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1 Introduction

Efficient signal analysis and processing is one of the greiansfic challenges to
date due to the ever increasing enormous amounts of datarhkinthis generating.
Recently, sparsity has entered the stage as a novel paradigming the develop-
ment of highly efficient methodologies under certain typicsatisfiable constraints.
The main objectives of this approach are dimension reduefiowing precise recon-
struction of the original signal, high compressibility cftd, low-complexity compu-
tations, and many more.

1.1 Mathematical Signal Processing

In mathematical signal processing, one canonical firstistépe computation of lin-
ear (adaptive or non-adaptive) measurements associatedavaiarefully designed
representation system. To be precise, for a sigralR" and a spanning sequence
(¢i)", C R", we compute coefficientse R™ by

X—ci=®"x=({X,¢i))"y  with ®=(¢q]...|¢m) eR™™.  (1.1)

The case wherm = n and(¢;)"; constitutes an orthonormal basis ®&¥, e.g.,
when(¢;), is simply the Dirac basis, is very well studied. More intiiggiare the
following two fundamentally different, more recently cagtered objectives for the
transform in [[T.11), which go beyond the setting of orthonalrimases. One objec-
tive isdimension reductiori.e.,m < n, of which compressed sensing is a prominent
representative. Another objectiveri@bust analysisi.e.,m > n, which frame theory
focuses on.

Both cases face the crucial question of whether it is possibiecovex from the
measurement coefficients= @*x. In the undercomplete case  n), often convex
optimization is used, such as for instance in compressesirggsee for example
the survey papei [16] and the bodk[12]). In the overcomptetee (> n), least
squares is a typical approach, which also frame theoryttoagily follows. Thus
reconstruction is typically performed by computing

(ed*) o). (1.2)

In this survey paper, we from now on focus on the overcomglegteario with the
objective of deriving a robust analysis. However, with sfigrentering the picture,
as we will see, least squares is not always the preferredad@threconstruction.

1.2 Frame Theory

Frame theory — the theory of overcomplete (redundant) Begseems — dates back
to work by Duffin and Schaeffer in 1952 on non-harmonic Fawsearies (see [11]).
Its success story in signal processing started in the 90t the seminal work by
Daubechies, Grossman and Meyer [9]. At that time, it wasgeized that not only
does redundancy ¢#; )" ; ensure robustness fk, ¢;) )" ; against noise or erasures,
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but the restrictions of forming an orthonormal basis arerofbo strong for the con-
struction of many systems. Since the groundbreaking vidgnkgs published, frames
have become a key methodology in signal processing. It shoeilemphasized that
frame theory is not only widely used in the finite dimensiosetting (cf. [8]), but
also in infinite dimensions. In this survey paper we thougtuoon finite frames.

In signal processing with frames, three main steps can hdifiel. The first
step isencodingor decompositionwith frames, which is performed by the mapping
in (I.J). Main objectives for this step are the design of feai® that can be easily
stored and allow a low-complexity computation®fx.

The second step is thanalysisof the signal based on the frame coefficients
c = ®@*x. Depending on the processing goal (feature detectioniritipg, transmis-
sion etc.), the fram& needs to be designed accordingly, for instance, by encoding
the sought features in the large coefficients. Another n&sing in signal processing
are linear or non-linear operatofs: R™ — R™ applied to the measurementsx
during the analysis or transmission process. Examplesucn sperators are era-
sure operators associated with a diagonal matrix with diagentries either 0 or 1,
thresholding operators which set to zero all entries sméheabsolute value) than
a given value, or the operator which takes the absolute vaflueach entry lead-
ing to the problem of phase retrieval. Hence one goal thea mihimize the error
maXy 11X — (D) 1d)Ad*X||>.

The third step consists ireconstructionof the original or manipulated signal,
which is for instance, done bl (1.2), whareould be either the original or modified
frame coefficients depending on the analysis step. Agamclomplexity computa-
tions are one concern. Also, it is often desirable to chooBarae ¥, a so-called
dual frame different from(®®*)~1® for reconstruction. The reconstruction is then
performed by computing’c, and one can imagine that again design questions need
to be faced.

This shows the richness of the tasks in frame theory, andeiasily imaginable
that this richness reflects on the number of commonly useddsaavailable to date.
Not wanting to delve too much into details, we just mentiomiaggular frames,
harmonic frames, Gabor frames, wavelet frames, or shdealaes.

1.3 Desideratum: Sparsity

Sparsity has become an important paradigm in both numdiesdr algebra and
signal processing. The sparsity of a vecter (xg,...,%,)" € R"is measured by

HXHOZ#{I € {L"'an}:xi 7&0};

andx s calledk-sparseif ||x||o < k. Along the same lines, sparsity of a matrix means
that many of the matrix entries vanish, i.e., the quantity

|@llo:=#{(,]): ¢ij#0},  for@=[¢ ] € R™™M (1.3)

being small. Sparsity nowadays plays two conceptually @éfgrent roles. On the
one hand, sparse representations guarantee efficiengestanal processing of data.
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For example, multiplying a vector with a sparse matrix reggliess operations and
the sparse representation of a signal can be directly usedfiment compression. On
the other hand, sparse representations epitomize stalisiorplicity. In fact, many
problems in signal processing are intrinsically ill-possd only such structural as-
sumptions on the solution make accurate and stable sodytiossible. Key examples
are in the theory of compressed sensing as introduced ifigldmaDonoho [10] and
Candés, Romberg, and Tao [4] in 2006. In this context, alsakereversions of spar-
sity such as compressibility or the behavior of the erroresfth-term approximation
are frequently used.

Both these utilization paradigms of the concept of spatsitye direct connec-
tions to frame theory. For the first one, this connection cadrawn in two different
ways. Firstly, one can aim to design frames and dual framésrin sparse matri-
ces themselves, with the goal of an efficient encoding anshisgcuction process. On
the other hand, the additional freedom resulting from ttinelancy when work-
ing with frame representations rather than basis repragens can allow to derive
sparser representations of a vector. The second one appdiane theory as a de-
sign question for the measurement matrix in compressednggnghich computes
®x for somex in the higher dimensional spa&&".

In this survey, we focus on the very first connection, thaspgrsity of the frame
and dual frame matrices as a means to ensure a more efficerdiag and recon-
struction process. However, the inverse problems viewmoirsparsity also plays an
important role, as finding sparse frames under certain cngt has many structural
similarities to finding sparse solutions to inverse proldem

Frames as sparse matrices were first analyzed in 2011 inligrems sparse duals
were first considered and discussedin [14]. For both stnatiresults on the optimal
sparsity were derived, existence results were proven, lgioditams provided.

1.4 Outline
In this paper, we first provide an introduction to frame tlyg@ectior2). In Section
[3, we then focus on sparse frames, and discuss optimalititsesxistence results as

well as explicit constructions. Similar considerationd i undertaken in Sectidn 4,
then focusing on associated dual frames.

2 Basics of Frame Theory

We start with reviewing the basic definitions and notatiohfame theory, which
will be used in the sequel.

2.1 Frames

A frame is a family of vectors which ensures stability of theprintroduced in(1]1).
The precise definition is as follows. We also emphasize tratimplicity, we present
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the definition as well as the results solely for the real chisgice that most results
also hold for the complex case.

Definition 2.1 A family of vectors(¢;), in R" is called aframe forR", if there
exist constants & A < B < o« such that

M
Allx|? < _zl|<x7 ¢i)[> <B|x|* forallxeR". (2.1)
1=

The constanté\ andB are calledower and upper frame bounidr the frame, re-
spectively. IfA = B is possible in[(ZI1), the(gi)M, is called anA-tight frame and

if A=B =1, aParseval frameNote that in the latter case, the system satisfies the
Parseval equality. If there exists a constastich thaf|¢i|| =cforalli=1,2,...,m,
then(¢i)™, is anequal-norm framelf ¢ = 1, (¢;)M, is aunit-norm frame Finally,

the valueg(x, ¢;)) ; are called thérame coefficientsf the vectox with respect to

the frame(¢; )" ;.

For a given framep = (¢)", and a fixed orthonormal basdej)Tzl, we let®
denote ther x m frame matrixwhoseith column is the coefficient vector ¢f. Note
that with a small abuse of notation, we will denote @yboth the frame and the
corresponding frame matrix. The conditi@n{2.1) for a frathmen reads

AllX||? < ||@*X||5 < B||x||> forallxeR".

Trivial, but useful observations, are combined in the follrg result. Since the
proofs are straightforward, we leave them to the reader.

Lemma 2.2 Let(¢;)", be a family of vectors iiR".

(i) If (¢i)", is an orthonormal basis, thef®;) , is a Parseval frame. The converse
is not true in general.
(i) (i)™, is a unit-norm Parseval frame if and only if it is an orthonahbasis.

An easy example of a equal-norm Parseval frame, which doesomstitute an
orthonormal basis, is the frameR¥ given by

Due to the shape of its vectors R?, this frame is typically calledlercedes-Benz
frame

2.2 The Frame Operator

Given a frame(¢;),, its signal processing performance is crucially deterihibg
the following three operators. We remark that the first ofperavas already intro-

duced in[Z.1).
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Definition 2.3 Let @ = (¢;), be a frame irfR".

(i) The associatednalysis operator T. R" — R™ is defined by

m

Txi=®'x=((x.¢)),_,, XeR"

(i) The associatedynthesis operatas defined to be the adjoint operafot. A short
computation shows thdt* : R™ — R" is given by
m
T*c:=dc= Zciqbi, c=(¢)n, eR™

(iii) The associatedrame operatoiis the magS: R" — R" defined to be
m

SX:=T'Tx= PP*x= Z(x, o), xeR"

The following result can be easily proved by linear algeb@dniques.

Theorem 2.4 The frame operator S of a frarie);)™ ; for R" with frame bounds A
and B is a positive, self-adjoint invertible operator stiag

A1, <S<B:In

2.3 Reconstruction Strategy

We next aim to reconstruct the original signal from the imagder the analysis op-
erator. This can be achieved by application of a linear dpekgy using Theorem 214
as the following result shows.

Theorem 2.5 Let @ = (¢;)"; be a frame foiR" with frame operator S. Then, for
every xe R", we have

m

x=S"1Sx= ((00*)1®)(®*X) = 3 91)S 1.

This is the well-known least squares reconstruction. Duthéoredundancy of
the frame, also other matricéé € R™™ do exist which satisfy the reconstruction
condition¥ @* = |, with I, being the identity matrix oR". For those, the following
terminology is common in frame theory.

Definition 2.6 Let @ = (¢;), be a frame folR" with frame operatof. Then the
system(S 1¢)M, = (@ ®*)~ 1@ is called thecanonical dual frameln general, every
frameW¥ = (y4), for R" satisfying

m

X=WYPx= _Z(x, oY, xeR"

is referred to as aalternate) dual frame forb.
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The set of all dual frames can be explicitly expressed byguslassical linear
algebra.

Proposition 2.7 Let @ = (¢;)"; be a frame forR". Then, every dual fram@’ =
(gp)n, for @ is of the form
Y= (00") 1o +L(In— @ (®P*) 1®), whereLe R™™.  (2.2)

We remark that the canonical dual frame plays no specialm@232) in the sense
that, if ¥ is justsomedual, then all duals are obtained by
Y=WiL(lp— DY),

whereL € R™™M, If @ forms anA-tight frame, by Theoren 2.4 the frame operator is
a multiple of the identity, which then leads to the recondion formula

m

x=A"1lo(d*x) = A-l_;<x, i) i

In this case, the canonical frame coincides witH @. This shows that from a signal
processing perspective, tight frame are highly desirable.

2.4 Expansion in Frames

From Theorerqi 214, we can also deduce a different formulaghwtan be regarded as
an expansion of in terms of the framég; )" ;.

Theorem 2.8 Let @ = (¢;)" ; be a frame foiR" with frame operator S. Then, for
every xe R", we have

m

x=SSx=o((0d*) to*)x= Z<X,§l¢i>¢i-

The specifically chosen sequence of coefficigit®*)~1d*x is the one being
minimal in the/, norm among all coefficient sequences.

Proposition 2.9 Let @ = (¢;)"; be a frame foriR" with frame operator S, and let
xeR" Ifc= (¢, are scalars such thatx ®c= S, ci$;, then

Ic]3 = [[(@®*) Lo X3+ [[c— (@@*) Lo}
M M
=3 1(xS )P+ Y loi— (x,S ¢
2,|STelE 3 o |

Propositior 2P immediately implies that for any sequemee(c; )" ; satisfying
x=YM,ci¢i, we have

M
.Z|<X51¢i>|2 = l[(@@*) x5 < cll3
i=

unlessc = (@ @*)~1o*x.
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2.5 Construction of Tight Frames

As already debated, due to their advantageous reconstnyatbperties, it is partic-
ularly desirable to construct tight frames. We distinguistween two different situ-
ations: If a given frame shall be modified to become a tighin&aor if only specific
parameters are given according to which a tight frame sleatidmstructed.

If a frame is already given, there exists a very straighttodwvay to modify it to
even become Parseval.

Proposition 2.10 Let @ = (¢;){"; be a frame foiR" with frame operator S. Then
(5240, = (00") 20
forms a Parseval frame.
Proof This follows from
((CDCD*)*1/26D*)*(¢¢*)71/2¢* —1,
and the definition of a Parseval frame. O

However, various properties of the frame such as the doedtf the frame vec-
tors is destroyed during the process. A much more carefugahare is to just scale
each frame vector to generate a Parseval frame, which carbalsegarded as pre-
conditioning by a diagonal matrix. Characterizing coraiit — also of geometric type
— for a frame to be scalable in this sense are containédin [17]

If no frame is given, but only the dimension of the spacand the number of
frame vectorsn, there are also explicit algorithms to construct a corradpw tight
frame. A specific algorithm which accomplishes this goalakhis of special rele-
vance to this paper as the frames constructed are particsifarse will be described

in Sectior 3.1

3 Sparse Frames

In this section, we will study our guiding problem in the mgeneral context: How
sparse can a frame be when the embedding and ambient dimensémd m are
given? We will ask this question with regards to the follogvtefinition of a sparse
frame:

Definition 3.1 Let (ej)]_; be an orthonormal basis fét". Then a frame ¢;){"; for
R"is calledk-sparsewith respect to(ej)|_,, if, for eachi € {1,...,m}, there exists
J € {1,...,n} such that

¢ € spar{ej: j € J}

n
i;Uil =k

and
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Note that according to this definition, a frame belagparse is the same as the
associated frame matrix having orifynon-vanishing entries, hence this definition
is in line with {1.3). The main goal of this section will be tadioptimally sparse
frames in the sense of the following definition.

Definition 3.2 Let.# be the class of all frames f&" consisting oimframe vectors,
let(¢i)"; € .7, and let(ej)]_; be an orthonormal basis f&". Then(¢i)[", is called
optimally sparse in with respect to(ej)_;, if (¢i)2; is ki-sparse with respect to
(e)]_; and there does not exist a frarfi )", € .# which isk,-sparse with respect
to (ej)’j‘=l with ko < kj.

Without any additional constraints, an optimally sparsarfe will always be
given by the canonical basis extended by zero vectors. Henveince the firsh
frame coefficients of a vector will carry all the informatidhe frame representation
cannot be called redundant. A way to circumvent this issue require the frame
vectors to be unit norm, i.€|¢i||, = 1. This normalization ensures that the frame
coefficients carry equal information. Even then an optisnaplarse frame is easily
found by extending the canonical basis oy n copies of the first (or any other)
basis vector. The resulting frame, however, has anothevridrek: Its redundancy is
distributed very unevenly. In the direction of the repedtadhe vector it is indeed
very redundant, whereas in all other directions the franmdtgedundant at all. The
spatial distribution of the redundancy is studied by Bodmetral. in [2], and the au-
thors show that this is reflected in the spectrum of the frapezator. Consequently,
we will fix the spectrum of the frame operator as an additi@oalstraint.

Arguably the most natural case is that the desired redurydanevenly dis-
tributed, which corresponds to a spectrum consisting ohglsipoint and hence a
tight frame. Thus our main focus in this survey article wil bn the class? (n,m)
of unit norm, tight frames consisting afi vectors inn dimensions. Remafk 3.8 will
briefly discuss extensions to more general spectra.

3.1 Spectral Tetris — an Algorithm to Construct Sparse Tighimes

Frames in# (n,m) are characterised by having a frame matrix with orthogomasr
with norm \/m/n and columns with norm one. Constructing a sparse unit norm,
tight frame hence boils down to satisfy these constraintsguss few entries of the
matrix as possible and setting the rest to zero. The obgdivihe Spectral tetris
algorithm, as introduced in[5] by Casazza et al., is to aquizh these goals in
a greedy fashion, determining the frame matrix entries egibsntly in a recursive
way. Its only requirement is that/n > 2; for such dimension pairings it constructs
a unit-norm tight frame ;)" ; for R". The frame bound then automatically equals
m/n. The detailed steps are provided in Algorithim 1. We remasal &m extension to
arbitrary spectra of the frame operator is describedlin [3].

By construction, the frames resulting from Algoritiith 1 wallways be rather
sparse. Indeed, the two cases which the algorithm distshgsiin thef-else state-
ment correspond to adding a column with two non-vanishirtgeshor to adding a
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Algorithm 1 STTF: Spectral Tetris for Tight Frames
Input: (i) Dimensionn € N, (i) Number of frame elements € N with m/n > 2, (iii) An ONB (g; )?:1.
Output: Frame STTFn,m).
1: Initialize: i < 1, A1 <~ m/n
2: for j=1:ndo
Aj+1 < m/n.
while Aj #0do
if Aj <1then

3
4
5:
Aj Aj
6: ¢ie\/7'~ej+\/l—7‘~ej+1.
7
g8
9

Aj Aj
Giv1\/ 76 —\/1-F €1

i i+2.
: Ajr1 = Ajp1— (2= Aj).
10: Aj < 0.
11: else
12: ¢i < €.
13: i—i+1.
14: )\j — /\j —1.
15: end if
16:  end while
17: end for

18: STTRn,m) < {¢i}[";.

column with just a single non-vanishing entry. Thus in angegdhe frame has spar-
sity at most 2n, which should be considered small compared to the total ruob
mnmatrix entries. The intrinsic sparsity of the algorithmiopedure is best visual-
ized by the example Spectral Tetris frame giverinl(3.1)welo

Our goal for the remainder of this section is first to find a loweund for the
optimal sparsity within the clas (n,m) and then to show that the Spectral Tetris
frames, when they exist, in fact obtain this lower bound. Aswill see in the follow-
ing subsection, a factor that determines the optimal syaand that is consequently
a key proof ingredient is whether the dimension pairingvedior block decomposi-
tions.

3.2 Block Decompositions of Frame Matrices

Recall that Algorithn{IL returns a frame consisting only ofdarse and 2-sparse
vectors. Hence the only way one can expect to find an evenesgeaisne would be to
have fewer 2-sparse vectors than the output of Algorithnoit iS intuitively relevant
to ask for the minimal number of 2-sparse vectors that a frahggven embedding
and ambient dimensions must have. Spectral tetris frametaicoat most 8 — 2
frame vectors which are 2-sparse, but can contain lessislighhe case, the frame
matrix has a block decomposition of order at least 2 in thesaei the following
definition.

Definition 3.3 Let n,m > 0, and let(¢;)"; be a frame forR". Then we say that
the frame matrix® = (¢;)", hasblock decomposition of order, if there exists a
partition{1,...,m} =1, U...Uly, such that, for any, € I,, andi, € I, with {1 # {5,
we have supppi, Nsupppi, = 0 andv is maximal.
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The following result now connects the block decompositinteo of a frame ma-
trix with the greatest common divisor of the dimension anel tlumber of frame
vectors.

Proposition 3.4 ([7])Let m>n>0and ® = (¢;))", € . (n,m). Then the frame
matrix @ has block decomposition of order at mgst(n, m).

Proof Assume(¢;)", € .#(n,m) has block decomposition of order and let a cor-
responding partition be given By, ...,m} =1, U...Ul,. Foreactd =1,...,v, let
S be the common support set of the vect@ps)ici,. In other words, we havee S
if and only if k € suppg; for somei € I,. Further, letry denote thekth row of the
frame matrix of(¢;)™ ;; note that|r,||> = ™ as the frame is tight. The®, ..., S, is
a partition of{1,...,n} and, for every = 1,...,v, we have by the fact thdt;)" ,
consists of unit norm vectors and by our choicé,adndS, that

m m
#e= 3 19" = Zlurknzz e
kely ke ke

The second equality holds since we, after permutation ottihemns, can write the
frame matrix of(¢;)", as® = [®4,..., D,], whered, has zero entries except on the
rows indexed by, and the columns indexed (&, for £ =1,...,v. As each # is

an integer, one must hav&#> —— for all £, and hence we obtain < " <
ged(n,m) min, 75,

gcdn,m). O

3.3 A Lower Bound for Sparsity withit# (n,m)

The main result of the section, Theorém]3.5, is a lower boundhe achievable
sparsity of frames in the clas& (n,m). With Theoreni{3J6 in the next section, we
will see that this lower bound is actually realizable for anyn € N in the range
m> 2n.

Theorem 3.5 ([7])Let m> n> 0. Suppose thatpi)"; € .#(n,m). Then
[®llo = m+2(n—gedn, m)),
where® is the frame matrix of ;)™ ; with respect to any orthonormal basis.

Proof Let @ denote the frame matrix of a frame i# (n,m) with respect to a fixed
orthonormal basis. For the sake of brevity, in the sequel Vlleuge the phrase that
two rows of ® have overlap of size, kf the intersection of their supports is a set of
sizek. Note that, since the rows @ are orthogonal, it is not possible that two rows
of @ have overlap of size one.

We first consider the case where gedn) = 1. Pick an arbitrary row; of @.
Since, by Proposition 3.4p has block decomposition of order one, there exists a
row ro whose overlap withi; is of size two or greater. Similarly, there has to exist a
row different fromry, andr, which has overlap of size two or greater with eithgor
ro. Iterating this procedure will provide an ordgrrs, ... rn such that, for each rowy,



12 Felix Krahmer et al.

there exists somk < j such that; has overlap of size two or greater with Since

all columns in® are of norm one, for each colunwthere exists a minimajl for
which ther;th entry of the vectov is non-zero. This yieldsi non-zero entries ii®.

In addition, each row, throughr,, has at least two non-zero entries coming from the
overlap, which are different from the just accountedrfoentries, since these entries
cannot be the non-zero entries of minimal index of a colummtdithe overlap with

a previous row. This sums up to a total of at leagt 2 1) non-zero coefficients.
Consequently, the frame matrix has at least 2(n— 1) non-zero entries.

We now consider the case where gran) = v > 1. By Propositiof - 34¢® has
block decomposition of order at most Performing the same construction as above,
we see that there exist at mastowsr; (including the first one) which do not have
overlap with a rowr for k < j. Thus the frame matri®o must at least contaim+
2(n—v) non-zero entries. O

3.4 Optimally Sparse Unit Norm Tight Frames

Having set the benchmark, we now prove that frames constiumt Spectral Tetris
in fact meet the optimal sparsity rate. For this, we woule@ lik remind the reader
that the tight Spectral Tetris frame as constructed by Allgor[dl is denoted by
STTHN,m).

Theorem 3.6 ( [7])Let m> 2n > 0. Let (e,-)?:1 be an orthonormal basis foR".
Then the frame STTR, m) constructed usingej)?zl is optimally sparse i (n,m)
with respect tdej)T:]_. That is, if @ is the frame matrix of STTR, m) with respect
to (e))"_;, then

|®]lo = m-+2(n— gedn,m).

Proof Let (¢;)"; be the frame STTh, m), and let® be the frame matrix of¢; )™ ;
with respect tqe; )’j‘zl. We start by showing thap has block decomposition of order
v = gcdn,m). For this, we sehp =mp =0 andn; = j&, mj = j2, 1< j <v;in
particular this entail&, = nandm, = m.

As ”ﬁ“ = rr?—ll the firstn; entries of the firstmy coefficient vectors resulting from
STTHn1,my) and STTRNn,m) coincide; indeed, the corresponding steps are identi-
cal. Continuing the computation of ST m) will set the remaining entries of the
first my vectors and also the firaf entries of the remaining vectors to zero. Thus, any
of the firstn; vectors has disjoint support from any of the vectors cottdilater on.
Repeating this argument fop until n,,, we obtain thatb has a block decomposition
of orderv; the corresponding partition of the frame vectors being

U{¢m71+1a .. '7¢m}'

i=1

To compute the number of non-zero entriesinwe leti € {1,...,v} be arbitrar-
ily fixed and compute the number of non-zero entries of théoregn, ,11,...,Pm.
Spectral Tetris ensures that the support of each of the mpwst+ 1 up ton; — 1
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intersects the support of the subsequent row on a set ofgeas otherwise an ad-
ditional block would be created. Thus, there existi2- n,_; — 1) frame vectors with
two non-zero entries. The remainirigy —mi_1) — 2(nj — ni_1 — 1) frame vectors
will have only one entry, yielding a total number @fy —m_1) +2(nj — nj_1 — 1)
non-zero entries in the vectogg, ,+1,..., ¢m.

Summarizing, the total number of non-zero entries in thex&aectors of ¢ )" ;

is
\% \% Vv
(M —m_1)+2(Ni—ni_1—1) = (M—m_g) | +2(ny—| H1
2 " 2 &
=m+2(n—v),
which, by Theorerfi 315, is the optimal sparsity. O

The following example shows that an optimally sparse frarmmt% (n,m) is, in
general, not unigue.
Example 3.7 Let n = 4 andm = 9. Then, by Theorefi 3.5, the optimal sparsity is
9+ 2(4—1) = 15. The following matrices are frame matrices with respeet given
orthonormal basis of two different unit-norm tight framasi*:

11\/%\/%00000

o oo\/g—\/g\/% %13 o3 o3 0 o)
000 0 /z2-Vays {8
000 0 0 O @_ﬁl
and
1,55 0 0 0 00
00 O @fﬁ 0 0 10

a1

o0 o o o 5 /301
Clearly, both frame matrices satisfiyp: ||, = || P2|/, = 15, hence the corresponding

frames are optimally sparse i# (4,9). We remark thai®; is the frame matrix of
STTH4,9).

Remark 3.8 Tight frames have the special property that their spectroiguely de-
fines the frame operator. While it is shownlin [7] that givenagdnal frame operator,
Spectral Tetris for Frames, a variant of Algorithin 1, alwagsstructs the optimally
sparse frame associated to that operator, there may ex&na fvith a non-diagonal
frame operator of the same spectrum which is sparser. Hargtech cases, Spectral
Tetris does not always find the sparsest frame of a givengpact

Remark 3.9 For redundancy less than 2, the picture is less clear. It bas hown
[6,[18] that the Spectral Tetris algorithm works even in @ercases wherm < n.
However, to our knowledge, a systematic analysis of optspalsity for low redun-
dancy has not been performed.
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4 Sparse Dual Frames

In this section we will take a different viewpoint regardisygarsity, and we now ask
how sparse a dual frame of a given, fixed frame can be. Thispagawis motivated
by the fact that in many cases the decomposition fragg" ; is given by the ap-
plication at hand, e.g., by the way of measuring the datshése situations, one is
then interested in choosing a good dual framédgj™ , for the reconstruction pro-
cess. Notice again how the redundancy of frames plays a keyhave since in the
non-redundant case we would only have one option for exaonistruction.

Again, the goal will be to achieve sparsity in the sense ofiiddins[3.1, with the
goal of allowing for efficient matrix-vector multiplicatig just this time for the dual
frame (Note that in contrast to the previous section, théshased for representing
the dual frame is the same as for the frame at hand and hendg fiteat is, we are
interested in the following minimization problem:

min||¥|, st oY =I,, (4.1)

where the frame is given. In line with Definitiod 3.2, we name the solution{&l)
optimally sparse duajsiote that as for optimally sparse frames, these solutions a
in general, not unique. In the following two subsections wvi facus on analyzing
the possible values of the objective functigl||, in (41), and in the final subsection
we will comment on the problem of finding the minimizers.

4.1 Optimal Sparsity of Dual Frames

In this subsection we investigate the possible sparsitgl¢ein the set of all dual
frames. We start with a trivial upper bound.

Lemma 4.1 Supposed is a frame forR". Then there exists a dual fran¥ of @
with
2
[Wllo <n”.

Proof LetJ C {1,2,...,m} be such that#= nand the corresponding frame vectors
(¢i)icq are linearly independent. Such a set always exists, as @r twdorm a frame,
the columns of® must sparR". Let ()icy be the unique (bi-orthogonal) dual of
(¢i)ics, and setf; = 0 fori ¢ J. Then we obviously havg||, < n?. O

Without additional assumptions on the frame, only theatikdwer bound|¥||, >
non the dual frame sparsity can be established; this bourthiewed, e.g., for frames
containing the canonical basis vectors. To precisely deter the optimal sparsity in
the set of all duals of a given frame, we thus need to take ictownt further proper-
ties of the frame. In particular, the spark of the frame mgitays an important role.
Recall that the spark of a matrit € R"™*™Mis defined as the smallest number of linear
dependent columns @b and denoted by spafkp). For an invertiblen x n matrix @,
one sets sparl®) = n+ 1. In fact, we will need the following refined version of the
spark.
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Definition 4.2 Let @ € R™™. Then spark(®) denotes the smallest number of lin-

early dependent columns in thie— 1) x m submatrix®!) of @ with the jth row
deleted such that the corresponding column®iare linear independent.

We can now state the main result of this subsection.

Theorem 4.3 ([14])Suppose? is a frame forR". Then the optimally sparse dual
frameW of @ satisfies

n

[¥lo= Y spar (@)
=

Proof Let ¥ be an optimally sparse dual df. Fix j € {1,...,n}, and Iet¢|£” denote
the kth column of ®)). Since® and ¥ are assumed to be dual frames, we have
that @) (¢))" = 0y_1 to hold, wherey! denotes thejth row of W. This shows
that (¢|£”)kesupm,j must be linearly dependent. On the other hand, the framengect
(@k)kesuppyi Must be linearly independent, as otherwise one of theserzmwvould

be a linear combination of the others, which would allow flee ttonstruction of
@) with suppl) C suppy! such thatd({!)" = e;. This in turn would imply that
the frame, whose frame matrix is obtained fré¢nby replacing the rowy! by '

is also a dual frame o, so¥ is not the optimally sparse dual, contradicting our
assumption. Therefore we obtdisuppy/!| > spark (@) which, in turn, implies that
[Wllo = 3i-15park (@).

To complete the proof we need to show existence of a dual fthateneets this
lower bound. To that intent, fix € {1,...,n}, and letSbe a set of size spark®)
such that(¢y),.s is a set of linearly independent columns®fsuch that the corre-
sponding columns ofp)) are linearly dependent. That is, there exi), g such
that 5 sAk(9 1))k = 0, but(T esAkdk)j = a# 0. This motivates to defings! via

i [% ifkes
%=10 ifke {1,...,m\S

as this definition yieldsp(y!))* = e;. Therefore, the matri’ with rows @/, j €
{1,...,n}, corresponds to a dual frame whichy$_; spark (®)-sparse. O

By definition we have spagk®) > spark(®\))) for everyj = 1,...,n. Hence,
we immediately have the following useful corollary of Them{4.3.

Corollary 4.4 Supposep is a frame forR". Then any dual fram#@’ of @ satisfies

n .
|Wlp> 5 spark @),
=1
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4.2 n’>-Sparse Duals

By LemmaZ.1 we know that it is always possible to find a duahfeawith sparsity
leveln?. The result below states that for a large class of framessthistually the best,
or rather the sparsest, one can achieve. Recall thatam matrix is said to be in
general positionif any sub-collection oh (column) vectors is linearly independent,
that is, if anyn x n submatrix is invertible. Such matrices are sometimes a4k
spark framessuch as in[[l1], since their spark is maximal, ire; 1.

Theorem 4.5 ([14])Supposep is a frame forR" such that the submatri®o() is in
general position for every £ 1,...,n. Then any dual fram# of @ satisfies

(W >n?. (4.2)
In particular, the optimally sparse dual satisfig4/||, = n?

Proof Since @) is in general position, we have spd®(l)) = n for eachj =
1,...,n. By CorollarylZ.4 we immediately have(#.2), and then, by bheaid.1, that
the optimally sparse satisfig¥||, = n°. O

We illustrate this result with a number of examples of framésch are well-
known to be in general position, and which thus do not allowdigal frames with
less tham? non-vanishing entries.

Example 4.6 For anyn,me N withm>n, leta; > 0,i = 1,...,mwith & # a; for
alli # j, and letb; e R, j = 1,...,nwith bj # bj, j #i. Generalized Vandermonde
frames are defined by:

by by b

a; a8
e=|: :

by b

ant ag? --- am

Itis well-known, see e.g [ ]13, §8.1], that the submai%’ is in general position for
everyj = 1,...,m, which, by Theoreri 415, implies that optimally sparse doél®
aren?-sparse.

As previously mentioned the results in this paper also hotccdbmplex frames.
The next two examples are frames @t whose sparsest dual has sparsftyNotice
that we here deviate from our policy to restrict to real frame

Example 4.7 Letn € N, and letm be prime. Let® be a partial FFT matrix of size
nx m, that is, @ is constructed by picking rows of anm x m DFT matrix at ran-
dom. We remark that is a tight frame. Moreover, angl) is in general position,
as the determinant of anyn — 1) x (n— 1) submatrix of® is non-zero which is a
consequence of Chebotarev theorem about roots of unitygtéiat any minor of an
mx mDFT matrix is non-zero wheneveris prime [19,20]. Our conclusion is again
that the sparsest dual frarieof @ satisfies|¥||, = n?.
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Example 4.8 Forn € N prime andm = n?, Krahmer et al. showed ifn_[15] that for
almost every € C", the Gabor frame generated kyhas a frame matrix with no
zero minors. For this reason, the optimally sparse dualsicti &abor frames have
sparsityn?.

In fact, the property of having a sparsest dual with spargitis avery generic
property in the sense that the séf(n,m) of all frames ofm vectors inR" whose
sparsest dual ha® non-zero entries contains an open, dense subskf’ifi' and
has a compliment of measure zero. l%{n, m) be the the set of all frame8 which
satisfy spark®()) =nforall j=1,...,n. By Corollary{Z.3 we have tha?(n,m) C
A (n,m). We are now ready to state the result saying that “most” fraasea sparsest
dual with sparsity levenh?.

Lemma 4.9 Suppose n» n. Then the sef?(n,m) is open and dense IR"™™, and
2(n,m)¢ is of measure zero.

Proof Note that® = [X |ke(1,...n} cef1,...m} € & (n,m) if and only if @ has full-rank

and the polynomials ir ; given by de([tD(J>]|) are non-zero for eache {1,...,m}
andl € S, whereSis the collection of all subsets dfl,...,m} of sizen— 1. Here
[@)); e R-D*(-1) denotes the matrig!}) restricted to the columns in the index
setl. This shows that’?(n,m) is open in the Zariski topology. Since the s&{(n,m)

is non-empty by Example4.6, it is thereby open and denseeistdndard topology,
seel[1]. Finally, since?(n,m) is a proper subset and closed in the Zariski topology,
it is of measure zero. O

By Lemmd4.9 we see that any framemfvectors inR" is arbitrarily close to a
frame in.4"(n,m).

Theorem 4.10 ([14])Every frame is arbitrarily close to a frame whose sparsest
dual ¥ satisfieg|¥||, = n?,

Another consequence of Leminal4.9 is that for many randonmigigeed frames, the
sparsest dual has sparsity lejf#||, = n?. As an example, this holds when the entries
of @ are drawn independently at random from a standard normtaibdison or when
the frame obtained by a small Gaussian random perturbatt@giwenn x m matrix.

5 Discussion and Future Directions

Comparing the problems discussed in Sect[dns 3[and 4, orexwassthat the cor-
responding optimally sparse solutions behave very diffidyeFor optimally sparse
frames, a large fraction of the entries vanishes (only betweand 2 entries will

not vanish), hence there is a limited number of degrees efism and the result-

ing frames are structurally very similar. For optimally sgduals, in contrast, the
sparsity can vastly vary. For frames in general positioa,nttinimal number of non-
vanishing entries i$? and hence rather large. As a consequence, there is a larger
number of degrees of freedom that allows for structurallgy\different solutions.



18 Felix Krahmer et al.

For example, th@? non-vanishing entries could be all in the same column orlgven
distributed over all columns.

Consequently, potential future research directionsirejab the two problems are
rather different. For sparse frames, we understand thes gassented above where
m > n quite well. But as mentioned in Remdrk13.9, the low redunglaases are
open. Regarding sparse duals, we can completely charaethd achievable sparsity
levels, but the question remains which of the many very difieoptimally sparse du-
als are most desired from the computational viewpoint. Aatineed above, a dual
frame with alln® non-vanishing entries in the same columns discards alkofetiun-
dant information, so intuitively it is less desirable thastdbuting the entries evenly
over the columns. Hence, it is important for a complete ustdeding to quantify
this preference for one optimally sparse dual frame ovepther in order to decide
between two duals in case such an intuitive judgment is nssipte. As the number
of possible optimally sparse duals is very large, a satisfg@answer to this question
must also involve algorithms to find duals which are at lebstecto the desired opti-
mum. Furthermore, it would be interesting to find concreteneples of frame classes
that allow for duals which are considerably sparser thahégeneric case.
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