuous theory [7].

One main reason for the development of the shearlet system [13] was in fact to overcome the aforementioned
limitation associated with curvelets. shearlets use the shearing operator — instead of the rotation operator —
to vary the orientation of the coefficients. This allows for a consistent and faithful digitization. In this sense
shearlets provide a uniform concept for the continuum and digital realm.

The implementation of shearlets indeed inherits most of the theoretical properties of the continuous
transform, including the optimal representation of the model class of cartoon-like functions [19]. Furthermore,
there even exists a set of shearlet generators with compact support that also provide optimally sparse
approximations of cartoon-like functions, thereby allowing high spatial localization [20]. Similar to regarding
the wavelet transform as a feature extractor for point singularities, the shearlet transform can be used to
extract information relevant for curvilinear singularities detection, like edges in images [22]. At the same time,
shearlets do allow the computation of the orientation of curvilinear singularities as well. This establishes a
connection to the concept of microlocal wavefront sets. One can in fact prove that the microlocal wavefront
set can be characterised through the asymptotic decay of the shearlet coefficients [18]. Fixing the shearing
and location parameters amounts to characterizing the wavefront set at a specific scale (resolution).The
formal definition of continuous shearlets and their connection to the wavefront set is given in Section 3.1.

Digital signals. Once an analog signal represented by a real valued function — one can think of an image
— is digitized, it is not meaningful to regard its singularities in the sense of lack of regularity in analysis.
For such a signal, the notion of singularity refers to an abrupt change in intensity values, which in imaging
applications typically corresponds to the presence of an edge. It is indeed challenging to define a precise
notion of a digital edge extractor that is practically usable and consistent with a corresponding continuous
version [3]. Despite this problem, it is still possible to approximate a singularity detector in the digital case,
by using diverse heuristics. An approach based on the shearlet transform of an image is presented in detail in
Section 3.2, see also [3].

In general, deep learning models employed for imaging tasks — including those for semantic edge detection
— which involve convolutional layers can be divided in different separate stages, where feature extraction step
is done at first using convolutional filters playing the role of dictionary elements, to transform the data in a
particular feature vector which is convenient for the specific task. In most of the cases, the harder part of the
whole process is precisely the feature extraction containing most of model parameters.

It is conceivable that applying a specific, analytically defined, feature extraction such as the shearlet
transform as a pre-processing step can benefit the learning process by reducing the complexity of the overall
task. Intuitively, such as pre-processing should perform most of the heavy lifting and reducing the number of
parameters to be learned. This idea was applied to semantic edge extraction for the case of wavefront set
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extraction (see [3]). But it seems natural to extend this concept to other tasks of semantic edge extraction,
and we will cover this idea carefully in the next sections.

1.4 Applications of Semantic Edge Detection

The concept of edge detection is one of the principal problems in the field of image processing and computer
vision. This is due to the fact that edges in images represent boundaries of objects and carry most of the
information of the associated physical scene [34, 27, 5, 6]. It has also been shown in [27] that the human
visual cortex performs multiple operations of image processing, the first of which is rough sketching involving
edge detection in order to reduce the amount of information that needs to be fully acquired having that the
visual cortex is sparsely connected.

Based on its important role in information processing for imaging, solely edge detection is utilized in a
wide range of applications in computer vision and other fields. In particular, detecting edges allows to track
objects within different frames of a video by tracking the points in their boundaries. This can, for instance,
be used for object depth estimation [2] an 3D image reconstruction.

Moreover, semantic edge detection has a deeper impact in computer vision than solely edge extraction. If
the edge classes are defined by the object the corresponding edge belongs to, one can, in particular, perform
object proposal generation [4], occlusion reasoning [1], object detection [11, 12], and image-based localization
[29].

In the special case when the performed semantic edge detection includes the extraction of the wavefront
set as well, the acquired semantic edges can be used to solve a wide range of inverse problems. One particular
class of examples are inverse problems whose forward operator is a Fourier integral operator, which are
operators arising from biomedical imaging problems such as computed tomography (CT) and magnetic
resonance imaging (MRI). Section 7.3 is dedicated to an application in inverse problems of special interest
in biomedical imaging, namely CT image reconstruction. To solve this, we exploit the fact that the X-ray
transform is a Fourier integral operator, so the wavefront set of the image is prescribed by the wavefront set
of the projected data. We refer to Section 2.4 for more details.

1.5 Contributions

The main contributions of our work are three-fold:

• Hybrid semantic edge detection by using the carefully designed model-based shearlet transform to
perform semantic edge detection on a convenient image representation for directional edge extraction.
This concept is first introduced for the particular case of wavefront set extraction (Section 3) and then
extended to general semantic edge detection (Section 4).

• Distracted supervision paradox avoidance by splitting the N -classes semantic edge detection into
N + 1 individual classifiers (Section 33.3).

• Applications of semantic edge detection to inverse problems by introducing the micro-canonical
relation that prescribes the wavefront set of an image from the wavefront set of its transformation under
a forward model. We, in particular, apply this to the inverse problem of Computed Tomography (CT)
(Section 7).

In order to evaluate our novel method, we present benchmarks on the human-annotated Semantic
Boundaries Dataset (SBD) [14] and a custom dataset made of random ellipses and analytically defined
semantic edges.
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2 Microlocal Analysis

2.1 Basic Definitions and Properties of Distributions

Distributions appear in physics in various forms, e.g., the Dirac δ-function is widely used for describing the
density of a point mass. The δ-function is described as a positive function with support at a single point that
integrates to 1. It is however easy to see that there are no functions with these properties. Still, one can
compute with such function and get reasonable results. Next, distributions also arise in mathematics and in
particular so in the theory of partial differential equations (PDEs). For example, fundamental solutions to
PDEs are usually singular distributions and the behaviour of the singularities of these distributions encodes
the behaviour of the solutions. The aim of distribution theory is to formalize the definition and mathematical
calculus of distributions. In the following, we outline the basic parts of distribution theory that are necessary
for microlocal analysis.

Let Ω ⊂ Rn be an open set and E(Ω) := C∞(Ω) is the vector space of real (or complex) valued smooth
functions on Ω. Next, D(Ω) := C∞0 (Ω) is the corresponding set of smooth functions that are compactly
supported in Ω. Distributions are now continuous linear functionals (with the weak-* topology) on these
function spaces.

A more precise definition requires describing the topologies for E(Ω) and D(Ω). The space E(Ω) is a
Fréchet space with the family of semi-norms

dα,K(f) := sup
x∈K

∣∣∂αf(x)
∣∣ where K runs over all compact subsets K ⊂ Ω. (2.1)

Hence, a sequence of functions fn converges to f in E(Ω) if and only if all its derivatives converge uniformly on
compact subsets. In particular, E(Ω) is Fréchet space. The topology on D(Ω) is more complicated to define.
A sequence fn converges in D(Ω) to f if there exists a compact set K such that supp fn ⊂ K ,supp f ⊂ K,
and all derivatives of fn converge uniformly in K.

Definition 2.1. The set E ′(Ω) is the topological dual of E(Ω), i.e., the space of continuous linear functionals
on E(Ω). Elements in E ′(Ω) are called compactly supported distributions on Ω. Likewise, the set D′(Ω) is
the topological dual of D′(Ω), i.e., the space of continuous linear functionals on D(Ω). Elements in D′(Ω) are
called distributions on Ω.

Next, to define the support of a distribution we first observe that if Ω0 ⊂ Ω is an open subset, then D(Ω0)
is a closed subspace of D(Ω). Furthermore, there is a natural restriction map D′(Ω)→ D′(Ω0) for any open
subset. This ensures that the following definition is well-defined.

Definition 2.2. Let f ∈ D′(Ω). The support supp f of f is the smallest closed set K such that the restriction
of f to Ω \K is 0.

Distributions are frequently called ‘generalised functions’ and the next example motivates this alternative
terminology. If f ∈ L1

loc(Ω) (a locally integrable function), then f is a distribution with the standard definition

f(u) :=

∫
Ω

u(x)f(x) dx for u ∈ D(Ω).

The map L1
loc(Ω)→ D′(Ω) is injective, which means that f is almost everywhere determined by the distribution.

In particular, every smooth function defines a distribution and the support of a function as a distribution
coincides with its support as a function. Thus, we obtain the following inclusions:

D(Ω) ⊂ E ′(Ω) ⊂ D′(Ω) and E(Ω) ⊂ D′(Ω).

The most common example of a distribution that is not a function is the Dirac δ-distribution δx0
at a point

x0 ∈ Ω. It is defined by δx0 : D(Ω)→ R as

δx0
(f) = 〈δx0

, f〉 = f(x0).
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This is a distribution with support and singular support equal to {x0}.
Next, we define derivatives of distributions. From the definition, it is clear that any distribution can

be arbitrarily often differentiated and the result will again be a distribution. For example, any function
in L1

loc(Ω) has distributional derivatives of any order. Thus, distribution theory can be thought of as the
completion of differential calculus, similar to how Lebesgue integration theory is a completion of integral
calculus.

Definition 2.3. The partial derivative ∂αu of u ∈ D′(Ω) is defined by

(∂αu)(f) := (−1)|α|u
(
∂αf

)
for f ∈ D(Ω).

Finally, to extend the notion of a Fourier transform to distributions, it is convenient to introduce a third
space of distributions. This is the space of Schwartz distributions S ′(Rn) (or tempered distributions) that is
defined as the topological dual of the space S(Rn), which are smooth functions in Rn where the following
semi-norms are finite:

dα,β(f) := sup
x

∣∣xα∂βf(x)
∣∣ (2.2)

This space is a Fréchet space and tempered distributions is the dual of S(Rn). One can now define the Fourier
transform of a tempered distribution u ∈ S ′(Rn) as

û(f) := u(f̂) for f ∈ S(Rn).

By duality (using the Plancherel formula) one can show that the Fourier transform with the above definition
extends to a weak-* continuous linear map from S ′(Rn) to S ′(Rn).

As a final note, the above constructions extend to functions on manifolds. Microlocal analysis deals with
the detailed analysis of how singularities of distributions can be localized in phase space. This leads to the
notion of wavefront sets, which refines the notion of singular support.

2.2 The Wavefront Set

The wavefront set of a distribution describes simultaneously the location and ‘direction’ of its singularities.
The starting point is the well-known fact that a compactly supported function or distribution is infinitely
differentiable if and only if its Fourier transform decays as O

(
|ξ|−m

)
as |ξ| → ∞ for every m = 1, 2, . . .. This

characterizes the singular support sing supp(f) ⊂ Rn, which is defined as the complement of the largest open
set where f is C∞.

The singular support is however not invariant under smooth change of coordinates, so it is difficult to use
it for understanding how an operator transforms the singularities of a distribution. To address this drawback,
we first localize the above characterization to a point x0 ∈ Rn by multiplying with a smooth cut-off that
is non-zero at x0. A further localization (micro-localization) is obtained by identifying those ‘directions’ in
the frequency space where the already localized Fourier transform does not decay sufficiently fast. This
singles out those directions (if there are any) that causes f to be singular at x0. In particular, f ∈ D′(Ω)
has a singularity at x0 ∈ Ω in direction ξ0 ∈ Rn \ {0} if for any smooth cutoff function ψ at x0, the Fourier

transform ψ̂f does not decay rapidly in any open conic neighbourhood of the ray {sξ0 : s > 0}. The wavefront
set of f ∈ D′(Ω) can now be defined as the set of all tuples (x0, ξ0) such that f is singular at x0 in direction
ξ0. With this definition, the wavefront set is a closed subset of Rn × (Rn \ {0}) that is conic in the second
variable, i.e., it can be seen as a subset of Rn × Sn−1.

The wavefront set can also be defined in an equivalent manner as a subset of the cotangent bundle of
Rn with the zero section removed, i.e., as a subset of T ∗(Rn) \ {0}. Such a definition has the advantage
that it extends readily to distributions on smooth manifolds, which is required in many applications such
as tomographic imaging. We will therefore adopt the viewpoint where the wavefront set is a subset of the
cotangent bundle. Hence, before stating the formal definition, we make a small digression into differential
geometry.
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Let M be a smooth manifold and let Ox denote the algebra of smooth functions defined in a neighbourhood
of x ∈M . Any functional t : Ox → R such that t(fh) = t(f)f(x) + f(x)t(h) for f, h ∈ Ox is called a tangent
vector in M at x. The vector space of all tangent vectors at x, which is denoted by Tx(M), is called the
tangent space of M at x. Its dual vector space, denoted by T ∗x (M), is called the cotangent space of M at
x. An element τ of the cotangent space is called a covector (or differential form of degree 1) at x. Next, if
M0 ⊂ M is sub-manifold of M , then t is tangent to M0 if t(f) = 0 for any function f ∈ Ox that vanishes
in M0. Any functional τ ∈ T ∗x (M) such that τ(t) = 0 for any tangent vector t to M0 is called a conormal
covector to M0 at x. Finally, the tangent bundle T (M) and the cotangent bundle T ∗(M) are defined as the
union of the tangent and cotangent spaces as x ∈M varies, i.e.,

T (M) :=
⋃
x∈M

Tx(M) and T ∗(M) :=
⋃
x∈M

T ∗x (M) =
{

(x, η) : x ∈M,η ∈ T ∗x (M)
}
.

Definition 2.4. Let M be a smooth manifold and f ∈ D′(M). We say that f is microlocally smooth at
(x0, ξ0) ∈ T ∗(M) \ {0} if there exists a neighbourhood U ⊂ V of x0 and ψ ∈ C∞0 (U) with ψ(x0) 6= 0 and a
conic neighbourhood Γ of ξ0 such that for constants Cm we have∣∣(ψ̂f)(ξ)

∣∣ ≤ Cm(1 + |ξ|
)−m

for ξ ∈ Γ with m = 1, 2, . . .. (2.3)

The C∞-wavefront set WF(f) ⊂ T ∗(M) \ {0} is the set of (x0, ξ0) where f is not microlocally smooth.

The wavefront set is a closed set that is conic in the ξ-variable, i.e., (x, ξ) ∈WF(f) if and only if (x, λξ) ∈
WF(f) for any λ > 0. Next, it is clear that f is equal to a C∞-function near x whenever (x, ξ) 6∈ WF(f)
for all ξ 6= 0. In fact, the x-projection of WF(f) equals the singular support of f [16, Proposition 8.1.3], so
the wavefront set contains the information about the location of singularities. Furthermore, WF(f) is also
invariant under a diffeomorphic change of variables, which is not true for the singular support.

When M ⊂ Rn is an open set, then the differentials dx1,dx2, . . . ,dxn are a basis of T ∗x (Rn) for any
x ∈ Rn. Hence, any element in T ∗x (Rn) can be written as

ξdx = ξ1dx1 + . . .+ ξndxn ∈ T ∗x (Rn) with ξ ∈ Rn.

The tangent bundle of M is therefore isomorphic to M × Rn, so the cotangent bundle has the structure
T ∗(M) = M × (Rn)∗ where (Rn)∗ is the space dual to Rn.

To give some examples, if f ∈ D′(Rn) is a smooth density on the hypersurface xn = 0, i.e., f(x) =
f(x′, xn) = g(x′)δ0(xn) for some g ∈ C∞(Rn−1), then

WF(f) = {(x′, 0; 0, ξn) : x′ ∈ supp(g) and ξn 6= 0}.

Another example is when f is the characteristic function of a domain Ω ⊂ Rn with smooth boundary. Then
WF(f) is

WF(f) =
{

(x, ξdx) : x ∈ ∂Ω and ξ is normal to ∂Ω at x
}
.

Furthermore, if f is a linear combination of characteristic functions on sets with smooth boundaries, then
WF(f) is the union of the conormal bundles to the individual sets unless cancellation occurs along shared
boundaries. Further examples are given in [17, Section 4].

2.3 Characterization of Visible Singularities

Having defined the notion of a wavefront set, we now turn our attention to characterizing how an operator
transforms the wavefront set. This is one of the central questions in microlocal analysis and it turns out that
useful results can be obtained for certain classes of operators.

Let M and N be smooth manifolds and consider an operator P : D′(M)→ D′(N). If P is a differential
operator, then it one can show that it does not increase the wavefront set. This is a special case of a more
general result that shows the same result when P is a pseudodifferential operator [17, Theorem 14]:

sing supp(P (f)) ⊂ sing supp(f) and WF
(
P (f)

)
⊂WF(f)
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with equality if P is in addition elliptic, i.e.,

sing supp(P (f)) = sing supp(f) and WF
(
P (f)

)
= WF(f).

Hence, a pseudodifferential operator may spread the support of a function f , but it does not spread its singular
support or wavefront set. This is referred to as the pseudolocal property and it has important consequences
for inverse problems. In an inverse problem one often seeks to (approximately) invert a pseudodifferential
operator P by another operator Q with an integral representation that is similar to P . The pseudolocal
property would then imply that the singularities of QPf are identical to those of f , so this approximate
inversion can be designed to recover the singularities of f .

Fourier integral operators (FIOs) is an even wider class of operators that contain the pseudodifferential
operators as a special case. FIOs are linear and defined in terms of amplitudes and phase functions, see [17,
Definition 7] for the precise definition. They arise naturally when one seeks to represent solutions of PDEs
and in inverse problems, e.g., FIOs model the solution operators of hyperbolic PDEs as well as a variety of
integral transforms, like the Radon transform and its generalizations. One of the main results of microlocal
analysis is the Hörmander-Sato Lemma [16, Theorem 5.4], which states that if P : D′(M)→ D′(N) is a FIO,
then

WF
(
P (f)

)
⊂ C ◦WF(f) for f ∈ E ′(M). (2.4)

Here, C ⊂ T ∗(N)× T ∗(M) is the (microlocal) canonical relation associated to P , see [17, eq. (52)] for its
formal definition and [17, Definition 8] for how to interpret C ◦D for D ⊂ T ∗(M). In (2.6) we write out the
canonical relation for the Radon transform, which is an example of a FIO that is not a pseudodifferential
operator.

2.4 Applications to Tomographic Imaging

Data in planar X-ray transmission tomography can in a simplified setting be modelled as samples of the
(classical) 2D Radon transform. This is an integral transform that maps a function/distribution f ∈ D′(R2)
to a function/distribution g on lines in R2. A more explicit definition requires introducing coordinates on the
manifold of lines in R2. Any line ` ⊂ R2 can be described uniquely by (θ, p) ∈ [0, π]× R through

` =
{
x ∈ R2 : x = s 7→ pω(θ) + sω(θ)⊥

}
where

{
ω(θ) := (cos θ, sin θ) ∈ S1

ω(θ)⊥ := (− sin θ, cos θ).

Hence, (θ, p) ∈ [0, π]×R serves as coordinates for a sub-manifold M of lines in R2, i.e., M ⊂ [0, π]×R. Using
these coordinates, we can express the Radon transform of f ∈ D′(R2) as

g = R(f)(θ, p) :=

∫ ∞
−∞

f
(
pω(θ) + sω(θ)⊥

)
ds for (θ, p) ∈M.

One can show that R is a continuous map from L1(R2) to L1(M). There is a rich mathematical theory
that investigates properties of such transforms. Particular focus is on injectivity, deriving explicit inversion
formulas, and characterizing the range, see [26] for a nice survey.

A natural task in tomographic imaging is to reconstruct f from g = R(f), preferably by using a stable
recovery scheme. A closely related task is to recover the wavefront set of f from the wavefront set of data
g ∈ D′(M), which is a subset of T ∗(M). This involves taking the Fourier transform of a localized version of g.
To do that, we make use of the aforementioned coordinates on M. One can extend g periodically in θ and
take localizing functions ψ with support in θ less than a period, which allows us to view ψg as a function on
R2. Hence, its two-dimensional Fourier transform can be calculated using these coordinates. Next, let dθ and
dp be the standard basis of T ∗(θ,p)(M) where the basis covector dθ is the dual covector to ∂/∂θ and dp is the

dual covector to ∂/∂p. One can also view (x; rdx) as the vector (x; r) where x ∈ Ω and r is a tangent vector
at x. In a similar way, (θ, s; adθ + bdp) can be viewed as the vector (θ, p; a, b).

The next theorem characterises those singularities of f ∈ D′(R2) that can be recovered from Randon
transform data g = R(f), see [17, Corollary 1] for its proof.
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Theorem 2.5. Let f ∈ D′(R2) and g = R(f). Then

(x0, ξ0dx) ∈WF(f) =⇒
(
θ0, x0 · ω(θ0); s

(
−x0 · ω(θ0)⊥dθ + dp

))
∈WF(g)

whenever θ0 ∈ [0, π] and s 6= 0 are such that ξ0 = sω(θ0). Likewise, if (θ0, p0) ∈ [0, 2π]× R and q ∈ R, then(
θ0, p0; s(−qdθ + dp)

)
∈WF(g) =⇒ (x0, ξ0dx) ∈WF(f)

whenever x0 := p0ω(θ0) + qω(θ0)⊥ and ξ0 := sω(θ0).

A key step in the proof is to show that the Radon transform is an elliptic Fourier integral operator. One
can then refer to a stronger version of the Hörmander-Sato Lemma in (2.4) for elliptic FIOs [35] and conclude
that

WF
(
R(f)

)
= C ◦WF(f) whenever f ∈ D′(R2). (2.5)

Here, C is the associated canonical relation and the next step is to explicitly calculate it for the Radon
transform [17, Theorem 17]:

C =
{(
θ, p, s(−x · ω(θ)⊥dθ + dp);x, sω(θ)dx

)
∈ T ∗(M) :

(θ, p) ∈M, x ∈ R2, s 6= 0, x · ω(θ) = p
}
. (2.6)

The claims in Theorem 2.5 now follows from combining (2.5) and (2.6).
Theorem 2.5 implies in particular that the Radon transform R detects singularities of f perpendicular

to a line included in the manifold M. These singularities a referred to as visible, whereas singularities of f
in other directions do not show up in data g = R(f) (invisible singularities). In particular, if f is a sum of
characteristic functions of sets with smooth boundaries, then the tangent line to any point on the boundary
of a region is normal to the wavefront direction of f at that point. Hence, a singularity of f at a boundary
point x is detectable if there is a line in M that is tangent to x.

The above analysis for the Radon transform can also be applied to other operators relevant for tomographic
reconstruction. One is the backprojection R∗ which maps data to image space by integrating g ∈ L1(M) over
all lines in M that goes through x:

R∗(g)(x) :=

∫ 2π

0

g
(
θ, x · ω(θ)

)
dθ for g ∈ L1(M).

Clearly, R∗ maps data to an image but it is not an inverse or R. However, applying R∗ to data g = R(f) is
the same as R∗R(f), and it turns out that R∗R is an elliptic pseudodifferential operator of order −1 [17,
Theorem 13 and eq. (42)]. Hence, by the general theory of microlocal analysis, the backprojection may
spread out the support of the function f , but it does not spread out its singular support or wavefront set.

Another related operator that maps the data to an image is the filtered backprojection (FBP) operator:

FBP(g) := R∗(k ~ g) where k = R∗(K).

The ‘~’ above is a 1-dimensional convolution along p-variable and if g = Rf , then FBP(g) = f ∗K where ‘∗’
is the 2-dimensional convolution. The idea in FBP is now to choose the reconstruction kernel k such that
K ≈ δ. The FBP operator is, just like the backprojection, a pseudodifferential operator [17, Example 8], so it
could spread the support of the function f , but it does not spread its singular support or wavefront set.

We conclude with mentioning the lambda-reconstruction operator [17, eq. (24)]. This operator is similar
to FBP, but instead of recovering f it aims to to recovers its singular support and wavefront set. The main
advantage of the lambda-reconstruction operator is that it is local, so one only needs to include lines through
a neighbourhood of a point in order to recover the behaviour of f at that point. The lambda-reconstruction
operator is an elliptic pseudodifferential operator of order one, so it recovers the singular support and
wavefront set f .
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3 Shearlets and Wavefront Sets

Due to a lack of a directional component, a (continuous) wavelet system is isotropic and hence not able to
resolve the wavefront set of a distribution, in the sense of detecting it by decay properties of the wavelet
coefficients of the distribution. Shearlet systems were introduced in as an anisotropic representation system
with the structure of an affine system, consisting of a scaling operator to change the resolution, a translation
operator to change the position, and a shearing operator to change the orientation, applied to a “mother
shearlet”. This construction indeed allows precise resolution of wavefront sets as we will discuss (see also
[18]).

3.1 Continuous Case

For the definition of a continuous shearlet system, let Aa, a ∈ R∗ := R \ {0} be a parabolic scaling matrix Aa,
a ∈ R∗ := R \ {0} and Ss, s ∈ R be a shearing matrix given by

Aa =

(
a 0
0 |a|1/2

)
and Ss =

(
1 s
0 1

)
.

Moreover, for M ∈ R2×2, let the dilation operator be defined by

DM : L2(R2)→ L2(R2), (DMf)(x) 7→ |det(M)|−1/2f(M−1x).

Choosing M in the dilation operator as Aa and Ss yields the set of scaling and shearing operators, respectively.
Let us also emphasize that the choice of shearing instead of rotation is key to allowing a faithful digitalization
due to the fact that the discrete versions Sk, k ∈ Z, leave the digital grid Z2 invariant. Finally, let Tt, t ∈ R2,
denote the translation operator as defined by

Tt : L2(R2)→ L2(R2), (Ttf)(x) 7→ f(x− t).

This now leads to the following definition of continuous shearlet systems.

Definition 3.1. For ψ ∈ L2(R2), the continuous shearlet system SH(ψ) is defined by

SH(ψ) = {ψa,s,t := TtDSsDAaψ = a−
3
4ψ(A−1

a S−1
s ( · − t)) : a ∈ R∗, s ∈ R, t ∈ R2}.

Group representation theory leads to conditions under which the associated shearlet transform is even an
isometry. For this, let S := R∗ × R× R2 be endowed with the group operation

(a, s, t) ◦ (a′, s′, t′) = (aa′, s+
√
|a|s′, t+ SsAat

′).

This is a locally compact group with left Haar measure dµ(a, s, t) = da/|a|3dsdt.

Theorem 3.2 ([10]). Let ψ ∈ L2(R2) be admissible, i.e., it satisfies∫
R2

|ψ̂(ξ)|2

|ξ1|2
dξ <∞.

Then the continuous shearlet transform SHψ : L2(R2)→ L2(S) given by

SHψf(a, s, t) = 〈f, ψa,s,tψ〉.

is an isometry.
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One example for a suitable function ψ ∈ L2(R2) are classical shearlets, which are defined by

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2( ξ2ξ1 ).

Here, ψ1 ∈ L2(R) is a wavelet, i.e., it satisfies the discrete Calderón condition given by∑
j∈Z
|ψ̂1(2−jξ)|2 = 1 for a.e. ξ ∈ R,

with ψ̂1 ∈ C∞(R) and supp ψ̂1 ⊆ [− 5
4 ,−

1
4 ] ∪ [ 1

4 ,
5
4 ], and ψ2 ∈ L2(R) is a ‘bump function’, namely

1∑
k=−1

|ψ̂2(ξ + k)|2 = 1 for a.e. ξ ∈ [−1, 1],

satisfying ψ̂2 ∈ C∞(R) and supp ψ̂2 ⊆ [−1, 1].
Since the just defined continuous shearlet system exhibits a directional bias and thus is in this pure form

not able to resolve any wavefront set, we require s slightly adapted version. This is based on a suitable
splitting of the frequency domain into four conic regions and a low frequency part as illustrated in Figure 1.
This leads to the so-called cone-adapted continuous shearlet system.

Figure 1: Frequency cones for the cone-adapted shearlet system.

Definition 3.3. For φ, ψ, ψ̃ ∈ L2(R2), the cone-adapted continuous shearlet system is defined by SH(φ, ψ, ψ̃) =
Φ(φ) ∪Ψ(ψ) ∪ Ψ̃(ψ̃), where

Φ(φ) = {φt := φ(· − t) : t ∈ R2},
Ψ(ψ) = {ψa,s,t = a−

3
4ψ(A−1

a S−1
s ( · − t)) : a ∈ (0, 1], |s| ≤ 1 + a1/2, t ∈ R2},

Ψ̃(ψ̃) = {ψ̃a,s,t := a−
3
4 ψ̃(Ã−1

a S−Ts ( · − t)) : a ∈ (0, 1], |s| ≤ 1 + a1/2, t ∈ R2},

and Ãa = diag(a1/2, a).

Similar to continuous shearlet systems as defined in Definition 3.1, also for cone-adapted continuous
shearlet systems an associated transform can be defined, namely

SHψf(a, s, t) := 〈f, ψa,s,tψ〉 and SHψ̃f(a, s, t) := 〈f, ψ̃a,s,tψ〉,

and isometry conditions can be proven [18]. With this system, we are also now able to precisely resolve a
wavefront set of a distribution in the following way.
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Theorem 3.4 (Theorem 5.1. of [18]). Let ψ ∈ L2(R2) be admissible, and f ∈ L2(R2). Let D = D1 ∪ D2,
where D1 = {(t0, s0) ∈ R2 × [−1, 1] : for (s, t) in a neighborhood U of (s0, t0), |SHψf(a, s, t)| = O(ak) as
a→ 0, for all k ∈ N, with the O(·)–term uniform over (s, t) ∈ U} and D2 = {(t0, s0) ∈ R2× [1,∞) : for ( 1

s , t)
in a neighborhood U of (s0, t0), |SHψ̃f(a, s, t)| = O(ak) as a→ 0, for all k ∈ N, with the O(·)–term uniform

over ( 1
s , t) ∈ U}. Then

WF(f)c = D.

3.2 Digital Case as a Semantic Edge Detection Problem

Since we are now familiar with the approach to extract the wavefront set of a continuous distribution by
analyzing the asymptotic behavior of the shearlet coefficients at a fixed position-orientation pair, we now aim
to extend it to real world data. To be precise, we will now consider data coming from a finitely sampled
function such as images formed by pixels representing point samples of a real-valued function.

In the most general case, we showed in [3] that the previously discussed approach is not directly transferable
to the situation of functions being defined on a grid on a bounded domain. Coarsely speaking, the reason for
this is the fact that we just have access to a finite number of Fourier samples as well as finite number of
shearlet coefficients.

In order to overcome this limitation, we are now assuming that a digital image arises from the finite
sampling of a continuous model in that sense that the image has itself a wavefront set in the sampling limit.
As in our paper [3], we aim to approximate the wavefront set by a sequence of what we call the digital
wavefront sets.

Let us now define what we mean by a digital wavefront set (see also [3]). In the sense of Shannon’s
sampling theorem one can make use of Paley-Wiener spaces to define a sampling space of L2(R2) for the
coarsest scale Λ > 0, namely PWΛ ⊂ L2(R2) defined by

PWΛ :=
{
f ∈ L2

(
R2
)

: supp
(
f̂
)
⊂ [−Λ,Λ]d

}
.

Using this definition of the sampled space, we now define the notion of a digital wavefront set extractor for
the given coarsest scale Λ > 0 to be the map

DWFΛ : PWΛ → P
(
R2 × S1

)
such that DWF(PΛf) = WF(f) for all f ∈ L2(R2). (3.1)

The existence of a so-called faithful sequence of digital wavefront set extractors assumes that the sequence
of maps {DWFj}j∈N converges to the continuous wavefront set extractor WF in the Hausdorff sense, i.e., we
have

dH

(
DWFj(Pj(f))x,WF(f)x

)
→ 0. (3.2)

In [3], we make use of Shannon’s sampling theorem to show that it is not possible to analytically define a
sequence of digital wavefront set extractors for general function classes, which are dense on L2(R2) functions
(see [3, Thm. 3.3]). In this work, we also indicated that, although for most classical function classes it is
impossible to construct an analytical digital wavefront set extractor on their Paley-Wiener space projections,
for function classes in applications such as natural images, which are typically empirically defined, such
wavefront set extractor could exist. However, those will certainly be highly sensitive to the choice of the class.

Inspired by these results, it is natural to have as guiding principle of the construction of such digital
wavefront set extractors, in our case the wavefront set extractor should be closely adapted to the underlying
function class.

As mentioned, typical function classes arising from real-world applications are empirically defined. Thus
most of model-based heuristics that could potentially be used to construct analytically a digital wavefront set
extractor for each class, will fail with high probability.

Using solely, model-based heuristics will limit the model with rigid assumptions and the guiding principle
wont be followed. Although the best choice for our guiding principle, will be to learn the data representation
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from scratch this approach will typically be computationally intractable, requiring a lot of data and complicated
architecture, having as example, CASENet [38] and SEAL [39].

Summarizing, our approach presented in [3] follows the main thrust of current deep learning-based
methodologies in imaging science. It leads to a state-of-the-art wavefront set extraction by combining the
model-based digital shearlet transform as a pre-processor for edge detection and a convolutional neural
network that locally learns the wavefront set by classifying patches of the digital shearlet coefficients with the
potential singular point at the center.

3.2.1 Digital Shearlets

Let us now delve more deeply into the digital shearlet transform [21] for a digital domain of pixel images,
which — as explained before — is used in the classifier proposed in [3]. The construction of the digital
shearlets is inspired by the fast wavelet transform. In fact, the digital function system can be seen as a filter
bank, for which the novelty in the shearlet case resides in the definition of a faithful digital shearing operator.

To explain the digital shearlet transform in detail, let M ∈ N, J ⊂ N be finite, kj ⊂ N for all j ∈ J and
Kj := [−kj , . . . , 0, . . . , kj ]. We then pick 2

∑
j∈J KJ +1 matrices in RM×M , and denote these matrices by φdig

and ψdigj,k,ι for j ∈ J, k ∈ Kj , ι ∈ {−1, 1}. To make the connection to the continuous shearlet transform, we

can think of ψdigj,k,ι as a digitized version of ψ2−j ,2−j/2k,0,ι and of φdig as a digitized version of a low frequency

filter. An explicit — and highly technical — construction of the matrices φdig and ψdigj,k,ι can be found in [21].

Those are then exploited to define the digital shearlet transform of an image I ∈ RM×M by

DSH(I)(j, k,m, ι) :=


〈
I, Tmψ

dig
j,k,ι

〉
, if ι ∈ {−1, 1},〈

I, Tmφ
dig
〉
, if ι = 0,

where j ∈ J, k ∈ Kj , m ∈ {1, . . . ,M}2, and Tm : RM×M → RM×M circularly shifts the entries of the elements
of a matrix by m. Thus, from a structural viewpoint, the digital shearlet transform of an image I ∈ RM×M
is a stack of 2

∑
j∈J (Kj − 1) + 1 matrices of dimension M ×M . We will refer to this stack of images, as the

shearlet volume.

3.2.2 DeNSE Algorithm

Using the digital shearlet transform as the input of a convolutional neural network classifier, the Deep Network
shearlet Edge Extractor (DeNSE) is able to perform wavefront set extraction with high accuracy and closely
adapted to the class of the training data. In addition to follow the guiding principle, the main purpose of this
approach was to achieve high accuracy concerning the task of wavefront set extraction for inverse problem
regularization. With this in mind, the problem of classifying pixels of a digital image into N + 1-classes,
where N of these classes correspond to orientations of singular points and the additional (N + 1th) class is
the binary class of a pixel being an edge, is splitted into N + 1 separate binary classifiers. In addition, each
pixel is classified independently as well by using a patch-based approach in the sense that a pixel will be
classified to be an edge of a certain orientation by classifying a patch of the shearlet coefficients where the
pixel is centered at.

The architecture used for each classification was composed of four convolutional layers, with 2× 2 max
pooling, ReLU activation, and batch normalization, followed by a fully connected layer with 1024 neurons,
softmax activation function, and a one dimensional output. We chose this architecture since it performed
well in a series of tests while being of moderate size. The network architecture is illustrated in Figure 2.

As in [3], if we pick J = 4 as the coarsest scale, the digital shearlet coefficients DSH(I) will form a three
dimensional array composed by 49 stacked digital images of the same size as the original image. Having these
coefficients, if the patches to classify are as in the original work, of size 21× 21, the input of DeNSE will be a
stacked set of patches of size 21× 21× 49.
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Figure 2: Illustration of the network architecture forming the foundation of the classifier. This network
consists of four convolutional layers and one fully-connected layer. The colored block in the middle represents
a stack of the output of the last convolutional layer. The colors correspond to the different channels.

If for example, we have 180 orientations {θi}180
i=1, for each θi, the network is trained on patches of shearlet

coefficients of images I ∈ RM×M of the form

(DSH(I)(j, k,m, ι))j∈J,k∈Kj ,ι∈{−1,0,1},m∈[m∗
1−10,m∗

1+10]×[m∗
2−10,m∗

2+10], (3.3)

with m∗ ∈ {11, . . . ,M −10}2 being the center point of the patch to which the classified orientation is assigned.
By using a softmax binary classifier, the label associated to a batch of (3.3) is 1 if I has a singularity with
orientation θi at m∗. In addition, there exists a separate classifier, which uses the same data and assigns 1 to
a patch whose central pixel corresponds to a singular point (edge point).

The DeNSE algorithm for wavefront set extraction [3] uses as coarsest scale J = 4 with the corresponding
shearing levels for each scale given by Kj = 2dj/2+1e + 1, obtaining digital shearlet coefficients arrange by L
stacked images, where L = 2

∑
j∈J (Kj − 1) + 1 = 49. The implementation of choice was the julia API of the

software ShearLab [20] (www.shearlab.org/software).
The Deep Network shearlet Edge Extractor (DeNSE) was in fact shown to outperform other methods, for

example, CASENet and SEAL, on the standard datasets such as BSDS500 (Berkeley segmentation dataset)
with 503 natural images, the semantic boundaries dataset (SBD) with 11355 natural images, and a set of
phantoms formed by ellipses and paralellograms with analytically defined wavefront set. We present some of
those results in Section 7.

3.3 Avoiding the Distracted Supervision Paradox

The distracted supervision paradox as introduced in Section 1.2 refers to the fact that semantic edge detection
such as wavefront set extraction requires the supervision of two fundamentally different tasks:

• Category-agnostic edge detection requires the detection of pixels corresponding to edges and other
singularities, thus the use of low-level features.

• Semantic edge classification requires the classification of edges with abstracted high-level semantics,
therefore relies on high-level features.
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Intuitively accomplishing both tasks jointly seems infeasible as both problems require very different features.
Yu et al. confirmed in [38] with the CASENet architecture that a naive joint supervision of both tasks,
performs less well than directly learning the semantic edges with no deep supervision that combines both
features.

This paradox imposes an upper bound on the performance for methods that are aiming to directly learn
(in an end-to-end fashion) semantic edges. Since the initial work [38], there have been several approaches to
avoid this paradox. One particularly remarkable approach is the one presented by Liu et al. in [24]. In their
paper, they propose a network architecture containing a backbone based on residual convolutional neural
networks — similar to the CASENet, but with the introduction of a novel information converter layers —,
which allows to combine information coming from lower levels used for edge supervision with information from
higher levels used for semantic supervision, which is ultimately guided by the detected edges. This approach
successfully established a new state-of-the-art in semantic edge detection, with a significant performance
improvement.

The key to the Deep Network Shearlet Edge Extractor (DeNSE) resides on the splitting of the multi-label
classification task into individual binary classifiers inspired on the performance increment. In addition DeNSE
separates the category-agnostic edge detection and the semantic edge classification, which already avoids the
distracted supervision paradox.

4 General Semantic Edge Detection Using Shearlets and Deep
Supervision

The use of shearlets for achieving high precision in digital wavefront set extraction motivates the introduction
of the shearlet transform in general semantic edge detection, where classes of edges are coming typically
from the particular object the edge belongs to. In order to illustrate the power of the shearlet transform
as a preprocessing step, we are going to make use of the backbone of the current state-of-the-art approach
on general semantic edge detection, based on the CASENet architecture [38]. As already mentioned, after
the introduction of CASENet and the distracted supervision paradox, most of the approaches to perform
semantic edge detection, made use of the same architecture backbone. Each model, introduced an alternative
way to train it, mostly to avoid the distracted supervision paradox.

At the following we explore two alternatives architectures, namely the original CASENet and the deep
diverse supervision approach presented by Liu et al in [24], where information converters are used for the joint
training of low-level edge supervision and high-level edge classification. In order to show the heavy lifting
that the shearlet transform is able to do, we use as the input for these networks the shearlet coefficients of the
images, and extend the channels of the first convolutional layer by the number of slices of the particular shearlet
coefficients. We also decrease the depth of the resulting network by removing the last category-agnostic edge
feature map resnet subnetworks, resulting in an overall smaller network, which will be addressed in detail in
the next sections.

5 Shear-CASENet: Deep Shearlet Category-Aware Semantic Edge
Detection

The CASENet architecture [38] is based on the already known Residual Neural Network architecture, known
as ResNet (see Figure 3). This architecture has shown tremendous success in different image processing task,
including image classification. It in fact did even won the ImageNet challenge in 2015. CASENet receives as
input the image and it produces as output a two-dimensional array of the same size with the classified edges
represented as pixels with value given by the corresponding category.

We next explain the CASENet architecture, which is displayed in Figure 4, in more detail. The input
image is connected to a 1− channel convolutional layer (conv1), which is followed by four stacked ResNet
subnetworks; res2c, res3b, res4b22 and res5c correspondingly. Each of those sub-networks is a block of the
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Figure 3: Illustration of the principal block in ResNet, namely the skip connection from the input to the
output is the main characteristic of this architecture (taken from https://neurohive.io/en/).

network ResNet-101, where res(N)(M) represents the M-th layer (represented by the letter ”a”, ”b” and ”c”)
of the N-th stage of ResNet-101.

The first three stages of CASENet (i.e. conv1, res2c, res3b) produce a single channel feature map F (m),
which is used to perform the edge detection part. The last stage, res5c, is connected to a 1× 1 convolutional

layer to produce a K-channel class activation map A(5) = {A(5)
1 , A

(5)
2 , . . . , A

(5)
K }, where K is the total number

of categories. In order to combine the edge information coming from the first stages, at the end of the network,
one replicates the bottom features F (m), by concatenating them in each channel of the class activation map
at the last stage, namely:

Af = {F (1), F (2), F (3), A
(5)
1 , . . . , F (1), F (2), F (3), A

(5)
K }.

At the end, a K-grouped 1× 1 convolutional layer is applied to Af , generating a semantic edge map with K
channels, whear the k-th channel represents the edge map for the k-th category. Summarizing, the first four
stages of CASENet produce category-agnostic edge feature maps with different levels of refinement. This
depth becomes necessary to produce edges fine enough to be classified by the last stage.

Figure 4: Illustration of the classical CASENet architecture (inspired by the figures of [24]).

Recall that he shearlet transform has shown good performance as a feature extractor for edge detection,
due to its properties on wavefront set resolution. With this in mind, it seems conceivable that applying
CASENet to the shearlet coefficients instead of the image itself, the produced edge in the first feature maps
will be fine enough already in first stages.

By now combining shearlets and the CASENet architecture, we introduce the Shear-CASENet architecture,
which takes as input the shearlet coefficients of an image and produces as output an array with the same
size as the image with the classified edges, just like CASENet. Shear-CASENet, uses the same backbone as
CASENet, extending the first convolutional layer with the same number of channels as slices of the shearlet
volume and removing the fourth stage. Figure 5 depicts the Shear-CASENet architecture.

Shear-CASENet has significantly less parameters to train than the classical CASENet. Indeed, if the
input is an N ×N -image, the fourth stage of CASENet will have 1024×N2/8 parameters. By having that
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Figure 5: Illustration of the Shear-CASENet architecture (inspired in the figures of [24]).

stage removed and extending the first convolutional layer by J shearlet channels, one obtains a reduction of
1024×N2/8− J trainable parameters. Typically four scales in the shearlet transform are used, i.e., J = 49,
leading to an image of size 256× 256. Shear-CASENet has 37259387 parameters while the classical CASENet
has 42436731, with around 13% less parameters to train.

In addition, Shear-CASENet presented also better performance in semantic edge detection on the Semantic
Boundaries Dataset (http://home.bharathh.info/pubs/codes/SBD/download.html). We will present the
corresponding numerical experiments in detail in Section 7.2.

6 Shear-DDS: Shearlet Diverse Deep Supervision

In 2017 the CASENet architecture imposed by its novel approach a new state-of-the-art in semantic edge
detection. The authors also introduced the concept of distracted supervision paradox, by noticing the
fundamental limitation of training jointly, with deep supervision, the category-agnostic edges and the edge
classification. In CASENet, even the fourth stage is not used in the supervision. It was in fact introduced as
a way to alleviate the information conflicts coming from the first three stages and the fifth stage, also known
as a buffer unit.

After the introduction of CASENet, different alternatives to train the network have been introduced. Yu
et al. [39] introduced the Simulatenous Edge Alignment and Learning (SEAL) architecture, which is a new
training approach for the CASENet architecture. It simultaneously aligns the ground truth edges and learns
the corresponding classifier, with the downside of being time consuming due to the necessary CPU usage by
the alignment step.

Recently Liu et al. introduced a novel way to train CASENet [24], also known as the deep diverse
supervision. This approach makes use of an information converter based on a convolutional residual block
(see figure 3), where the output of each stage of CASENet is fused in a final shared concatenation. Figure 6
depicts this architecture, it is worth to notice that in this case, stage four is not anymore a buffer, but it is
already used in the supervision.

The information converters help to assist low-level feature learning (stage one-four) in order to generate
consistent gradient signals from the higher levels (stage five), producing a highly discriminative feature map
for high performance semantic edge detection.

Having the category-agnostic edge maps obtained from the information converter applied to each of
the first four stages, namely E = {E(1), E(2), E(3), E(4)}, the final map will be given by the information
conversion of the fifth stage and the shared concatenation, i.e.,

Ef = {E,A(5)
1 , E,A

(5)
2 , . . . E,A

(5)
K }

This network is trained with a multi-task loss, meaning, two different losses, corresponding to category-
agnostic and category-aware edge detection, are optimized jointly. Both losses are based on reweighted
sigmoid cross-entropy loss, which is typically used for multi-label classification. For further details, we refer
to [24].
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Figure 6: Illustration of the classical Diverse Deep Supervision architecture (inspired by the figures of [24]).

Using a similar approach as with the classical CASENet, we introduce as a new architecture the shearlet
Diverse Deep Supervision (Shear-DDS). This architecture will accept as input the shearlet volume of an
image. The output consists of the same activation map characterizing the classified edges as the original DDS.

As we did with the Shear-CASENet, we reduced the overall number of parameters by removing stage
four of the DDS architecture, with a similar 13% reduction of learnable parameters. Figure 7 shows the new
Shear-DDS architecture.

Figure 7: Illustration of the shearlet Diverse Deep Supervision architecture (inspired by the figures of [24]).

Shear-DDS was trained with the same multi-task loss function as the original architectrue, obtaining
an improvement in performance on the SBD dataset, the corresponding numerical results are presented in
Section 7.2.

7 Numerical Results and Applications

To show the true impact of the approach presented in this work, we performed several numerical experiments,
targeted to three specific applications, namely, wavefront set extraction, general semantic edge detection, and
Computed Tomography reconstruction. In each of the experiments the networks were trained and evaluated
on datasets for the specific purpose. On one hand, the general semantic edge detection application was
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trained and evaluated on the semantic boundaries dataset (SBD), which is already and standard benchmark
for this application. On the other hand, since wavefront set extraction is well suited to be used in Computed
Tomography reconstruction (see Section 2.4), the DeNSE sub-networks were trained on images formed by
random ellipses which resemble human-head phantoms such as the well-known Shepp-Logan phantom.

All experiments show that our hybrid approach, namely combining shearlets with carefully designed
network architectures, provide a significant improvement in performance. This indicates that this conceptual
approach should be also beneficial for other image processing tasks.

7.1 Wavefront Set Extraction

For wavefront set extraction, we trained the DeNSE architecture with the procedure presented in [3]. We
trained the networks on head-like phantom images, inspired by the Shepp-Logan phantom. Our training data
consists of a specific selection of random ellipses, two big ellipses, representing the inner and outer skull and
small ellipses inside the skull, with different sizes, pixel intensity value, and orientations. We also vary the
gradient of the intensity of the ellipses in order to obtain curves with different levels of regularity.

The advantage of using this type of phantom is two-folded: It allows to have access to the analytical
wavefront set and the resulting network can be used for Computed Tomography applications in head-like
phantoms.

We used the tensorflow implementation of the DeNSE architecture, publicly available in http://www.

shearlab.org/applications. For the shearlet transform, we used the python interface of the julia API of
shearlab, available in http://www.shearlab.org/software.

The DeNSE architecture classifies patches of an image for an specific given orientation. We used a
resolution of 180 distinct orientations and trained the network for each orieantion separately. For each training
we used 10,000 images. The evaluation and test was then done over 2,000 images each. We made use of a
total of four scales on the shearlet transform, producing a shearlet coefficients volume with 49 slices. From
the shearlet coefficients of each image, we extracted 10 distinct patches randomly. This was done in such a
way that the classes are balanced, meaning, in each binary classifier, the number of positive cases is roughly
the same as the number of negative cases.

We then used the standard MF-score to measure the performance of the classifiers, which is the mean of the
F-score over all the orientations. We compared the performance with other semantic edge detection models,
and for this made use of the publicly available python code given for the CoShREM [30], CASENet [38] and
SEAL [39]. For the Yi-Labate-Easley-Krim [37] and the DDS [24] models, we used our own implementation.
The performance benchmarks with these models are presented in Table 1.

Figure 8 then shows the results of wavefront set extraction on an example of the head-phantom dataset
using three different models, the CoShREM model, and the CASENet architecture. Judging from the images,
it is clear that DeNSE shows significantly better performance than CoSHREM, where the latter is not able
to find the ellipses with smooth boundaries.

Method MF-score
Yi-Labate-Easley-Krim[37] 75.7
CoShREM[30] 70.4
CASENet[38] 78.6
SEAL[39] 83.4
DDS[24] 85.6
DeNSE [3] 95.7

Table 1: Performance of wavefront set extraction on the head-phantom data set. All values are in percentage.
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Figure 8: Computed edges and orientations of an example of the head-phantom data set. Top-left: Input
image. Top-right: Orientations, analytical ground truth. Middle-left: Orientations predicted by CoShREM
algorithm. Middle-right: Orientations predicted by CaSENet. Bottom-left: Orientations predicted by DeNSE
algorithm. Bottom-right: Color code for normal-directions.
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7.2 General Semantic Edge Detection

For the numerical experiments of the general case of semantic edge detection, we trained the Shear-CASENet
and Shear-DDS architectures on the Semantic Boundaries Dataset (SBD). This database consists of 11,355
images, from which we used 9,035 images for training, 1,050 for evaluation, and 1,050 for testing. Each image
has a human-annotated array of edge-pixels with the intensity value as the category number of the object,
where this edge belongs to. The SBD dataset consists of a total of 20 categories, including vehicles, animals,
and plants.

Both Shear-CASENet and Shear-DDS were trained on the full shearlet coefficients. Similar to the case of
the wavefront set extraction, we use the digital shearlet transform [21] implemented on julia, with a total of
four scales. This produces a shearlet coefficients volume of 49 slices, which was then fed to the proposed
architectures.

We use the publicly available implementation of the CASENet architecture (https://github.com/
lijiaman/CASENet). This implementation makes use of the deep learning framework pytorch, making
it compatible with our shearlet implementation. Based on this code, we implemented the deep diverse
supervision architecture by introducing the information converters and the proposed multi-task loss. Also
based on this code, we implemented the Shear-CASENet and Shear-DDS architectures by extending the first
convolutional layer with the corresponding shearlet channels (see Figures 7 and 5) and removing the fourth
stage of the original architectures.

In addition to CASENet and DDS, we also compared our methods to deeply supervise version of CASENet
[38] and SEAL [39]. The performance benchmarks presented in Table 2 are done in terms of the mean F-score,
in a similar fashion as with the wavefront set extraction benchmarks, by computing the mean of the F-score
over all the categories. It is visible that the mean-F value is slightly better on the the Shear-CASENet
and Shear-DDS than on the other architectures. The improvement is not as significant as in the case of
the wavefront set extraction, since DeNSE was specifically designed for this task and the existing models
have general semantic edge detection applications. It is though worth to stress that Shear-CASENet and
Shear-DDS have significantly less parameters than their non-shearlet counterparts.

In Figure 9, we depict the results obtained using an example of the SBD dataset. It shows the semantic
edges obtained by both CASENet and DDS and their respective shearlet extension. In all the cases the
airplane in the picture was correctly classified, but the refinement of the obtained edges is improved in
the shearlet version. This strongly suggests that the use of shearlets is well-suited for high performance in
semantic edge detection.

Method MF-score
DSN[38] 65.2
SEAL[39] 75.3
Classical CASENet[38] 71.4
Classical DDS[24] 78.6
Shear-CASENet 75.7
Shear-DDS 80.1

Table 2: Semantic edge detection performance on the SBD dataset. All values are in percentage.

7.3 Tomographic Reconstruction

Many inverse problems that arise in tomographic imaging involve recovering object boundaries. It is
obvious that determining those boundaries that are visible or not is important. In fact, a close look at the
reconstructions reveals that in each case the only feature boundaries that are clearly defined are those tangent
to lines in the data set for the problem. Example 1 illustrates this in a simple way: one detects singularities
in the Radon data exactly when the lines of integration are tangent to the boundary of the object. The goal
of this chapter is to make the idea mathematically rigorous.
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As shown in Section 2.4, microlocal analysis can be used to describe how the Radon transform transforms
wavefront sets (singularities). To show this in the context of digitized images and data we make use of the
digital wavefront set extraction applied to the head-phantom dataset introduced on Section 7.1 and the
microlocal canonical relation of the radon transform (Section 2.3), in order to obtain the digital wavefront
set an image from the digital wavefront set of its sinogram without a previous inversion. This approach
is based on the work presented by the authors in [3]. We simulate tomographic data (sinograms) using
the python implementation of the digital Radon transform in the operator discretization library (ODL,
http://github.com/odlgroup/odl.

Let us now explain the training procedure. To label each sinogram with the correct wavefront set, we
used a digitized version of the canonical relation for the Radon transform, presented in [3, Def. 6.1]. This
definition was then taken as an Ansatz for the definition of the digital wavefront set of the sinograms, which
came from a phantom whose the wavefront set we know explicitely. We then trained the DeNSE model on
the sinogram wavefront sets, with the same training, test, and evaluation set as in Section 7.1. Using the
results of the canonical relation as the ground truth for the sinogram wavefront sets, we obtained a MF-score
over the test datset of 95.7%, which is comparable to the performance of DeNSE on the head-phantom image
class. We will not present any performance comparison, since we are not aware of any competing algorithm
for the detection of wavefront set on sinograms.

Since applying the inverse canonical relation to the wavefront set of the sinogram will give us access to
part of the wavefront set of the original image, without performing yet any inversion, having a method to
detect the wavefront set of a sinogram becomes useful for inverse problem regularization.

To show this potential, we present in Figure 11, the phantom wavefront set obtained when applying the
inverse canonical relation to the low-dose sinogram, when measuring every six degrees. This low-dose problem
is highly ill-posed, and will require significant effort to be inverted. Nut having at hand the digital canonical
relation will give us almost for free the part of the phantom’s wavefront set associated with the measured
angles.

To further show the use of this method, we performed a the low-dose sinogram example, three standard
inversion schemes, filtered backprojection, Tikhonov regularization and total variation (TV) regularization.
We first compute the associated image reconstruction from the low-dose sinogram, measured each six angles,
and then compute the associated wavefront set of the reconstruction with DeNSE. We next compute the
average mean square error to the true wavefront set of the data point. Via the inverse canonical relation, we
compare this with the error resulting from computing the wavefront set of the sinogram and mapping it back
to the image.

Figure 12 shows the wavefront sets corresponding to the different reconstruction schemes. In Table 3,
the obtained errors are presented, clearly showing the advantage of first extracting the wavefront set of the
sinogram and then applying the canonical relations, over any first-invert-then-extract strategy. In additio,n
this a-priori information can be used as a regularizer on any variational regularization scheme.

Inversion technique Mean square error
Tikhonov 443.0
Total variation 380.9
Filtered backprojection 504.3
Canonical relations 168.1

Table 3: Error of wavefront set estimation by different inversion techniques.

7.4 Discussion of Numerical Experiments

We observed in the numerical experiments an improvement on edge extraction and classification performance
when using the shearlet transform for model-based feature extraction previous to feeding the network. In
particular, the DeNSE model for wavefront set extraction has shown a significant improvement with respect
of traditional methods designed for wavefront set extraction ([30], [37]), due to the combination of both the
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model-based shearlet representation and the data-driven high performance classification. On the other hand,
it also presents better performance with respect of deep-learning based models ([38], [39], [24]), although is
worth to mention that this methods were originally designed for semantic edge detection with a lower variation
in the classes over the contiguous pixels. In addition DeNSE, by definition, is able to avoid successfully the
distracted supervision paradox, without much effort.

For general semantic edge detection, introducing a change of representation system, to the shearlet system,
improved the performance of the standard semantic edge detection models (CASENet and DDS), but not at
the same level. This suggests, that these models are not well suited to the problem of wavefront set extraction,
and a patch-based strategy will reach to a similar performance leap as in the wavefront set extraction case.

The results also suggest that the use of shearlets in image processing tasks involving edge detection, helps
to do heavy-lifting in a model-based fashion, reducing the amount needed parameters, resulting in a reduction
of complexity. This is clearly shown by the shear-CASENet and shear-DDS architecture which perform better
than their non-shearlet version, but have less learnable parameters. This combination of model-based and
data-driven approaches is a strategy that more researchers have adopted in the last few years.

In addition, the applications of semantic edge detection in inverse problems, are not yet explored in depth,
but the results presented on Section 7.3, are a clear indicative that this area will be fruitful in the next few
years. As part of the future developments, the authors will work on the use for the wavefront set extractor to
improve the existing hybrid methods on tomographic reconstruction.
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Figure 9: Computed semantic edges of an example of the semantic boundaries dataset (SBD). The color blue
represents the category of airplane. Top-left: Input image. Top-right: Semantic edges, human annotation.
Middle-left: Semantic edges predicted by the classical CASENet architectures. Middle-right: Semantic edges
predicted by the classical DDS architecture. Bottom-left: Semantic edges predicted by the Shear-CASENet
architecture. Bottom-right: Semantic edges predicted by the Shear-DDS architecture.

27



Figure 10: Top-left: Phantom made from ellipses. Top-right: Associated wavefront set extracted by DeNSE.
Middle-left: Radon transform of the phantom. Middle-right: Associated wavefront set computed through
digital canonical relations. Bottom: Color-code for normal directions.
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Figure 11: Top-left: Phantom made from ellipses. Top-right: Associated wavefront set obtained by the
inverse canonical relation on the wavefront set of the low-dose sinogram . Middle-left: Low-sinogram, with
every six angles measured. Middle-right: Associated wavefront set obtained by DeNSE. Bottom: Color-code
for normal directions.
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Figure 12: Top-left: Phantom made from ellipses. Top-right: wavefront set of the phantom data computed
by the inverse canonical relation on the low dose sinogram wavefront set extracted by DeNSE. Middle-
left: Filtered back projection reconstruction. Middle-right: wavefront set of the filtered backprojection
reconstruction extracted by DeNSE. Bottom-left: Tikhonov reconstruction. Bottom-right: wavefront set of
the Tikhonov reconstruction extracted by DeNSE.

30

View publication statsView publication stats

https://www.researchgate.net/publication/337590450

	1 Introduction
	1.1 Model-Based Semantic Edge Detection
	1.2 Data-Driven Semantic Edge Detection
	1.2.1 The Distracted Supervision Paradox

	1.3 Multiscale Directional Systems as Feature Extractors
	1.4 Applications of Semantic Edge Detection
	1.5 Contributions

	2 Microlocal Analysis
	2.1 Basic Definitions and Properties of Distributions
	2.2 The Wavefront Set
	2.3 Characterization of Visible Singularities
	2.4 Applications to Tomographic Imaging

	3 Shearlets and Wavefront Sets
	3.1 Continuous Case
	3.2 Digital Case as a Semantic Edge Detection Problem
	3.2.1 Digital Shearlets
	3.2.2 DeNSE Algorithm

	3.3 Avoiding the Distracted Supervision Paradox

	4 General Semantic Edge Detection Using Shearlets and Deep Supervision
	5 Shear-CASENet: Deep Shearlet Category-Aware Semantic Edge Detection
	6 Shear-DDS: Shearlet Diverse Deep Supervision
	7 Numerical Results and Applications
	7.1 Wavefront Set Extraction
	7.2 General Semantic Edge Detection
	7.3 Tomographic Reconstruction
	7.4 Discussion of Numerical Experiments


