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Abstract

Microlocal analysis provides deep insight into singularity structures and is often crucial for solving
inverse problems, predominately, in imaging sciences. Of particular importance is the analysis of wavefront
sets and the correct extraction of those. In this paper, we introduce the first algorithmic approach to
extract the wavefront set of images, which combines data-based and model-based methods. Based on a
celebrated property of the shearlet transform to unravel information on the wavefront set, we extract the
wavefront set of an image by first applying a discrete shearlet transform and then feeding local patches of
this transform to a deep convolutional neural network trained on labeled data. The resulting algorithm
outperforms all competing algorithms in edge-orientation and ramp-orientation detection.
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1 Introduction

Many scientific and industrial real-world applications require a precise understanding of how a model parameter,
represented by a function, is transformed under some process that is described by an operator. Such analysis
easily becomes very challenging, and one attempt at simplifying it is to treat the singular (non-smooth)
and smooth parts of the function separately. In fact, a significant portion of the useful information is often
contained in the singular part. For images, this singular part corresponds to edges in the image.

Microlocal analysis is a powerful mathematical theory that aims to precisely describe how the singular
part of a function, or more generally a distribution, is transformed when acted upon by an operator. Since
its introduction in the early 1970s by Sato [42] and Hörmander [23], it has proven itself useful in both
pure and applied mathematical research. The crucial underlying observation in microlocal analysis is that
the information about the location of the singularities (singular support) needs to be complemented with
specifying those directions along which singularities may propagate. This extra directional (“microlocal”)
information is key in elucidating how singularities propagate when acted upon by a certain class of operators.

Microlocal analysis is by now a well-developed theory that can be used to study how singularities propagate
under certain classes of operators. The latter includes Fourier integral operators such as most differential and
pseudo-differential operators as well as many integral operators arising in integral geometry. Such operators
are frequently encountered in analysis, scientific computing, and physical sciences [23, 6]. Microlocal analysis
is also particularly useful in inverse problems, where the goal is to reliably recover a hidden model parameter
(function) from a noisy transformed version. The goal here would be to recover the wavefront set of the
function (image) given the noisy realization of a transformed version of the function. Such applications
frequently arise when using imaging/sensing technologies where the transform is a pseudo-differential or
Fourier integral operator [27]. While computing the action of such an operator, or its inverse, on a function
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can be highly non-trivial, it is often possible to precisely describe how the wavefront set is transformed
without performing such computations.

A prime example showing the usefulness of microlocal analysis appears in the analysis of inverse problems
arising in imaging applications. Here, the image is a function describing the interior structure of the object
under study and the goal is to recover this image given a noisy realization of a transformed version of it.
Recovering the image is however often not possible, either because the transformation relating the image
to data is not invertible or because data is incomplete. On the other hand, full knowledge of the image is
not always necessary. As an example, if one is looking for a tumor, then its location and shape are often
sufficient for decision making whereas the exact values of the tumor density may be ignored. The location
and shape of the tumor can be readily determined from the singular part of the image.

For the above reason, there exist a plethora of applications of microlocal analysis to tomographic imaging.
In these applications, the transformation relating the image to data is the ray transform. This can be
interpreted as a pseudo-differential operator, so it is possible to explicitly describe the relation between the
wavefront set of the function (image) and its transformed version (tomographic data). Such relationships are
referred to as (microlocal) canonical relations.

The canonical relation can also be used to identify which singularities that can be recovered from data
without explicitly computing the inverse ray transform. This was done in [37] for the case when the 2D/3D
ray transform is restricted to parallel lines and in [38] for an analysis in the region-of-interest limited angle
setting. A related principle was derived in [13] for the 3D ray transform restricted to lines given by helical
acquisition that is common in medical imaging. Similar principles hold for transforms integrating along other
types of curves, for example, ellipses with foci on the x-axis and geodesics [47].

Besides the canonical relation, another observation is that recovering the wavefront set of a function
from ray transform data is less ill-posed than recovering the function itself. The latter may in fact not even
be possible as in region-of-interest tomography. This was demonstrated in [12] where the severely ill-posed
reconstruction problem in limited angle tomography becomes mildly ill-posed if the wavefront set of the
solution is provided as prior information. See also [38] for an application of this principle to cryo-electron
tomography.

Additionally, the concept of the wavefront set is applied successfully also for problems involving transfor-
mations that are not necessarily pseudo-differential operators. Directed singularities, in particular edges or
ridges, play a significant role in image processing to the extent that edge detection is one of the principal
problems of this field. This is due to the fact, that edges in images present boundaries of objects and carry
most of the information of the associated physical scene [46, 34, 3, 4]. Additionally, it has been argued in [34]
that the human visual cortex performs multiple operations of image processing, the first of which is rough
sketching involving edge detection.

1.1 Extraction of the wavefront set

One critical issue that hinders the usage of the wavefront set in real-world scenarios is that its extraction is
challenging. Indeed, the definition of the wavefront set depends on the asymptotic behavior of the Fourier
transform after a localization procedure and thus is practically hardly accessible. This issue is especially
severe since in a practical situation one can only access a finite number of samples of an underlying function.

Certain transforms from applied harmonic analysis offer an alternative possibility to identify the wavefront
set. In particular, the connection between the behavior of the curvelet- and shearlet transforms and the
wavefront set was analyzed in [7, 29]. We will recall these results in Section 2. These approaches are based
on analyzing the rate of decay of the respective transforms. While this point of view certainly makes the
wavefront set more accessible, especially since it does not depend on an unspecified localization procedure, it
is still inherently asymptotic.

In practical applications, we can never access the asymptotic behavior of the shearlet or Fourier transform
but have to work with data up to a finite resolution. In other words, we have to rely on heuristics that,
when presented with a finite number of samples of a ground truth function f , produce an estimate of the
wavefront set of f . We will demonstrate in Section 3 that such a heuristic can never be successful in full
generality, i.e., for every function f ∈ L2(R2). In fact, we prove in Theorem 3.3 that any such heuristic fails
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on a dense subset of f ∈ L2(R2). This statement even holds, if the number of samples depends on f and the
prediction of the wavefront set of f is only required to be approximately correct. On the other hand, in most
applications, we might not be interested in extracting the wavefront set for every function f ∈ L2(R2) from
finite samples but are content with a successful wavefront set extractor for functions from a function class
of interest C ⊂ L2(R2). One example of such a relevant function class would be that of functions modeling
natural signals or images. In this situation, given the non-existence of general wavefront set extractors, we
should thus strive to construct a heuristic that is as closely fitted to C as possible and as specialized as
possible. This point of view, namely that a successful wavefront set extractor necessarily needs to be highly
specialized in the sense of depending strongly on the targeted situation, will be our guiding principle.

1.2 Data-driven approach

As mentioned before, we are primarily interested in extracting the wavefront set from real-world data.
Applying our guiding principle, we aim at constructing a wavefront set extractor that is as tightly tailored to
this situation as possible. However, since these classes are empirically defined without any known underlying
mathematical model, our best option is to adopt a data-driven approach.

Following this philosophy, in this paper we propose the following algorithm which we call DeNSE: We
assemble a considerable set of labeled training data consisting of images and the associated wavefront set, or
a suitable surrogate. Then, we train a classifier—in our case a deep neural network—to predict the wavefront
set from the shearlet coefficients of the training data. We then test the resulting wavefront set predictor on
unseen data. In Section 5, we present the construction of the algorithm alongside the training data that
is used. We shall see below, in Section 6, that this method outperforms all conventional edge-orientation
estimators as well as alternative data-driven methods including the current state-of-the-art. Moreover, we are
unaware of any wavefront set extractor in the literature that goes beyond edge or ramp detection.

1.3 Expected impact of DeNSE

We anticipate our results to have the following impacts:

• Fast solution of inverse problems: As outlined above many Fourier integral or pseudo-differential
operators are associated with canonical relations. If the wavefront set of the measurement data is
known, then these relations allow the computation of the wavefront set of the solution of an inverse
problem directly, without solving the inverse problem.

In the inverse problems described in the introduction where one is exclusively interested in the
singularities of the solution, this approach can be used to significantly speed-up the numerical solution
of the problem.

• Regularization of inverse problems: As mentioned before, a priori knowledge of the wavefront set of the
solution of an inverse problem can be used to regularize such problems. A similar idea, also based on
shearlets for the identification of the wavefront set, has been used in [5] in the context of limited angle
tomography. In contrast to this approach, our algorithm is independent of the underlying operator and
due to this versatility can be applied in a wide variety of applications.

• Edge detection: Detecting edges, ridges, or points of higher-order non-smoothness is a sub-problem
of wavefront set detection. As we will observe below, our algorithm outperforms all competing edge-
orientation detector methods on a wide range of test sets. Moreover, the detection of points of
higher-order non-smoothness has—to the best of our knowledge—not been pursued in the literature,
but is possible with our approach without adaptations.

1.4 Basic concepts and notation

Below, we collect the notation used throughout this manuscript. This notation is fairly standard in the
literature, and hence this subsection can be skipped and only consulted if a notation is unclear.
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R, N, and Z denote the set of real number, natural numbers, and integers, respectively. Next, given a fixed
point x ∈ Rn and r > 0, we use Br(x) to denote the ball of radius r in Rn with center at x. Likewise, Sn−1

denotes the unit sphere in Rn. Furthermore, the boundary of a domain Ω ⊂ Rd for d ∈ N is denoted by ∂Ω.
We will also make use of a number of function spaces. Let Ω ⊂ Rd be a fixed domain for some d ∈ N. Then,

L2(Ω) is the space of Lebesgue square-integrable functions on Ω, Cn(Ω) is the space of n-times continuously
differentiable functions defined on Ω, and Hn(Ω) is the space of n-times weakly differentiable functions whose
weak derivatives are in L2(Ω). The support of a measurable function f : Rd → R is denoted by supp f .
Furthermore, the Fourier transform of a function f ∈ L1(Rd) is defined as

f̂(ξ) :=

∫
Rd

f(x)e−2πi〈x,ξ〉dx for ξ ∈ Rd.

The Fourier transform operator f 7→ f̂ can be extended to an isometry on L2(Rn) by Plancherel’s identity.
The Paley-Wiener space are functions whose Fourier transforms are compactly supported. More precisely, it
PWΛ for Λ ∈ R+ is defined by

PWΛ :=
{
f ∈ L2(Rd) : supp f̂ ∈ [−Λ,Λ]d

}
.

Finally, we use the Landau symbol O to describe asymptotic behavior, i.e., for functions f, g : R→ R we
write f(x) = O(g(x)) as x→ a ∈ R whenever there exists a constant c > 0 such that |f(x)| ≤ c|g(x)| for all
x in a neighborhood of a. Similarly, we write f(x) = O(g(x)) as x→∞ whenever there exists a constant
c > 0 such that |f(x)| ≤ c|g(x)| for |x| sufficiently large.

2 Directional multiscale systems and the wavefront set

We start by formally introducing the notion of a wavefront set followed by the definition of the directional
multiscale system of shearlets. We then show how shearlets can indeed be used to resolve the wavefront set
of a distribution. Similar results also hold for other multiscale systems, like the curvelet transform [7] and
the more general continuous parabolic molecules [18].

2.1 The wavefront set

The wavefront set can be defined for any distribution on a manifold, but since we only deal with L2(R2)
functions, we restrict the definition to this setting.

Definition 2.1. [24, Section 8.1] Let f ∈ L2(R2) and k ∈ N. A point (x, λ) ∈ R2×S1 is a k-regular directed
point of f if there exist open neighbourhoods Ux and Uλ of x and λ, respectively and a smooth function
φ ∈ C∞(R2) with supp φ ⊂ Ux and φ(x) = 1 such that∣∣φ̂f(ξ)

∣∣ ≤ Ck(1 + |ξ|
)−k

for all ξ ∈ R2 \ {0} such that ξ/|ξ| ∈ Vλ

holds for some Ck > 0. The k-wavefront set WFk(f) is the complement of the set of all k-regular directed
points and the wavefront set WF(f) is defined as

WF(f) :=
⋃
k∈N

WFk(f),

Let us next build up some intuition on this notion. The definition of the wavefront set is based on the
well-known characterization of smoothness of a function in terms of the decay of its Fourier transform. More
precisely, a function is smooth at a point if its Fourier transform decays faster than any polynomial in any
direction. As an example, the singular support of f , i.e., the smallest closed set U such that f|Uc ∈ C∞(U c),
can be characterized in terms of the wavefront set as{

x ∈ R2 : (x, λ) ∈WF(f) for some λ ∈ S1
}
.
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The wavefront set is a refined notion of the singular support, since it not only indicates at which points a
function is not smooth, but also contains the associated directions causing the non-smoothness. A common
example considers f with a jump singularity across the smooth boundary of a fixed domain D ⊂ R2. Then,
one can show [45, Chapter VI, Exercise 1.1] that

WF (f) =
{

(x, λ) ∈ R2 × S1 : x ∈ ∂D and λ = nx where nx is a normal on ∂D at x
}
. (2.1)

The wavefront set is a very powerful tool in mathematical analysis, but it is difficult to compute in
practice. This is mainly due to the asymptotic criteria involved in its definition, which means computing the
wavefront set requires computing the “full” Fourier transform at every point.

Continuous transforms associated to certain directional multiscale systems offer a convenient remedy.
As an example, the shearlet transform automatically performs the necessary time-frequency-orientation
localization described above, thereby “resolving” the wavefront set in a sense described in the following
subsection.

2.2 Shearlets

The shearlet transform, which was introduced in [19], is based on applying translation, anisotropic dilation,
and shearing to generator functions. To dilate and shear a function, we define the following two matrices:

Aa :=

(
a 0
0
√
a

)
, Ãa :=

(√
a 0

0 a

)
, and Ss :=

(
1 s
0 1

)
for a > 0 and s ∈ R.

Next, given (a, s, t) ∈ R+ × R× R2, ψ ∈ L2(R2), and x ∈ R2, define

ψa,s,t,1(x) := a−
3
4ψ
(
A−1
a S−1

s (x− t)
)

and ψa,s,t,−1(x) := a−
3
4 ψ̃
(
Ã−1
a S−Ts (x− t)

)
, (2.2)

where ψ̃(x1, x2) := ψ(x2, x1) for all x = (x1, x2) ∈ R2. Following [17], we define the continuous shearlet
transform as follows:

Definition 2.2 (Continuous shearlet transform). Let ψ ∈ L2(R2). Then the family of functions ψa,s,t,ι : R2 →
R parametrized by (a, s, t, ι) ∈ R+ × R× R2 × {−1, 1} that are defined in (2.2) is called a shearlet system.
The corresponding (continuous) shearlet transform is defined by

SHψ : L2(R2)→ L∞
(
R+ × R× R2 × {−1, 1}

)
where SHψ(f)(a, s, t, ι) := 〈f, ψa,s,t,ι〉.

As we shall see next, if the generator function ψ has directional vanishing moments, then the asymptotic
behavior as a→ 0 of the continuous shearlet transform of an L2-function f characterizes its wavefront set.
The precise statement in [17] reads as follows.

Theorem 2.3. Let f ∈ L2(R2) and assume (x0, λ0) ∈ R2 × S1 is a k-regular directed point of f for some
k ∈ N. Next, consider a continuous shearlet system with generator function ψ ∈ H l(R2) with Fourier

transform ψ̂ ∈ L1(R2) where ψ has m ∈ N vanishing moments in x1-direction, i.e.,∫
R2

∣∣ψ̂(ξ1, ξ2)
∣∣2

|ξ1|2m
dξ <∞.

Finally, assume ψ displays the following asymptotic behavior:∣∣ψ(x)
∣∣ = O

(
(1 + |x|)−p

)
for |x| → ∞.

Then, there exist a neighborhood U0 ⊂ R2 of x0 and a neighborhood S0 ⊂ S1 of λ0 such that∣∣SHψ(f)(a, s, x, ι)
∣∣ = O

(
a

p
2−

3
4 + a

m
4 + a

3k
4 −

3
4 + a

3l
4

)
as a→ 0
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for all x ∈ U0 and all s ∈ R and ι ∈ {−1, 1} such that λ(s, ι) ∈ S0, where

λ(s, ι) :=


(

1√
s2 + 1

,
s√

s2 + 1

)
if ι = 1,(

s√
s2 + 1

,
1√

s2 + 1

)
if ι = −1.

(2.3)

Remark 2.4. Under suitable assumptions on the shearlet generator ψ, the converse of Theorem 2.3 holds
as well. More precisely, following [17], assume that ψ is sufficiently regular for any k ∈ N. Next, let
(x0, λ0) ∈ R2 × S1 and assume there exist a neighborhood U0 ⊂ R2 of x0 and a neighborhood S0 ⊂ S1 of λ0

such that ∣∣SHψ(f)(a, s, x, ι)
∣∣ = O(an) as a→ 0,

holds for sufficiently large n ∈ N uniformly for x ∈ U0 and all s ∈ R, ι ∈ {−1, 1} such that λ(s, ι) ∈ S0. Then,
(x0, λ0) 6∈WFk(f).

Theorem 2.3 and Remark 2.4 demonstrate that the wavefront set is completely determined by the decay
properties of the shearlet transform. This implies that in the continuous setting, one can compute the
wavefront set of a function by first computing its continuous shearlet transform, then analyzing the pairs of
point and direction where this shearlet transform exhibits rapid decay as a→ 0.

Theorem 2.3 and Remark 2.4 were first reported in [29] in a setting restricted to a specific shearlet generator
(called the “classical shearlet”). Moreover, results similar to Theorem 2.3 and Remark 2.4 were obtained in
[7] for the curvelet transform and in [14] for transforms stemming from general group representations. As
shown in [18], all transforms that belong to the category of continuous parabolic molecules admit a similar
characterization of the wavefront set. Finally, one can also use the shearlet transform to classify certain
geometric properties of the singularities of a function that goes beyond differentiating between rapid and
non-rapid decay of the shearlet transform, see e.g. [48, 20, 32].

3 Wavefront sets from sampled data

In this section, we will analyze to what extent it is possible to construct an operator that maps a finite
number of point samples of a function f to an estimate of the wavefront set of f . This situation reflects
practical applications, e.g., images are only represented as pixels representing point samples of a real-valued
function.

To make the connection between a sampled function and its wavefront set more precise, it is convenient
to adopt a point of view that is based on the Shannon sampling theorem. We will state this theorem in
Subsection 3.1 and – based on it – we will introduce the notion of an approximate wavefront set extractor in
Subsection 3.2. Finally, in Subsection 3.3 we show that any approximate wavefront set extractor that predicts
the wavefront set of a function on R2 from a finite number of sample values will fail on a dense subset of
L2(R2). This result holds even if the sampling density is allowed to depend on the function.

3.1 Sampling theorem and Paley-Wiener spaces

The sampling theorem states that every band-limited function f can be written as a sum of shifted cardinal
sine functions weighted by point samples of f . In other words, a band-limited function is fully determined by
its values on a discrete grid. To give the precise statement, we introduce the Paley-Wiener spaces. Given
Λ > 0, the Paley-Wiener space PWΛ ⊂ L2(Rd) is defined as

PWΛ :=
{
f ∈ L2

(
Rd
)

: supp
(
f̂
)
⊂ [−Λ,Λ]d

}
.

We define the d-dimensional sinc-function as

sincd(x) :=

d∏
i=1

sin(πxi)

πxi
, where x = (x1, . . . , xd) ∈ Rd.
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Bearing in mind the above notation, we now state the sampling theorem, see, e.g., [33].

Theorem 3.1 (Sampling theorem). Let f ∈ L2(Rd) ∩ C(Rd) and Λ > 0. Then

f ∈ PWΛ ⇐⇒ f(x) =
∑
n∈Zd

f
(n

Λ

)
sincd(Λ · x− n) for all x ∈ Rd.

In particular, for every summable sequence (yk)k∈Z2 we can define

f(x) :=
∑
k∈Z2

yk sinc2(Λ · x− k), for x ∈ Rd,

and, by Theorem 3.1 f , is band-limited. Furthermore, since sinc2(m− n) vanishes for every m,n ∈ Z2 such
that m 6= n, we observe that f(m/Λ) = ym for all m ∈ Z2. In other words, every sequence on a grid defines
an associated interpolating band-limited function and conversely, every band-limited function is uniquely
determined by its values on a discrete grid.

As a consequence, the problem of extracting the wavefront set of a function f ∈ L2(R2) from its discrete
sampled values (f(m/Λ))m∈Z2 can be re-stated as extracting the wavefront set of f from its projection onto
a Paley-Wiener space, i.e., PPWΛ(f) =: PΛ(f).

3.2 Wavefront set extractors

As already stated, the problem of extracting the wavefront set from samples on a grid is equivalent to
extracting the wavefront set given the projection onto a Paley-Wiener space. There are multiple conceivable
notions of a wavefront set extractor. First, for Λ > 0, we could ask for a map

DWFΛ : PWΛ → P
(
R2 × S1

)
such that DWF(PΛf) = WF(f) for all f ∈ L2(R2). (3.1)

Here P (R2 × S1) denotes the power set of R2 × S1. Essentially, this map requests extraction of the wavefront
set of a function f from knowledge of the samples of f on a fixed grid. It is clear that such a map, DWFΛ,
cannot exist, since it will fail for functions f that have fine structures which cannot be detected by coarse
sampling. For example, a function that vanishes on every grid point of Z2/Λ while having a non-trivial
wavefront set would be classified the same as the zero function.

A more reasonable model for a wavefront set extractor should give an approximate prediction of the
wavefront set that eventually improves as the sampling density increases. To weaken this statement even
further, we might only ask for approximate extraction of the wavefront set in one point. For a fixed set
W ⊂ R2 × S1 and a point x ∈ R2, we therefore define

Wx :=
{
λ ∈ S1 : (x, λ) ∈W

}
.

We can now model the approximation described above by considering a sequence of wavefront set extractors
given by

DWFj : PWj → P
(
R2 × S1

)
for j ∈ N (3.2)

such that, for fixed x ∈ R2, and all f ∈ L2(R2),

dH

(
DWFj(Pj(f))x,WF(f)x

)
→ 0. (3.3)

Here dH denotes the Hausdorff distance with the convention dH(X,∅) = dH(∅, X) := 1 for any non-empty
compact subset X ⊂ S1 and dH(∅,∅) := 0. Recall that with this definition dH is a metric on compact
subsets of S1 (including the empty set).

A sequence as in (3.2) satisfying (3.3) yields an approximate extraction of the wavefront set of f at x from
point samples of f where the sampling density may depend on f . This observation motivates the following
definition.
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Definition 3.2. A sequence (DWFj)j∈N of mappings as in (3.2) is called an approximate wavefront set
extractor. We say that an approximate wavefront set extractor is

• clairvoyant at x ∈ R2 if the sequence satisfies (3.3) at x for all f ∈ L2(R2), and

• ignorant to f ∈ L2(R2) at x ∈ R2 if dH(DWFj(Pj(f))x,WF(f)x) 6→ 0 as j →∞.

3.3 Non-existence of clairvoyant approximate wavefront set extractors

We will observe below that, for every x ∈ R2, there does not exist a clairvoyant approximate wavefront set
extractor. Even more severely, every approximate wavefront set extractor is ignorant to a dense subset of
L2(R2) at x.

Theorem 3.3. For every x ∈ R2 and every approximate wavefront extractor (DWFj)j∈N, there exists a
dense subset M⊂ L2(R2) such that (DWFj)j∈N is ignorant to all f ∈M at x. In particular, no approximate
wavefront set extractor is clairvoyant at x.

Proof. The proof proceeds in two steps. For a given approximate wavefront set extractor, (DWFj)j∈N, and a
point x ∈ R2, we construct a function q ∈ L2(R2) such that (DWFj)j∈N is ignorant to q at x. Second, we
show that the set of such functions is dense in L2(R2).

Step 1: Notice that Definition 2.1 implies

WF(f1 + f2) = WF(f1) for every f1 ∈ L2(R2) and f2 ∈ C∞(R2) ∩ L2(R2). (3.4)

We now choose a function g with wavefront set {x} × S1 where x ∈ R2 is arbitrary, e.g., a function
g ∈ C∞(R2 \ {x}) ∩ L2(R2) with a cusp at x. Then, by (3.4), we can conclude that WF(g − Pjg) = {x} × S1

holds for every j ∈ N. Moreover, by construction, we have dH(WF(g)x,∅) = 1. To define the desired function
q, we first set

q0 := P1g,

qn :=

qn−1 + (Png − Pn−1g) if DWFj−1(Pn−1qn−1)x = ∅,

qn−1 otherwise,
(3.5)

for all n ≥ 1. By definition,

(Png − Pn−1g) ⊥ (Pmg − Pm−1g) for all n 6= m.

Hence, by the Pythagorean theorem,∑
n∈N
‖Png − Pn−1g‖22 = ‖g‖22 <∞. (3.6)

It now follows from (3.6) and (3.5) that qn is a Cauchy sequence. Therefore qn converges to a limit q ∈ L2(R2).
Furthermore, one of the following statements holds:

(1) DWFj(Pjqj)x does not converge for j →∞;

(2) DWFj(Pjqj)x converges to a limit W such that dH(W,WF(q)x) ≥ 1/4;

(3) DWFj(Pjqj)x converges to a limit W such that dH(W,WF(q)x) < 1/4.
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In Cases (1) and (2), we directly obtain that DWFj is ignorant to q at x. In Cases (3), we obtain that there
exists some j0 such that

dH
(
DWFj(Pjqj)x,WF(q)x

)
< 1/2 for all j ≥ j0. (3.7)

We now consider the cases WF(q)x = ∅ and WF(q)x 6= ∅ separately. If WF(q)x = ∅, then (3.7) implies that
DWFj(Pjqj)x = ∅ for all j ≥ j0 since no subset of P (S1) \ {∅} has a distance less than 1 to the empty set.
Therefore,

q − Pj0q =
∑
j>j0

(Pjg − Pj−1g) = g − Pj0g. (3.8)

We obtain from (3.8) that ∅ = WF(q)x = WF(g)x = S1 which is a contradiction.
If WF(q)x 6= ∅, then dH(WF(q)x,∅) = 1. By the triangle inequality, this yields that there exists some

j0 such that DWFj(Pjqj)x 6= ∅ for all j ≥ j0. Therefore, q = qj0 ∈ PWj0 by definition, which implies that
W (q)x = ∅. Hence, Case (3) does not occur, i.e., (DWFj)j∈N is ignorant to q at x.

Step 2: For an arbitrary f ∈ L2(R2), there exists j1 ∈ N such that

‖f − Pj1f‖2 ≤
ε

2
and ‖g − Pj1g‖2 ≤

ε

2
.

Define qj1 = Pj1f and, for every n ≥ j1, we define qn as in (3.5). It is clear that qn converges to a limit qf .
Also, it is straightforward to show that ‖qf − f‖2 ≤ ε. Now using the same arguments as in Step 1, it follows
that (DWFj)j∈N is ignorant to qf .

Remark 3.4. The following observations provide additional insight into Theorem 3.3:

(1) The Theorem 3.3 and its proof also hold when “wavefront set” is replaced by “singular support”.

(2) The arguments in the proof of Theorem 3.3 are independent from the domain R2. Indeed, the same
result holds for functions defined in an open domain Ω ⊂ R2 and x ∈ Ω. Here we define the wavefront
set of f ∈ L2(Ω) as{

(x, λ) ∈ Ω× S1 : (x, λ) ∈WF
(
f̃
)

where f̃ = f on Ω and f̃ = 0 elsewhere
}
.

(3) Theorem 3.3 yields that there is no clairvoyant approximate wavefront set extractor. Even more severely,
every approximate wavefront set extractor fails on a dense subset of L2(R2). As a consequence, an
approximate wavefront set extractor can never be successful on an open subset of L2(R2). Hence, if we
want to have any chance of building a successful wavefront set extractor, then it must be as strongly
adapted to the underlying signal class as possible.

4 Wavefront set and edge detectors

The characterization of a wavefront set given in (2.1) implies that detecting the wavefront set of a piece-wise
smooth function with singularities along a smooth curve is equivalent to detecting edges and their normal
direction. Edge detection, which is one of the most well-studied problems in image processing, is therefore
a sub-problem to wavefront set extraction. However, we are unaware of any wavefront set extractor in the
literature that goes beyond edge or ramp detection.

We next recall some edge-orientation detectors from the literature. We start by approaches based on
filters, which is followed by a review of methods based on directional systems from applied harmonic analysis.
We then compare these methods to the guiding principle. Finally, we will comment on recent data-driven
algorithms for edge detection.
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4.1 Filter-based edge-orientation detectors

The traditional way of detecting edges in digital images is to convolve the image with suitable convolution
kernels to enhance edge-like features. These features can then be extracted using simple rules. For example,
convolution with local difference filters leads to the Roberts [40], Sobel [11, 44], and Prewitt [36] operators.
In [34] the authors convolve an image with the Laplacian of a Gaussian function. Here, the zeros of the
resulting image are taken as estimate for the positions of edges in the original.

Potentially the most famous edge-orientation detection algorithm of this category is the Canny edge
detector [8]. In this algorithm, a function g is convolved with a Gaussian window Gσ with standard deviation
σ > 0, the magnitude of the local gradient of g is then defined as |∇xg ∗Gσ|, and the associated gradient
direction is (

cos

(
arctan

(
∂x2 [g ∗Gσ]

∂x1
[g ∗Gσ]

))
, sin

(
arctan

(
∂x2 [g ∗Gσ]

∂x1
[g ∗Gσ]

)))
. (4.1)

If the magnitude of the local gradient exceeds a certain threshold, then it is labeled as an edge with the
associated direction given by (4.1).

The Canny edge detector has some obvious drawbacks. The choice of the standard deviation σ of the
Gaussian window strongly influences the performance of the algorithm to the extent that a high σ improves
the robustness against noise, but might also remove high-frequency components. In fact, there is no universally
appropriate choice of σ. For example, the contrast may vary strongly even within a single image and, in this
case, the edge detector can perform well in one part of the image and fail in another.

There have been many efforts in addressing the shortcomings of the Canny edge detector. In [35] one
extracts the positions and orientations of not only jump singularities but also of composite edges like ramp-
and hat-like singularities. Most recently, [1] develops algorithms that apply even more high-level heuristics to
a set of patches retrieved from applying oriented gradient operators.

4.2 Edge-orientation detectors based on directional systems

An alternative to the filter-based approaches is to base the detector on multiscale directional transforms.
These transforms include shearlets, which were introduced in Subsection 2.2, as well as curvelets, ridgelets,
wavelets, or bandlets, see [25] for a survey.

The idea is to first transform the given image using a directional system. Next, one applies certain
heuristics to the result by using the theoretical information on the behavior of the underlying transform
at directed edge points. In principle, the transforms given by directional systems mentioned above can be
written as a series of convolutions with respect to directed filters. Hence, this approach can, in a sense, be
understood as a special case of the edge detectors in the previous section.

An example of such an approach is the shearlet based algorithm in [48], which we will now explain in
detail. In fact, this algorithmic approach served as the main inspiration for our forthcoming algorithm in
Section 5. The approach in [48] seeks to detect and classify edges of functions of the form

f(x) :=

N∑
i=1

ui(x)χBi
(x) for x ∈ R2, (4.2)

where Bi ⊂ (0, 1)2 are such that ∂Bi are piece-wise smooth and ui ∈ C∞(R2). The singular support of f is

the set
⋃N
i=1 ∂Bi, which is also called the set of singularity curves of f . The algorithm is based on computing

a sampled version of the shearlet transform of f , i.e., the algorithm computes{
SH(f)(2−j , 2−

j
2 k, x, ι) : j ∈ N, k ∈ Z, x ∈ cZ2, j0 ≤ j ≤ J, |k| ≤ 2

j
2 , ι ∈ {−1, 1}

}
(4.3)

for given j0, J ∈ N and c > 0. This algorithmic step can be performed using standard software libraries such
as the ShearLab toolbox [30], see also Section 5.1. This computation is followed by a series of heuristics that
are applied to the coefficients (4.3) and which lead to a classification of points as point singularities, directed
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edges, corners, or smooth points. The heuristics are based on theoretical insights into the behavior of the
shearlet transform at points of different regularities, which in turn are very closely related to the results of
Theorem 2.3 (see also Remark 2.4). The classification scheme is precisely described in [48, Chapter IV] and
the heuristics include:

Step 1: Fitting a polynomial (in j) to∑
|k∗|≤2j/2

ι∈{−1,1}

SH(f)
(

2−j , 2−
j
2 k∗, x, ι

)
for fixed x ∈ (0, 1)2.

If this this polynomial does not decay for j → J , then the jump is classified as a point singularity.

Step 2: Let T be a fixed threshold. If for a fixed scale j∗∑
|k∗|≤2j∗/2

ι∈{−1,1}

SH(f)
(

2−j
∗
, 2−

j∗
2 k∗, x, ι

)
< T,

then x is considered a regular point.

Step 3: If both cases above did not yield a classification, then one analyzes the vector

cJ,x,ι(k) :=
(
SH(f)(2−J , 2−

j
2 k, x, ι)

)
|k|≤2J/2 for fixed x ∈ (0, 1)2 and ι ∈ {−1, 1}.

1. If cJ,x,ι(k) ∼ c for all k, then the point x is identified as a regular point.

2. If there is one direction k1 such that cJ,x,ι(k)� cJ,x,ι(k1) for all k 6= k1, then x is considered a
point in one of the singularities of f .

3. If there are two directions k1, k2 such that cJ,x,ι(k1) ∼ cJ,x,ι(k2) and cJ,x,ι(k)� cJ,x,ι(k1) for all
k 6= k1, k2, then x is classified as a corner point of the the jump curve of f .

The resulting algorithm is very powerful in detecting the set of singularity curves and the associated
orientations of edges of piece-wise smooth functions. Nonetheless, the algorithm requires some significant
tuning, e.g., the threshold T needs to be selected, and one needs to define criteria to distinguish between the

cases 1-3 above. Moreover, the heuristics neglect the behavior of SH(f)(2−j , 2−
j
2 k, x, ι) when j and k vary

simultaneously.
Additionally, we mention an algorithm in [39] that is based on the complex shearlet transform. This

algorithm computes two shearlet transforms, one with a symmetric and one with an anti-symmetric generator.
The relationship between both is then used to determine if a point is an edge, a ridge, or a smooth point.

4.3 Heuristics and our guiding principle

In the previous sections, we gave a detailed account of the heuristics behind the Canny edge detector [8] and
the shearlet based algorithm in [48]. We will now analyze how these heuristic-based algorithms perform with
respect to the guiding principle of being as tightly adapted to the class of natural images as possible.

The Canny edge detector is not tightly adapted to images, but rather to functions that are piece-wise
smooth and it assumes the jump curve has a given contrast that remains relatively constant across the image.
The same argument holds for the shearlet based algorithm in [48]. In fact, its theoretical motivation comes
from the treatment of piece-wise smooth functions as in (4.2), which are not natural images.

The parameters in these algorithms, such as the threshold σ in the Canny edge detector and the threshold
T in the shearlet based algorithm in [48], can be adapted to the underlying functions. This offers a possibility
to adapt the algorithms to natural images. However, as we argued in the respective sections, it is impossible
to find a universally suitable setting for these parameters. We see that in both cases the guiding principle is
violated.

Finally, it is worth noting that similar issues arise for all algorithms mentioned in the previous two
subsections.
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4.4 Data-driven edge-orientation detectors

As we have already advocated previously, the only way to comply with the guiding principle is to use a
data-driven algorithm. For edge detection, this idea has already been followed in a series of papers. For
example, [10] uses supervised learning of an edge classifier based on a technique called probabilistic boosting
tree. Another approach is DeepEdge that uses a convolutional neural network taking as an input candidate
edges produced by a Canny edge detector as well as patches of the original image [2]. To this input one
then applies parts of the KNet [28] for feature extraction and a network with two fully-connected layers
for classification. Finally, the algorithms SEAL (simultaneous edge alignment and learning) [50] and the
CASENet (category-aware semantic edge detection network) [49] perform high-level edge analysis with highly
complex deep neural networks. The underlying CASENet is a 101-layered network. These methods are
state-of-the-art for segmentation and edge detection.

5 Computing the digital wavefront set with shearlets and deep
learning

We propose an algorithm that replaces the heuristic approach of the shearlet-based edge detection and
classification algorithm of [48] by a data-driven approach. Concretely, instead of hand-crafted heuristics, we
train a deep neural network using a variety of training data, adapted to the classification procedure at hand.
The neural network takes as input the shearlet coefficients of an image and produces a set of point-direction
pairs that are classified as elements of the wavefront set. We will present the construction of the classifier
below and then present the computational realization of our algorithm in Subsection5.4 at the end of this
section.

5.1 Digital shearlet transform

The classifier to be constructed below is based on the shearlet transform of a digital image. Therefore, we
need to work with a digitized shearlet transform, defined on a digital domain of pixel images. The digital
shearlet transform was introduced in [31] and is defined as follows:

Let M ∈ N, J ⊂ N be finite, kj ⊂ N for all j ∈ J and Kj := [−kj , . . . , 0, . . . , kj ]. Then, we pick

2
∑
j∈J KJ + 1 matrices in RM×M . We denote these matrices by φdig and ψdigj,k,ι for j ∈ J, k ∈ Kj , ι ∈ {−1, 1}.

To make the connection to the classical shearlet transform, we can think of ψdigj,k,ι as a digitized version of

ψ2−j ,2−j/2k,0,ι and of φdig as a digitized version of a low frequency filter. A concrete construction of the

matrices φdig and ψdigj,k,ι can be found in [31]. Then, we define the digital shearlet transform of an image

I ∈ RM×M by

DSH(I)(j, k,m, ι) :=

{ 〈
I, Tmψ

dig
j,k,ι

〉
if ι ∈ {−1, 1},〈

I, Tmφ
dig
〉

if ι = 0,

where j ∈ J, k ∈ Kj , m ∈ {1, . . . ,M}2, and Tm : RM×M → RM×M circularly shift the entries of the elements
of a matrix by m.

Thus the digital shearlet transform of an image I ∈ RM×M is a stack of 2
∑
j∈J (KJ − 1) + 1 matrices of

dimension M ×M . In all our numerical experiments, we fixed J = 4 and Kj = 2dj/2+1e + 1 and therefore,
2
∑
j∈J(KJ − 1) + 1 = 49.
The computation of the digital shearlet transform is performed by using the Julia implementation of

ShearLab [30] (www.shearlab.org/software).

5.2 Network architecture

We train a neural network which, given a patch of the shearlet coefficients of a function, produces a prediction
of which directions belong to the wavefront set of the function at the position associated with this patch.
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These patches are of size 21× 21× 49.
The network architecture consists of four convolutional layers, with 2× 2 max pooling, ReLU activation

and batch normalization, followed by a fully-connected layer with 1024 neurons, softmax activation function
and a one-dimensional output. The network architecture is depicted in Figure 1. We chose this architecture
since it performed well in a series of tests while being of moderate size. Here we focused on networks with
only a few layers because we expect that the shearlet transform already acts as the correct feature extractor
of the problem. Therefore, the classifier does not need to learn the correct data representation. Nonetheless,
it is conceivable that a deeper and larger neural network architecture could potentially lead to improvements
for the classification results below.

We pick 180 directions (θi)
180
i=1. For each θi, we then train a network Φi with the described architecture by

passing patches of shearlet coefficients of images I ∈ RM×M of the form

(DSH(I)(j, k,m, ι))j∈J,k∈Kj ,ι∈{−1,0,1},m∈[m∗
1−10,m∗

1+10]×[m∗
2−10,m∗

2+10], (5.1)

where m∗ ∈ {11, . . . ,M − 10}2, to the network. The associated label to a batch of (5.1) is 1 if I has an
edge with direction θi at m∗ and 0 else. In total, this procedure yields 180 digital classifiers. We train
one more network with the same data, but the label is 1 if I has no singularity at m∗ and 0 else. This
additional classifier is used in test cases where all competing algorithms only perform edge detection and not
edge-orientation detection.

The final classifier is constructed by putting all of these 181 networks in parallel, producing one large
network with 181 outputs. For every 21× 21× 49 patch of shearlet coefficients, this classifier generates a
vector of length 181 indicating if the underlying function is smooth at the center point of the patch and
listing all directions of edges present at the center point.
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N

V

ReLU
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Figure 1: Illustration of the network architecture forming the foundation of the classifier. This network
consists of four convolutional layers and one fully-connected layer. The colored block in the middle represents
a stack of the output of the last convolutional layer. The colors correspond to the different channels.

5.3 Network training

We train the network as described in Subsection 5.2 using stochastic gradient descent to minimize the
cross-entropy over a variety of training sets. We use four different data sets to train our classifier and test our
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algorithm:

1) The first data set consists of patches of the shearlet transform of images made of random sums of
ellipses and parallelograms of different contrasts, sizes, and orientations.

2) The second data set is again based on random sums of ellipses and parallelograms, but convolves these
images with a kernel to generate a function with a higher-order wavefront set.

3) The third data set is based on the BSDS500 (Berkeley Segmentation data set) provided by the Computer
Vision Group of UC Berkeley. It comprises 503 natural images of different types.

4) The fourth data set is based on the Semantic Boundaries data set (SBD) with 11355 natural images,
again provided by the Computer Vision Group of UC Berkeley.

We depict examples of functions from each of the data sets in Figures 2, 3, 4 and 5.
To make these data sets suitable for our purposes, we need to equip each image of the data sets with

an associated set of labels indicating the associated wavefront set or the set of edges. For the first two
data sets, standard theoretical results on the wavefront sets of characteristic functions allow us to compute
the associated wavefront sets analytically. The segmentation and semantic boundaries data sets, on the
other hand, are natural images where such an approach is not possible. These data sets are used to assess
the quality of segmentation and contour detection applications, see [21] and [1]. Therefore, every image in
these data sets was annotated and has a set of ground truth edges. However, we should point out that this
annotated ground truth does not contain all edges of the images, but only that between semantically different
parts of the images. We depict the annotated edges in Figures 2, 3, 4 and 5.

In the following subsections, we describe the computation of the associated wavefront sets in detail.

5.3.1 Ellipses and parallelograms

The wavefront sets of characteristic functions of ellipses and parallelograms can be identified by (2.1) and the
fact that if x is a vertex of a parallelogram P then {x} × S1 ⊂ WF(χP ). For sums of these functions, we
have, by basic properties of the Fourier transform that

WF(χP1 + χP2) ⊂WF(χP1) ∪WF(χP2).

Note that in this relation we do not have equality in general. Indeed, if WF(χP1) ∩WF(χP2) 6= ∅ then
cancellations can occur. We shall neglect this technicality as the probability of cancellations is sufficiently
small and assume that the wavefront set of characteristic functions as described above is the union of the
respective wavefront sets.

We build this data set by randomly choosing a number of parallelograms and ellipses with random
positions and computing the associated ground truth of the wavefront set as described above.

5.3.2 Higher-order wavefront data set

The ellipses/parallelograms data set contains images with jump singularities only. To test our method on
functions with higher-order singularities, such as ramp singularities, we computed the convolution of the
elements of the ellipses/parallelograms data set with a filter h the Fourier transform of which is given by:

ĥ(ξ) =
1

1 + |ξ|
, for ξ ∈ R2.

It is not hard to see that P : f 7→ h∗f is an elliptic pseudo-differential operator and hence WF(h∗g) = WF (g)
for all g ∈ L2(R2), see [16, Chapter 8 G] for details. Thus, the convolutions of the elements of the
ellipses/parallelograms data set with h have the same wavefront set as the associated ellipses or parallelograms,
but of a higher order.
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5.3.3 Segmentation and semantic boundaries data sets

In the BSDS500 and the SBD data sets, the ground truth of the edges is given in form of binary images with
0’s at positions where the image is smooth and 1’s at locations associated to edges. This annotated edge set
is depicted in Figure 4.

To compute the orientation of the edges, we used a five-point stencil derivative on the edges to approximate
the normal vectors. To detect corners and assign the appropriate orientations we used the Harris corner
detector [22]. From these images, we produce patches for the training of the network classifier. However, due
to the fact that the annotated image does not contain all edges we only use patches that are close to these
edges for training, validation and testing.

5.4 DeNSE: Deep Network Shearlet Edge Extractor

In this section, we present our algorithm extracting the wavefront set of a digital image. For M ∈ N, and a
digital image I ∈ RM×M , this algorithm produces, for every m∗ ∈ [11,M − 10]2 a prediction of the wavefront
set of I at m∗. The algorithm proceeds along the following three steps:

Step 1 Train the network classifier as of Section 5.2 on a set of labeled training data.

Step 2 For a given test image I ∈ RM×M , compute the digital shearlet transform of I with 49 shearlet generators:
The digital shearlet transform of I is given by (DSH(I)(j, k,m, ι))j∈J,k∈Kj ,ι∈{−1,0,1},m∈[1,M ]2 .

Step 3 For every m∗ = (m∗1,m
∗
2) ∈ [11,M − 10]2, pass the patch

(DSH(I)(j, k,m, ι))j∈J,k∈Kj ,ι∈{−1,0,1},m∈[m∗
1−10,m∗

1+10]×[m∗
2−10,m∗

2+10] (5.2)

to the classifier of Step 1. If the classifier predicts that an edge with direction θ is present, then classify
(m∗, θ) as an element of the wavefront set of I.

We coin the algorithm above Deep Network Shearlet Edge Extractor (DeNSE).

6 Numerical results

We implemented the training as described in the previous section using the GPU version of Tensorflow. To
evaluate the classification quality, we use two quality measures, a mini-batch test average taken over all
mini-batches and the so-called MF-score. The MF-score is computed as the mean of the F-score defined as

F :=
2PR

R+ P
,

where P is the precision, i.e., the number of true positives divided by the sum of true and false positives, and
R is the recall, i.e., the number of true positives divided by the sum of true positives and false negatives,
[41]. The MF-score is often used for evaluating classification performance when the distribution of classes
is uneven. This is, for example, the case in edge detection, since there usually are significantly fewer edge
points than smooth points in an image. Moreover, these performance measures enable us to compare with
the state-of-the-art [50] on the respective data sets.

6.1 Results for ellipses/parallelograms

We train each of the 181 subnetworks as of Subsection 5.2 using 10,000 images as training data, 1,000 images
as validation data, and 2,000 images as test data. For each direction θi we trained the associated subnetworks
using a mini-batch procedure with 86 examples per batch and 3,000 training steps for each. We obtained an
average test accuracy of 96.2% (taking the average over all 181 classifiers) and an MF-score of 97.1%. We
also notice that the test accuracy of the individual classifiers was higher when classifying angles aligned to
the discrete orientations of the underlying shearlet system.
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We compared our method on this data set to other classifiers commonly use in machine learning namely:
Logistic regression, Decision trees, K-nearest neighbors, Linear SVM, and Random forest. We report the
performances of these classifiers in Table 1.

Method Test accuracy MF-score
Logistic regression 45.7 48.9

Decision trees 75.2 75.8
Linear SVM 46.5 50.3

K-nearest neighbors 72.7 73.2
Random forest 86.0 86.7

DeNSE 96.2 97.1

Table 1: Ellipses/parallelograms data set performance metrics in percentage.

By construction, the last of the 181 subnetworks corresponds to an edge-detector, where the achieved
average test accuracy was 97.5%, and the MF-score was 97.9%, the performance benchmarks with other classical
edge classifiers can be found in Table 2. Figure 2 shows the results on an example of the ellipses/parallelograms
data set.

We depict the classification for one instance of the test set of the parallelograms/ellipses data set in Figure
2 and compare the results with the classification by the heuristic approach by Yi-Labate-Easley-Krim [48].
We observe that our method performs significantly better in low contrast regions. Moreover, our algorithm
appears to be more precise when differentiating between corners and edges. Here, we classify a point as a
corner point if the classifiers predict at least two different orientations that differ by more than 10 degrees. In
Figures 2, 3, 4 and 5, we indicate corners by white dots.

Method MF-score
Canny [8] 49.1
Sobel [44] 40.0
BEL [10] 63.3

Yi-Labate-Easley-Krim [48] 70.3
CoShREM [39] 90.6

DeNSE 97.5

Table 2: Edge detection performances of edge detection algorithms on the Ellipses/parallelograms data set.
The MF-Score is in percentage.

Method MF-score
gPb-owt-ucm [1] 73.7

gPb [1] 71.5
Mean Shift [9] 64.0

Normalized Cuts [43] 64.2
Fetzenszwalb, Huttenlocher [15] 61.0

Canny 60.3
CoShREM [39] 75.7
DeepEdge [2] 75.3

DeNSE 95.4

Table 3: BSDS500 (Berkeley) data set performance metrics in percentage.
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Figure 2: Computed edges and orientations of an example of the ellipses/parallelograms data set. Top-left:
Input image. Top-right: Orientations, human annotation. Middle-left: Orientations predicted by Yi-Labate-
Easley-Krim algorithm. Middle-right: Orientations predicted by CoShREM. Bottom-left: Orientations
predicted by DeNSE algorithm. Bottom-right: Color code for normal-directions.
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Figure 3: Computed edges and orientations of an example of the higher-order ellipses/parallelograms data
set. Top-left: Input image. Top-right: Orientations, human annotation. Middle-left: Orientations predicted
by Yi-Labate-Easley-Krim algorithm. Middle-right: Orientations predicted by CoShREM. Bottom-left:
Orientations predicted by DeNSE algorithm. Bottom-right: Color code for normal-directions.
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Figure 4: Computed edges and orientations of an example of the BSDS500 (Berkeley) data set. Top-left: Input
image. Top-right: Orientations, human annotation. Middle-left: Orientations predicted by gPb-owt-ucm.
Middle-right: Orientations predicted by CoShREM. Bottom-left: Orientations predicted by DeNSE algorithm.
Bottom-right: Color code for normal-directions.
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6.2 Results for higher-order wavefront set data set

Using the same procedure as in the ellipses/parallelograms classification, we performed the edge detection,
and orientation classification of the higher-order wavefront set data set. In this case, we used 30,000 patches
as training data, 3,000 patches as validation data, and 6,000 patches as test data. We trained on 86-sized
mini-batches, with 200,000 training steps. We obtained an average test accuracy of 93.4% and an MF-score of
94.6%. We are not aware of any algorithms specifically build for higher-order wavefront set detection, which
is why we do not provide a comprehensive list of results of alternative algorithms in this case.

For completeness, we added Figure 4 showing an example of the obtained results. We also add two
predictions by the algorithm of Yi-Labate-Easley-Krim [48] and the method CoShREM [39].

It is important to mention that the algorithm of Yi-Labate-Easley-Krim is constructed to detect jump
singularities and not ramp like singularities. Hence this algorithm is expected to fail on this data set. Indeed,
the performance of the algorithm of achieves only an MF-score of 30.5%. CoShREM, on the other hand, is
built to detect edges and ridges. The performance was significantly better than that of Yi-Labate-Easley-Krim
and resulted in an MF-score of 65.4%.

6.3 Results for Berkeley segmentation set

In the Berkeley segmentation data set, the complexity of the images is considerably higher compared to the
images from the ellipses/parallelogram data set. Therefore, we use a significantly larger training set to train
the associated classifier. For the classification of each angle, we used 30,000 patches as training data (around
600 patches per image), 3,000 patches as validation data, and 6,000 patches as test data. As in the case of
the ellipses/parallelograms, we train using a mini-batch procedure, with 86 examples per batch, but in this
case, using 30,000 training steps for each. We obtained an average test accuracy of 93.1% and MF-score of
95.4%, which is lower than the one obtained in the ellipses/parallelogram due to the higher complexity of
the patches. One advantage of this and the SBD data set is the existence of several benchmarks including
state-of-the-art deep learning based algorithms.

We compared our method using the available benchmarks on this data set provided by the UC Berkeley
Computer Vision Group, we refer to [1] for a more detailed explanation of these methods. In [1], just the
MF-score of the competing algorithms was reported. We give the results in Table 3.

We present one example of the results obtained on the BSDS500 data set in Figure 4.

6.4 Results for semantic boundary set (SBD)

The SBD data set contains significantly more images than the BSDS500 which, as we will observe below,
improves the overall classification performance slightly. In this case, we used 100,000 patches as training
data, 10,000 patches as validation data, and 20,000 patches as test data. We train on 86-sized mini-batches,
with 100,000 training steps. We obtained average test accuracy of 95.3% and MF-score of 96.8%.

This data set has recently been widely used for image segmentation tasks, in particular, it was used
on the two deep learning based image segmentation frameworks proposed by Z. Yu et al., namely the
SEAL (Simultaneous Edge Alignment and Learning) [50] and the CASENet (Category-Aware Semantic Edge
Detection Network) [49]. We also compared them with the deep learning image boundary detector and
classifier proposed (OBDC) by J. Y. Koh et al. [26]. The results can be found on Table 4.

Figure 5 shows the results obtained by DeNSE on an example image of the SBD data set, as in the case of
the BSDS500 data set, the obtained result admits more edges than the ground truth due to the batch-based
approach. Nonetheless, the method outperforms even the specialized algorithms for segmentation over the
given data sets.

6.5 Conclusion

We observe that in all performed tests, our novel algorithm DeNSE significantly outperforms all competitors. In
doing so, DeNSE outperforms not only traditional methods, but also other, Deep Learning based algorithms.
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Method MF-score
OBDC 62.5

CASENet 71.8
CASENet-S 75.8
CASENet-C 80.4
CoShREM 69.7

SEAL 81.1
DeNSE 96.8

Table 4: Performance on the SBD data set. All values are in percentage.

Comparing the complexity of the involved neural networks reveals that the classifier of DeNSE uses a
comparably small neural network.

One natural explanation for the jump in performance already with simple networks is the fact that the
shearlet representation transforms the data in a much more convenient form for training and evaluation
purposes at least from the point of view of wavefront set extraction. The underlying theoretically established
relationship between edges and their directions and the shearlet transform also indicates that our algorithm
can be easily generalized to extract not only jump-like singularities but also ramps or even higher-order
non-smooth patterns in images.

As mentioned in the introduction, the presented method offers a new analysis tool for any application
where information on the wavefront set can be used advantageously. This includes, in particular, inverse
problems, where, through mathematical analysis, a relation between the wavefront set of a function f and
the wavefront set of its transform T (f) is apriori known. Using the prediction of DeNSE and the known
relationship of the wavefront sets given by the underlying operator, it is possible to compute the wavefront
set of the f without inverting T . This additional information can then be used as a regularization for the
inverse problem.
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