
Noname manuscript No.
(will be inserted by the editor)

Sparse Matrices in Frame Theory

Felix Krahmer · Gitta Kutyniok · Jakob
Lemvig

Received: date / Accepted: date

Abstract Frame theory is closely intertwined with signal processingby providing a
canon of methodologies for the analysis of signals using (redundant) linear measure-
ments. The dual frame associated with a frame then provides ameans for reconstruc-
tion by a least squares approach. The novel paradigm of sparsity entered this area
lately in various ways. Of those, in this survey paper, we will focus on the frames and
dual frames which can be written as sparse matrices. The objective for this approach
is to ensure not only low-complexity computations, but alsohigh compressibility. We
will discuss both existence results as well as explicit constructions.
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1 Introduction

Efficient signal analysis and processing is one of the great scientific challenges to
date due to the ever increasing enormous amounts of data human kind is generating.
Recently, sparsity has entered the stage as a novel paradigmallowing the develop-
ment of highly efficient methodologies under certain typically satisfiable constraints.
The main objectives of this approach are dimension reduction allowing precise recon-
struction of the original signal, high compressibility of data, low-complexity compu-
tations, and many more.

1.1 Mathematical Signal Processing

In mathematical signal processing, one canonical first stepis the computation of lin-
ear (adaptive or non-adaptive) measurements associated with a carefully designed
representation system. To be precise, for a signalx ∈ Rn and a spanning sequence
(ϕi)

m
i=1⊂ Rn, we compute coefficientsc∈ Rm by

x 7→ c := Φ∗x= (〈x,ϕi〉)m
i=1 with Φ = (ϕ1| . . . |ϕm) ∈Rn×m. (1.1)

The case whenm= n and(ϕi)
m
i=1 constitutes an orthonormal basis forRn, e.g.,

when(ϕi)
m
i=1 is simply the Dirac basis, is very well studied. More intriguing are the

following two fundamentally different, more recently considered objectives for the
transform in (1.1), which go beyond the setting of orthonormal bases. One objec-
tive is dimension reduction, i.e.,m< n, of which compressed sensing is a prominent
representative. Another objective isrobust analysis, i.e.,m> n, which frame theory
focuses on.

Both cases face the crucial question of whether it is possible to recoverx from the
measurement coefficientsc= Φ∗x. In the undercomplete case (m< n), often convex
optimization is used, such as for instance in compressed sensing (see for example
the survey paper [16] and the book [12]). In the overcompletecase (m> n), least
squares is a typical approach, which also frame theory traditionally follows. Thus
reconstruction is typically performed by computing

((ΦΦ∗)−1Φ)c. (1.2)

In this survey paper, we from now on focus on the overcompletescenario with the
objective of deriving a robust analysis. However, with sparsity entering the picture,
as we will see, least squares is not always the preferred method of reconstruction.

1.2 Frame Theory

Frame theory – the theory of overcomplete (redundant) Bessel systems – dates back
to work by Duffin and Schaeffer in 1952 on non-harmonic Fourier series (see [11]).
Its success story in signal processing started in the 90th with the seminal work by
Daubechies, Grossman and Meyer [9]. At that time, it was recognized that not only
does redundancy of(ϕi)

m
i=1 ensure robustness of(〈x,ϕi〉)m

i=1 against noise or erasures,
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but the restrictions of forming an orthonormal basis are often too strong for the con-
struction of many systems. Since the groundbreaking work [9] was published, frames
have become a key methodology in signal processing. It should be emphasized that
frame theory is not only widely used in the finite dimensionalsetting (cf. [8]), but
also in infinite dimensions. In this survey paper we though focus on finite frames.

In signal processing with frames, three main steps can be identified. The first
step isencodingor decompositionwith frames, which is performed by the mapping
in (1.1). Main objectives for this step are the design of framesΦ that can be easily
stored and allow a low-complexity computation ofΦ∗x.

The second step is theanalysisof the signal based on the frame coefficients
c= Φ∗x. Depending on the processing goal (feature detection, inpainting, transmis-
sion etc.), the frameΦ needs to be designed accordingly, for instance, by encoding
the sought features in the large coefficients. Another main issue in signal processing
are linear or non-linear operatorsA : Rm→ Rm applied to the measurementsΦ∗x
during the analysis or transmission process. Examples for such operators are era-
sure operators associated with a diagonal matrix with diagonal entries either 0 or 1,
thresholding operators which set to zero all entries smaller (in absolute value) than
a given value, or the operator which takes the absolute valueof each entry lead-
ing to the problem of phase retrieval. Hence one goal then is to minimize the error
max‖x‖2=1‖x− ((ΦΦ∗)−1Φ)AΦ∗x‖2.

The third step consists inreconstructionof the original or manipulated signal,
which is for instance, done by (1.2), wherec could be either the original or modified
frame coefficients depending on the analysis step. Again, low-complexity computa-
tions are one concern. Also, it is often desirable to choose aframeΨ , a so-called
dual frame, different from(ΦΦ∗)−1Φ for reconstruction. The reconstruction is then
performed by computingΨc, and one can imagine that again design questions need
to be faced.

This shows the richness of the tasks in frame theory, and it iseasily imaginable
that this richness reflects on the number of commonly used frames available to date.
Not wanting to delve too much into details, we just mention equiangular frames,
harmonic frames, Gabor frames, wavelet frames, or shearletframes.

1.3 Desideratum: Sparsity

Sparsity has become an important paradigm in both numericallinear algebra and
signal processing. The sparsity of a vectorx= (x1, . . . ,xn)

T ∈ Rn is measured by

‖x‖0 := #{i ∈ {1, . . . ,n} : xi 6= 0},

andx is calledk-sparse, if ‖x‖0≤ k. Along the same lines, sparsity of a matrix means
that many of the matrix entries vanish, i.e., the quantity

‖Φ‖0 := #{(i, j) : ϕi, j 6= 0}, for Φ = [ϕi, j ] ∈ Rn×m. (1.3)

being small. Sparsity nowadays plays two conceptually verydifferent roles. On the
one hand, sparse representations guarantee efficient storage and processing of data.
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For example, multiplying a vector with a sparse matrix requires less operations and
the sparse representation of a signal can be directly used for efficient compression. On
the other hand, sparse representations epitomize structural simplicity. In fact, many
problems in signal processing are intrinsically ill-posed, so only such structural as-
sumptions on the solution make accurate and stable solutions possible. Key examples
are in the theory of compressed sensing as introduced in parallel by Donoho [10] and
Candès, Romberg, and Tao [4] in 2006. In this context, also weaker versions of spar-
sity such as compressibility or the behavior of the error of bestn-term approximation
are frequently used.

Both these utilization paradigms of the concept of sparsityhave direct connec-
tions to frame theory. For the first one, this connection can be drawn in two different
ways. Firstly, one can aim to design frames and dual frames toform sparse matri-
ces themselves, with the goal of an efficient encoding and reconstruction process. On
the other hand, the additional freedom resulting from the redundancy when work-
ing with frame representations rather than basis representations can allow to derive
sparser representations of a vector. The second one appearsin frame theory as a de-
sign question for the measurement matrix in compressed sensing, which computes
Φx for somex in the higher dimensional spaceRm.

In this survey, we focus on the very first connection, that is,sparsity of the frame
and dual frame matrices as a means to ensure a more efficient encoding and recon-
struction process. However, the inverse problems viewpoint on sparsity also plays an
important role, as finding sparse frames under certain constraints has many structural
similarities to finding sparse solutions to inverse problems.

Frames as sparse matrices were first analyzed in 2011 in [7], whereas sparse duals
were first considered and discussed in [14]. For both situations, results on the optimal
sparsity were derived, existence results were proven, and algorithms provided.

1.4 Outline

In this paper, we first provide an introduction to frame theory (Section 2). In Section
3, we then focus on sparse frames, and discuss optimality results, existence results as
well as explicit constructions. Similar considerations will be undertaken in Section 4,
then focusing on associated dual frames.

2 Basics of Frame Theory

We start with reviewing the basic definitions and notations of frame theory, which
will be used in the sequel.

2.1 Frames

A frame is a family of vectors which ensures stability of the map introduced in (1.1).
The precise definition is as follows. We also emphasize that for simplicity, we present
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the definition as well as the results solely for the real case.Notice that most results
also hold for the complex case.

Definition 2.1 A family of vectors(ϕi)
m
i=1 in Rn is called aframe forRn, if there

exist constants 0< A≤ B< ∞ such that

A‖x‖2≤
M

∑
i=1

|〈x,ϕi〉|2≤ B‖x‖2 for all x∈Rn. (2.1)

The constantsA andB are calledlower and upper frame boundfor the frame, re-
spectively. IfA= B is possible in (2.1), then(ϕi)

M
i=1 is called anA-tight frame, and

if A = B = 1, aParseval frame. Note that in the latter case, the system satisfies the
Parseval equality. If there exists a constantc such that‖ϕi‖= c for all i = 1,2, . . . ,m,
then(ϕi)

m
i=1 is anequal-norm frame. If c= 1, (ϕi)

M
i=1 is aunit-norm frame. Finally,

the values(〈x,ϕi〉)m
i=1 are called theframe coefficientsof the vectorx with respect to

the frame(ϕi)
m
i=1.

For a given frameΦ = (ϕi)
m
i=1 and a fixed orthonormal basis(ej)

n
j=1, we letΦ

denote then×m frame matrix, whoseith column is the coefficient vector ofϕi . Note
that with a small abuse of notation, we will denote byΦ both the frame and the
corresponding frame matrix. The condition (2.1) for a framethen reads

A‖x‖2≤ ‖Φ∗x‖22≤ B‖x‖2 for all x∈Rn.

Trivial, but useful observations, are combined in the following result. Since the
proofs are straightforward, we leave them to the reader.

Lemma 2.2 Let (ϕi)
m
i=1 be a family of vectors inRn.

(i) If (ϕi)
m
i=1 is an orthonormal basis, then(ϕi)

m
i=1 is a Parseval frame. The converse

is not true in general.
(ii) (ϕi)

m
i=1 is a unit-norm Parseval frame if and only if it is an orthonormal basis.

An easy example of a equal-norm Parseval frame, which does not constitute an
orthonormal basis, is the frame inR2 given by

{√
2
3

(
0
1

)
,
√

2
3

( √
3

2
− 1

2

)
,
√

2
3

(
−
√

3
2
− 1

2

)}

Due to the shape of its vectors inR2, this frame is typically calledMercedes-Benz
frame.

2.2 The Frame Operator

Given a frame(ϕi)
m
i=1, its signal processing performance is crucially determined by

the following three operators. We remark that the first operator was already intro-
duced in (1.1).
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Definition 2.3 Let Φ = (ϕi)
m
i=1 be a frame inRn.

(i) The associatedanalysis operator T: Rn→ Rm is defined by

Tx := Φ∗x=
(
〈x,ϕi〉

)m
i=1, x∈ Rn.

(ii) The associatedsynthesis operatoris defined to be the adjoint operatorT∗. A short
computation shows thatT∗ : Rm→ Rn is given by

T∗c := Φc=
m

∑
i=1

ciϕi , c= (ci)
m
i=1 ∈Rm.

(iii) The associatedframe operatoris the mapS: Rn→Rn defined to be

Sx:= T∗Tx= ΦΦ∗x=
m

∑
i=1

〈x,ϕi〉, x∈ Rn.

The following result can be easily proved by linear algebra techniques.

Theorem 2.4 The frame operator S of a frame(ϕi)
m
i=1 for Rn with frame bounds A

and B is a positive, self-adjoint invertible operator satisfying

A · In≤ S≤ B · In.

2.3 Reconstruction Strategy

We next aim to reconstruct the original signal from the imageunder the analysis op-
erator. This can be achieved by application of a linear operator by using Theorem 2.4
as the following result shows.

Theorem 2.5 Let Φ = (ϕi)
m
i=1 be a frame forRn with frame operator S. Then, for

every x∈ Rn, we have

x= S−1Sx= ((ΦΦ∗)−1Φ)(Φ∗x) =
m

∑
i=1

〈x,ϕi〉S−1ϕi .

This is the well-known least squares reconstruction. Due tothe redundancy of
the frame, also other matricesΨ ∈ Rn×m do exist which satisfy the reconstruction
conditionΨΦ∗ = In with In being the identity matrix onRn. For those, the following
terminology is common in frame theory.

Definition 2.6 Let Φ = (ϕi)
m
i=1 be a frame forRn with frame operatorS. Then the

system(S−1ϕi)
m
i=1 =(ΦΦ∗)−1Φ is called thecanonical dual frame. In general, every

frameΨ = (ψi)
m
i=1 for Rn satisfying

x=ΨΦ∗x=
m

∑
i=1
〈x,ϕi〉ψi , x∈ Rn

is referred to as an(alternate) dual frame forΦ.
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The set of all dual frames can be explicitly expressed by using classical linear
algebra.

Proposition 2.7 Let Φ = (ϕi)
m
i=1 be a frame forRn. Then, every dual frameΨ =

(ψi)
m
i=1 for Φ is of the form

Ψ = (ΦΦ∗)−1Φ +L(Im−Φ∗(ΦΦ∗)−1Φ), where L∈ Rn×m. (2.2)

We remark that the canonical dual frame plays no special rolein (2.2) in the sense
that, ifΨ̃ is justsomedual, then all duals are obtained by

Ψ = Ψ̃ +L(Im−Φ∗Ψ̃ ),

whereL ∈ Rn×m. If Φ forms anA-tight frame, by Theorem 2.4 the frame operator is
a multiple of the identity, which then leads to the reconstruction formula

x= A−1Φ(Φ∗x) = A−1
m

∑
i=1

〈x,ϕi〉ϕi .

In this case, the canonical frame coincides withA−1Φ. This shows that from a signal
processing perspective, tight frame are highly desirable.

2.4 Expansion in Frames

From Theorem 2.4, we can also deduce a different formula, which can be regarded as
an expansion ofx in terms of the frame(ϕi)

m
i=1.

Theorem 2.8 Let Φ = (ϕi)
m
i=1 be a frame forRn with frame operator S. Then, for

every x∈ Rn, we have

x= SS−1x= Φ((ΦΦ∗)−1Φ∗)x=
m

∑
i=1
〈x,S−1ϕi〉ϕi .

The specifically chosen sequence of coefficients(ΦΦ∗)−1Φ∗x is the one being
minimal in theℓ2 norm among all coefficient sequences.

Proposition 2.9 Let Φ = (ϕi)
m
i=1 be a frame forRn with frame operator S, and let

x∈Rn. If c= (ci)
m
i=1 are scalars such that x= Φc= ∑m

i=1ciϕi , then

‖c‖22 = ‖(ΦΦ∗)−1Φ∗x‖22+ ‖c− (ΦΦ∗)−1Φ∗x‖22

=
M

∑
i=1
|〈x,S−1ϕi〉|2+

M

∑
i=1
|ci−〈x,S−1ϕi〉|2.

Proposition 2.9 immediately implies that for any sequencec= (ci)
m
i=1 satisfying

x= ∑m
i=1ciϕi , we have

M

∑
i=1

|〈x,S−1ϕi〉|2 = ‖(ΦΦ∗)−1Φ∗x‖22 < ‖c‖22

unlessc= (ΦΦ∗)−1Φ∗x.
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2.5 Construction of Tight Frames

As already debated, due to their advantageous reconstruction properties, it is partic-
ularly desirable to construct tight frames. We distinguishbetween two different situ-
ations: If a given frame shall be modified to become a tight frame, or if only specific
parameters are given according to which a tight frame shall be constructed.

If a frame is already given, there exists a very straightforward way to modify it to
even become Parseval.

Proposition 2.10 LetΦ = (ϕi)
m
i=1 be a frame forRn with frame operator S. Then

(S−1/2ϕi)
m
i=1 = (ΦΦ∗)−1/2Φ∗

forms a Parseval frame.

Proof This follows from

((ΦΦ∗)−1/2Φ∗)∗(ΦΦ∗)−1/2Φ∗ = In

and the definition of a Parseval frame. ⊓⊔

However, various properties of the frame such as the direction of the frame vec-
tors is destroyed during the process. A much more careful procedure is to just scale
each frame vector to generate a Parseval frame, which can also be regarded as pre-
conditioning by a diagonal matrix. Characterizing conditions – also of geometric type
– for a frame to be scalable in this sense are contained in [17].

If no frame is given, but only the dimension of the spacen, and the number of
frame vectorsm, there are also explicit algorithms to construct a corresponding tight
frame. A specific algorithm which accomplishes this goal which is of special rele-
vance to this paper as the frames constructed are particularly sparse will be described
in Section 3.1

3 Sparse Frames

In this section, we will study our guiding problem in the mostgeneral context: How
sparse can a frame be when the embedding and ambient dimensions n and m are
given? We will ask this question with regards to the following definition of a sparse
frame:

Definition 3.1 Let (ej)
n
j=1 be an orthonormal basis forRn. Then a frame(ϕi)

m
i=1 for

Rn is calledk-sparsewith respect to(ej)
n
j=1, if, for eachi ∈ {1, . . . ,m}, there exists

Ji ⊆ {1, . . . ,n} such that
ϕi ∈ span{ej : j ∈ Ji}

and
n

∑
i=1
|Ji |= k.
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Note that according to this definition, a frame beingk-sparse is the same as the
associated frame matrix having onlyk non-vanishing entries, hence this definition
is in line with (1.3). The main goal of this section will be to find optimally sparse
frames in the sense of the following definition.

Definition 3.2 Let F be the class of all frames forRn consisting ofm frame vectors,
let (ϕi)

m
i=1∈F , and let(ej)

n
j=1 be an orthonormal basis forRn. Then(ϕi)

m
i=1 is called

optimally sparse inF with respect to(ej)
n
j=1, if (ϕi)

m
i=1 is k1-sparse with respect to

(ej)
n
j=1 and there does not exist a frame(ψi)

m
i=1 ∈F which isk2-sparse with respect

to (ej)
n
j=1 with k2 < k1.

Without any additional constraints, an optimally sparse frame will always be
given by the canonical basis extended by zero vectors. However, since the firstn
frame coefficients of a vector will carry all the information, the frame representation
cannot be called redundant. A way to circumvent this issue isto require the frame
vectors to be unit norm, i.e.‖ϕi‖2 = 1. This normalization ensures that the frame
coefficients carry equal information. Even then an optimally sparse frame is easily
found by extending the canonical basis bym− n copies of the first (or any other)
basis vector. The resulting frame, however, has another drawback: Its redundancy is
distributed very unevenly. In the direction of the repeatedframe vector it is indeed
very redundant, whereas in all other directions the frame isnot redundant at all. The
spatial distribution of the redundancy is studied by Bodmann et al. in [2], and the au-
thors show that this is reflected in the spectrum of the frame operator. Consequently,
we will fix the spectrum of the frame operator as an additionalconstraint.

Arguably the most natural case is that the desired redundancy is evenly dis-
tributed, which corresponds to a spectrum consisting of a single point and hence a
tight frame. Thus our main focus in this survey article will be on the classF (n,m)
of unit norm, tight frames consisting ofm vectors inn dimensions. Remark 3.8 will
briefly discuss extensions to more general spectra.

3.1 Spectral Tetris – an Algorithm to Construct Sparse TightFrames

Frames inF (n,m) are characterised by having a frame matrix with orthogonal rows
with norm

√
m/n and columns with norm one. Constructing a sparse unit norm,

tight frame hence boils down to satisfy these constraints using as few entries of the
matrix as possible and setting the rest to zero. The objective of the Spectral tetris
algorithm, as introduced in [5] by Casazza et al., is to accomplish these goals in
a greedy fashion, determining the frame matrix entries subsequently in a recursive
way. Its only requirement is thatm/n≥ 2; for such dimension pairings it constructs
a unit-norm tight frame(ϕi)

m
i=1 for Rn. The frame bound then automatically equals

m/n. The detailed steps are provided in Algorithm 1. We remark that an extension to
arbitrary spectra of the frame operator is described in [3].

By construction, the frames resulting from Algorithm 1 willalways be rather
sparse. Indeed, the two cases which the algorithm distinguishes in theif-elsestate-
ment correspond to adding a column with two non-vanishing entries or to adding a
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Algorithm 1 STTF: Spectral Tetris for Tight Frames
Input: (i) Dimensionn∈ N, (ii) Number of frame elementsm∈ N with m/n≥ 2, (iii) An ONB (ej )

n
j=1.

Output: Frame STTF(n,m).
1: Initialize: i← 1, λ1←m/n
2: for j = 1 : n do
3: λ j+1←m/n.
4: while λ j 6= 0 do
5: if λ j < 1 then

6: ϕi ←
√

λ j
2 ·ej +

√
1− λ j

2 ·ej+1.

7: ϕi+1←
√

λ j
2 ·ej −

√
1− λ j

2 ·ej+1.
8: i← i+2.
9: λ j+1← λ j+1− (2−λ j ).

10: λ j ← 0.
11: else
12: ϕi ← ej .
13: i← i+1.
14: λ j ← λ j −1.
15: end if
16: end while
17: end for
18: STTF(n,m)← {ϕi}mi=1.

column with just a single non-vanishing entry. Thus in any case, the frame has spar-
sity at most 2m, which should be considered small compared to the total number of
mnmatrix entries. The intrinsic sparsity of the algorithmic procedure is best visual-
ized by the example Spectral Tetris frame given in (3.1) below.

Our goal for the remainder of this section is first to find a lower bound for the
optimal sparsity within the classF (n,m) and then to show that the Spectral Tetris
frames, when they exist, in fact obtain this lower bound. As we will see in the follow-
ing subsection, a factor that determines the optimal sparsity and that is consequently
a key proof ingredient is whether the dimension pairing allows for block decomposi-
tions.

3.2 Block Decompositions of Frame Matrices

Recall that Algorithm 1 returns a frame consisting only of 1-sparse and 2-sparse
vectors. Hence the only way one can expect to find an even sparser frame would be to
have fewer 2-sparse vectors than the output of Algorithm 1. So it is intuitively relevant
to ask for the minimal number of 2-sparse vectors that a frameof given embedding
and ambient dimensions must have. Spectral tetris frames contain at most 2n− 2
frame vectors which are 2-sparse, but can contain less. If this is the case, the frame
matrix has a block decomposition of order at least 2 in the sense of the following
definition.

Definition 3.3 Let n,m> 0, and let(ϕi)
m
i=1 be a frame forRn. Then we say that

the frame matrixΦ = (ϕi)
m
i=1 hasblock decomposition of orderν, if there exists a

partition{1, . . . ,m}= I1∪ . . .∪ Iν such that, for anyi1 ∈ Iℓ1 andi2 ∈ Iℓ2 with ℓ1 6= ℓ2,
we have suppϕi1 ∩suppϕi2 = /0 andν is maximal.
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The following result now connects the block decomposition order of a frame ma-
trix with the greatest common divisor of the dimension and the number of frame
vectors.

Proposition 3.4 ( [7]) Let m> n > 0 and Φ = (ϕi)
m
i=1 ∈F (n,m). Then the frame

matrix Φ has block decomposition of order at mostgcd(n,m).

Proof Assume(ϕi)
m
i=1 ∈F (n,m) has block decomposition of orderν, and let a cor-

responding partition be given by{1, . . . ,m} = I1∪ . . .∪ Iν . For eachℓ = 1, . . . ,ν, let
Sℓ be the common support set of the vectors(ϕi)i∈Iℓ . In other words, we havek∈ Sℓ
if and only if k ∈ suppϕi for somei ∈ Iℓ. Further, letrk denote thekth row of the
frame matrix of(ϕi)

m
i=1; note that‖rk‖2 = m

n as the frame is tight. ThenS1, . . . ,Sν is
a partition of{1, . . . ,n} and, for everyℓ = 1, . . . ,ν, we have by the fact that(ϕi)

m
i=1

consists of unit norm vectors and by our choice ofIℓ andSℓ that

#Iℓ = ∑
k∈Iℓ

‖ϕk‖2 = ∑
k∈Sℓ

‖rk‖2 = ∑
k∈Sℓ

m
n
= #Sℓ

m
n
.

The second equality holds since we, after permutation of thecolumns, can write the
frame matrix of(ϕi)

m
i=1 asΦ = [Φ1, . . . ,Φν ], whereΦℓ has zero entries except on the

rows indexed byIℓ and the columns indexed bySℓ, for ℓ = 1, . . . ,ν. As each #Iℓ is
an integer, one must have #Sℓ ≥ n

gcd(n,m)
for all ℓ, and hence we obtainν ≤ n

minℓ #Sℓ
≤

gcd(n,m). ⊓⊔

3.3 A Lower Bound for Sparsity withinF (n,m)

The main result of the section, Theorem 3.5, is a lower bound on the achievable
sparsity of frames in the classF (n,m). With Theorem 3.6 in the next section, we
will see that this lower bound is actually realizable for anyn,m∈ N in the range
m≥ 2n.

Theorem 3.5 ( [7])Let m> n> 0. Suppose that(ϕi)
m
i=1 ∈F (n,m). Then

‖Φ‖0≥m+2(n−gcd(n,m)),

whereΦ is the frame matrix of(ϕi)
m
i=1 with respect to any orthonormal basis.

Proof Let Φ denote the frame matrix of a frame inF (n,m) with respect to a fixed
orthonormal basis. For the sake of brevity, in the sequel we will use the phrase that
two rows ofΦ have overlap of size k, if the intersection of their supports is a set of
sizek. Note that, since the rows ofΦ are orthogonal, it is not possible that two rows
of Φ have overlap of size one.

We first consider the case where gcd(n,m) = 1. Pick an arbitrary rowr1 of Φ.
Since, by Proposition 3.4,Φ has block decomposition of order one, there exists a
row r2 whose overlap withr1 is of size two or greater. Similarly, there has to exist a
row different fromr1 andr2 which has overlap of size two or greater with eitherr1 or
r2. Iterating this procedure will provide an orderr1, r2, . . . rn such that, for each rowr j ,
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there exists somek< j such thatr j has overlap of size two or greater withrk. Since
all columns inΦ are of norm one, for each columnv, there exists a minimalj for
which ther j th entry of the vectorv is non-zero. This yieldsm non-zero entries inΦ.
In addition, each rowr2 throughrn has at least two non-zero entries coming from the
overlap, which are different from the just accounted form entries, since these entries
cannot be the non-zero entries of minimal index of a column due to the overlap with
a previous row. This sums up to a total of at least 2(n− 1) non-zero coefficients.
Consequently, the frame matrix has at leastm+2(n−1) non-zero entries.

We now consider the case where gcd(n,m) = ν > 1. By Proposition 3.4,Φ has
block decomposition of order at mostν. Performing the same construction as above,
we see that there exist at mostν rows r j (including the first one) which do not have
overlap with a rowrk for k < j. Thus the frame matrixΦ must at least containm+
2(n−ν) non-zero entries. ⊓⊔

3.4 Optimally Sparse Unit Norm Tight Frames

Having set the benchmark, we now prove that frames constructed by Spectral Tetris
in fact meet the optimal sparsity rate. For this, we would like to remind the reader
that the tight Spectral Tetris frame as constructed by Algorithm 1 is denoted by
STTF(n,m).

Theorem 3.6 ( [7]) Let m≥ 2n > 0. Let (ej)
n
j=1 be an orthonormal basis forRn.

Then the frame STTF(n,m) constructed using(ej)
n
j=1 is optimally sparse inF (n,m)

with respect to(ej)
n
j=1. That is, ifΦ is the frame matrix of STTF(n,m) with respect

to (ej)
n
j=1, then

‖Φ‖0 = m+2(n−gcd(n,m)).

Proof Let (ϕi)
m
i=1 be the frame STTF(n,m), and letΦ be the frame matrix of(ϕi)

m
i=1

with respect to(ej)
n
j=1. We start by showing thatΦ has block decomposition of order

ν = gcd(n,m). For this, we setn0 = m0 = 0 andn j = j n
ν , mj = j m

ν , 1≤ j ≤ ν; in
particular this entailskν = n andmν = m.

As m
n = m1

n1
, the firstn1 entries of the firstm1 coefficient vectors resulting from

STTF(n1,m1) and STTF(n,m) coincide; indeed, the corresponding steps are identi-
cal. Continuing the computation of STTF(n,m) will set the remaining entries of the
first m1 vectors and also the firstn1 entries of the remaining vectors to zero. Thus, any
of the firstn1 vectors has disjoint support from any of the vectors constructed later on.
Repeating this argument forn2 until nν , we obtain thatΦ has a block decomposition
of orderν; the corresponding partition of the frame vectors being

ν⋃

i=1

{ϕmi−1+1, . . . ,ϕmi}.

To compute the number of non-zero entries inΦ, we leti ∈ {1, . . . ,ν} be arbitrar-
ily fixed and compute the number of non-zero entries of the vectorsϕmi−1+1, . . . ,ϕmi .
Spectral Tetris ensures that the support of each of the rowsni−1 + 1 up to ni − 1
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intersects the support of the subsequent row on a set of size two, as otherwise an ad-
ditional block would be created. Thus, there exist 2(ni−ni−1−1) frame vectors with
two non-zero entries. The remaining(mi−mi−1)− 2(ni − ni−1− 1) frame vectors
will have only one entry, yielding a total number of(mi−mi−1)+ 2(ni − ni−1− 1)
non-zero entries in the vectorsϕmi−1+1, . . . ,ϕmi .

Summarizing, the total number of non-zero entries in the frame vectors of(ϕi)
m
i=1

is
ν

∑
i=1

(mi−mi−1)+2(ni−ni−1−1) =

(
ν

∑
i=1

(mi−mi−1)

)
+2

(
nν −

(
ν

∑
i=1

1

))

= m+2(n−ν),

which, by Theorem 3.5, is the optimal sparsity. ⊓⊔
The following example shows that an optimally sparse frame fromF (n,m) is, in

general, not unique.

Example 3.7 Let n = 4 andm= 9. Then, by Theorem 3.5, the optimal sparsity is
9+2(4−1) = 15. The following matrices are frame matrices with respect to a given
orthonormal basis of two different unit-norm tight frames in R4:

Φ1 =




1 1
√

1
8

√
1
8 0 0 0 0 0

0 0
√

7
8 −
√

7
8

√
1
4

√
1
4 0 0 0

0 0 0 0
√

3
4 −
√

3
4

√
3
8

√
3
8 0

0 0 0 0 0 0
√

5
8 −
√

5
8 1




(3.1)

and

Φ2 =




1
√

5
8

√
5
8 0 0 0 0 0 0

0
√

3
8 −
√

3
8

√
3
8

√
3
8

√
3
8

√
3
8 0 0

0 0 0
√

5
8 −
√

5
8 0 0 1 0

0 0 0 0 0
√

5
8 −
√

5
8 0 1



.

Clearly, both frame matrices satisfy‖Φ1‖0 = ‖Φ2‖0 = 15, hence the corresponding
frames are optimally sparse inF (4,9). We remark thatΦ1 is the frame matrix of
STTF(4,9).

Remark 3.8 Tight frames have the special property that their spectrum uniquely de-
fines the frame operator. While it is shown in [7] that given a diagonal frame operator,
Spectral Tetris for Frames, a variant of Algorithm 1, alwaysconstructs the optimally
sparse frame associated to that operator, there may exist a frame with a non-diagonal
frame operator of the same spectrum which is sparser. Hence in such cases, Spectral
Tetris does not always find the sparsest frame of a given spectrum.

Remark 3.9 For redundancy less than 2, the picture is less clear. It has been shown
[6, 18] that the Spectral Tetris algorithm works even in certain cases wherem< n.
However, to our knowledge, a systematic analysis of optimalsparsity for low redun-
dancy has not been performed.
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4 Sparse Dual Frames

In this section we will take a different viewpoint regardingsparsity, and we now ask
how sparse a dual frame of a given, fixed frame can be. This viewpoint is motivated
by the fact that in many cases the decomposition frame(ϕi)

m
i=1 is given by the ap-

plication at hand, e.g., by the way of measuring the data. In these situations, one is
then interested in choosing a good dual frame of(ϕi)

m
i=1 for the reconstruction pro-

cess. Notice again how the redundancy of frames plays a key role here since in the
non-redundant case we would only have one option for exact reconstruction.

Again, the goal will be to achieve sparsity in the sense of Definitions 3.1, with the
goal of allowing for efficient matrix-vector multiplication, just this time for the dual
frame (Note that in contrast to the previous section, the basis used for representing
the dual frame is the same as for the frame at hand and hence fixed). That is, we are
interested in the following minimization problem:

min‖Ψ‖0 s.t. ΦΨ ∗ = In, (4.1)

where the frameΦ is given. In line with Definition 3.2, we name the solutions of(4.1)
optimally sparse duals; note that as for optimally sparse frames, these solutions are,
in general, not unique. In the following two subsections we will focus on analyzing
the possible values of the objective function‖Ψ‖0 in (4.1), and in the final subsection
we will comment on the problem of finding the minimizers.

4.1 Optimal Sparsity of Dual Frames

In this subsection we investigate the possible sparsity levels in the set of all dual
frames. We start with a trivial upper bound.

Lemma 4.1 SupposeΦ is a frame forRn. Then there exists a dual frameΨ of Φ
with

‖Ψ‖0 ≤ n2.

Proof Let J⊂ {1,2, . . . ,m} be such that #J = n and the corresponding frame vectors
(ϕi)i∈J are linearly independent. Such a set always exists, as in order to form a frame,
the columns ofΦ must spanRn. Let (ψi)i∈J be the unique (bi-orthogonal) dual of
(ϕi)i∈J, and setψi = 0 for i /∈ J. Then we obviously have‖Ψ‖0≤ n2. ⊓⊔

Without additional assumptions on the frame, only the trivial lower bound‖Ψ‖0≥
n on the dual frame sparsity can be established; this bound is achieved, e.g., for frames
containing the canonical basis vectors. To precisely determine the optimal sparsity in
the set of all duals of a given frame, we thus need to take into account further proper-
ties of the frame. In particular, the spark of the frame matrix plays an important role.
Recall that the spark of a matrixΦ ∈Rn×m is defined as the smallest number of linear
dependent columns ofΦ and denoted by spark(Φ). For an invertiblen×n matrixΦ,
one sets spark(Φ) = n+1. In fact, we will need the following refined version of the
spark.



Sparse Matrices in Frame Theory 15

Definition 4.2 Let Φ ∈ Rn×m. Then sparkj (Φ) denotes the smallest number of lin-

early dependent columns in the(n− 1)×m submatrixΦ( j) of Φ with the jth row
deleted such that the corresponding columns inΦ are linear independent.

We can now state the main result of this subsection.

Theorem 4.3 ( [14])SupposeΦ is a frame forRn. Then the optimally sparse dual
frameΨ of Φ satisfies

‖Ψ‖0 =
n

∑
j=1

sparkj (Φ).

Proof LetΨ be an optimally sparse dual ofΦ. Fix j ∈ {1, . . . ,n}, and letϕ( j)
k denote

the kth column ofΦ( j). SinceΦ andΨ are assumed to be dual frames, we have
that Φ( j)

(
ψ j
)∗

= 0n−1 to hold, whereψ j denotes thejth row of Ψ . This shows

that
(
ϕ( j)

k

)
k∈suppψ j must be linearly dependent. On the other hand, the frame vectors

(ϕk)k∈suppψ j must be linearly independent, as otherwise one of these columns would
be a linear combination of the others, which would allow for the construction of
ψ̃ j with suppψ̃ j ( suppψ j such thatΦ

(
ψ̃ j
)∗

= ej . This in turn would imply that
the frame, whose frame matrix is obtained fromΨ by replacing the rowψ j by ψ̃ j

is also a dual frame ofΦ, soΨ is not the optimally sparse dual, contradicting our
assumption. Therefore we obtain|suppψ j | ≥ sparkj (Φ) which, in turn, implies that
‖Ψ‖0 ≥ ∑n

j=1sparkj (Φ).
To complete the proof we need to show existence of a dual framethat meets this

lower bound. To that intent, fixj ∈ {1, . . . ,n}, and letS be a set of size sparkj (Φ)
such that(ϕk)k∈S is a set of linearly independent columns ofΦ such that the corre-
sponding columns ofΦ( j) are linearly dependent. That is, there exist(λk)k∈S such
that∑k∈Sλk(ϕ( j))k = 0, but(∑k∈Sλkϕk) j = a 6= 0. This motivates to defineψ j via

ψ j
k =

{
λk
a if k∈ S,

0 if k∈ {1, . . . ,m}\S,

as this definition yieldsΦ(ψ j )∗ = ej . Therefore, the matrixΨ with rows ψ j , j ∈
{1, . . . ,n}, corresponds to a dual frame which is∑n

j=1sparkj (Φ)-sparse. ⊓⊔

By definition we have sparkj (Φ) ≥ spark(Φ( j)) for every j = 1, . . . ,n. Hence,
we immediately have the following useful corollary of Theorem 4.3.

Corollary 4.4 SupposeΦ is a frame forRn. Then any dual frameΨ of Φ satisfies

‖Ψ‖0≥
n

∑
j=1

spark(Φ( j)).
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4.2 n2-Sparse Duals

By Lemma 4.1 we know that it is always possible to find a dual frame with sparsity
leveln2. The result below states that for a large class of frames thisis actually the best,
or rather the sparsest, one can achieve. Recall that ann×m matrix is said to be in
general positionif any sub-collection ofn (column) vectors is linearly independent,
that is, if anyn×n submatrix is invertible. Such matrices are sometimes called full
spark frames, such as in [1], since their spark is maximal, i.e.,n+1.

Theorem 4.5 ( [14])SupposeΦ is a frame forRn such that the submatrixΦ( j) is in
general position for every j= 1, . . . ,n. Then any dual frameΨ of Φ satisfies

‖Ψ‖0≥ n2. (4.2)

In particular, the optimally sparse dual satisfies‖Ψ‖0 = n2

Proof Since Φ( j) is in general position, we have spark(Φ( j)) = n for each j =
1, . . . ,n. By Corollary 4.4 we immediately have (4.2), and then, by Lemma 4.1, that
the optimally sparse satisfies‖Ψ‖0 = n2. ⊓⊔

We illustrate this result with a number of examples of frameswhich are well-
known to be in general position, and which thus do not allow for dual frames with
less thann2 non-vanishing entries.

Example 4.6 For anyn,m∈ N with m≥ n, let ai > 0, i = 1, . . . ,m with ai 6= a j for
all i 6= j, and letb j ∈ R, j = 1, . . . ,n with b j 6= bi , j 6= i. Generalized Vandermonde
frames are defined by:

Φ =




ab1
1 ab2

1 · · · abm
1

...
...

...
ab1

n ab2
n · · · abm

n


 .

It is well-known, see e.g., [13, §8.1], that the submatrixΦ( j) is in general position for
every j = 1, . . . ,m, which, by Theorem 4.5, implies that optimally sparse dualsof Φ
aren2-sparse.

As previously mentioned the results in this paper also hold for complex frames.
The next two examples are frames forCn whose sparsest dual has sparsityn2. Notice
that we here deviate from our policy to restrict to real frames.

Example 4.7 Let n ∈ N, and letm be prime. LetΦ be a partial FFT matrix of size
n×m, that is,Φ is constructed by pickingn rows of anm×m DFT matrix at ran-
dom. We remark thatΦ is a tight frame. Moreover, anyΦ( j) is in general position,
as the determinant of any(n−1)× (n− 1) submatrix ofΦ is non-zero which is a
consequence of Chebotarev theorem about roots of unity stating that any minor of an
m×mDFT matrix is non-zero wheneverm is prime [19,20]. Our conclusion is again
that the sparsest dual frameΨ of Φ satisfies‖Ψ‖0 = n2.
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Example 4.8 For n ∈ N prime andm= n2, Krahmer et al. showed in [15] that for
almost everyv ∈ Cn, the Gabor frame generated byv has a frame matrix with no
zero minors. For this reason, the optimally sparse duals of such Gabor frames have
sparsityn2.

In fact, the property of having a sparsest dual with sparsityn2 is a very generic
property in the sense that the setN (n,m) of all frames ofm vectors inRn whose
sparsest dual hasn2 non-zero entries contains an open, dense subset inRn×m and
has a compliment of measure zero. LetP(n,m) be the the set of all framesΦ which
satisfy spark(Φ( j)) = n for all j = 1, . . . ,n. By Corollary 4.4 we have thatP(n,m)⊂
N (n,m). We are now ready to state the result saying that “most” framehas a sparsest
dual with sparsity leveln2.

Lemma 4.9 Suppose m≥ n. Then the setP(n,m) is open and dense inRn×m, and
P(n,m)c is of measure zero.

Proof Note thatΦ = [xk,ℓ]k∈{1,...,n},ℓ∈{1,...,m} ∈P(n,m) if and only if Φ has full-rank

and the polynomials inxk,ℓ given by det
(
[Φ( j)]I

)
are non-zero for eachj ∈ {1, . . . ,m}

and I ∈ S, whereS is the collection of all subsets of{1, . . . ,m} of sizen− 1. Here
[Φ( j)]I ∈ R(n−1)×(n−1) denotes the matrixΦ( j) restricted to the columns in the index
setI . This shows thatP(n,m) is open in the Zariski topology. Since the setP(n,m)
is non-empty by Example 4.6, it is thereby open and dense in the standard topology,
see [1]. Finally, sinceP(n,m)c is a proper subset and closed in the Zariski topology,
it is of measure zero. ⊓⊔

By Lemma 4.9 we see that any frame ofm vectors inRn is arbitrarily close to a
frame inN (n,m).

Theorem 4.10 ( [14])Every frame is arbitrarily close to a frame whose sparsest
dualΨ satisfies‖Ψ‖0 = n2.

Another consequence of Lemma 4.9 is that for many randomly generated frames, the
sparsest dual has sparsity level‖Ψ‖0 = n2. As an example, this holds when the entries
of Φ are drawn independently at random from a standard normal distribution or when
the frame obtained by a small Gaussian random perturbation of a givenn×mmatrix.

5 Discussion and Future Directions

Comparing the problems discussed in Sections 3 and 4, one observes that the cor-
responding optimally sparse solutions behave very differently. For optimally sparse
frames, a large fraction of the entries vanishes (only betweenn and 2n entries will
not vanish), hence there is a limited number of degrees of freedom and the result-
ing frames are structurally very similar. For optimally sparse duals, in contrast, the
sparsity can vastly vary. For frames in general position, the minimal number of non-
vanishing entries isn2 and hence rather large. As a consequence, there is a larger
number of degrees of freedom that allows for structurally very different solutions.
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For example, then2 non-vanishing entries could be all in the same column or evenly
distributed over all columns.

Consequently, potential future research directions relating to the two problems are
rather different. For sparse frames, we understand the cases presented above where
m≥ n quite well. But as mentioned in Remark 3.9, the low redundancy cases are
open. Regarding sparse duals, we can completely characterize the achievable sparsity
levels, but the question remains which of the many very different optimally sparse du-
als are most desired from the computational viewpoint. As mentioned above, a dual
frame with alln2 non-vanishing entries in the same columns discards all of the redun-
dant information, so intuitively it is less desirable than distributing the entries evenly
over the columns. Hence, it is important for a complete understanding to quantify
this preference for one optimally sparse dual frame over theother in order to decide
between two duals in case such an intuitive judgment is not possible. As the number
of possible optimally sparse duals is very large, a satisfactory answer to this question
must also involve algorithms to find duals which are at least close to the desired opti-
mum. Furthermore, it would be interesting to find concrete examples of frame classes
that allow for duals which are considerably sparser than in the generic case.
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