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Abstract

An irregular wavelet frame has the form W(ψ,Λ) = {a−1/2ψ(x
a
− b)}(a,b)∈Λ, where ψ ∈ L2(R)

and Λ is an arbitrary sequence of points in the affine group A = R
+ ×R. Such irregular wavelet

frames are poorly understood, yet they arise naturally, e.g., from sampling theory or the in-
evitability of perturbations. This paper proves that irregular wavelet frames satisfy a Homo-
geneous Approximation Property, which essentially states that the rate of approximation of a
wavelet frame expansion of a function f is invariant under time-scale shifts of f , even though
Λ is not required to have any structure—it is only required that the wavelet ψ have a modest
amount of time-scale concentration. It is shown that the Homogeneous Approximation Property
has several implications on the geometry of Λ, and in particular a relationship between the
affine Beurling density of the frame and the affine Beurling density of any other Riesz basis of
wavelets is derived. This further yields necessary conditions for the existence of wavelet frames,
and insight into the fundamental question of why there is no Nyquist density phenomenon for
wavelet frames, as there is for Gabor frames that are generated from time-frequency shifts.
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1. Introduction

Frames have become an essential tool for many emerging applications, since they pro-
vide robust and stable—but usually nonunique—representations of vectors. For example,
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frames are used to provide stability in noisy environments and to mitigate the effect of
losses in packet-based communication systems [3,4]. Wavelet frames are among the most
important examples of frames, and frame properties of wavelet systems have been the
focus of a number of recent studies [7,10,23,24]. Most of these results are concerned with
classical wavelet systems of the form {a−j/2ψ(a−jx − bk) : j, k ∈ Z}. However, due to
questions arising from sampling theory and the inevitability of perturbations, the neces-
sity of studying wavelet frames with arbitrary sets of time-scale indices has become clear.
Such irregular wavelet frames are currently poorly understood.

In this paper we study special approximation properties of irregular wavelet frames

W(ψ,Λ) = {a−1/2ψ(xa − b)}(a,b)∈Λ = {DaTbψ}(a,b)∈Λ,

where ψ ∈ L2(R) and Λ is a sequence of points in the set R+ × R, which is the affine
group A when endowed with the natural multiplication corresponding to compositions of
time-scale shift operators. We will focus on the approximation of L2-functions by irregular
wavelet expansions. If the approximation rate is invariant under time-scale shifts, we will
say that our frame satisfies the Homogeneous Approximation Property, or HAP (discussed
more below and defined precisely in Definition 4.1).

In the remainder of this introduction we will first outline three of our motivations
for studying this approximation property for wavelets and then briefly outline our main
results.

1.1. Approximation Properties

Every frame yields frame expansions. Specifically, if W(ψ,Λ) is a frame then there is
a dual frame {ψ̃a,b}(a,b)∈Λ such that

f =
∑

(a,b)∈Λ

〈f, ψ̃a,b〉DaTbψ =
∑

(a,b)∈Λ

〈f,DaTbψ〉 ψ̃a,b.

The very nature of the affine group leads us to ask whether there is invariance of these
approximations under time-scale shifts DpTqf(x) = p−1/2f(ap − q) of f . But since no
structure is assumed on the index set Λ, there cannot be such invariance in any literal
sense—the frame coefficients {〈DpTqf,DaTbψ〉}(a,b)∈Λ will not be directly related to the
frame coefficients {〈f,DaTbψ〉}(a,b)∈Λ. Yet we will show that the quality of approximation
provided by the frame expansions of f and DpTqf are indeed related. We will show
that if we fix a nested sequence of “boxes” {Qh}h>0 which exhaust the space R

+ × R,
and consider the partial sums

∑

(a,b)∈Λ∩Qh
〈f,DaTbψ〉 ψ̃a,b of the frame expansion of f

corresponding to these boxes, then simply shifting these boxes by the same amount yields
a partial sum that approximates DpTqf to within the same precision—even though there
need be no relation between the locations or even the number of points in the original
and shifted boxes. We will show that this Homogeneous Approximation Property holds
true for all wavelet frames whose generator is chosen from a natural class that we call B0.
This class is nearly the largest space of functions that can reasonably be used as wavelet
frame generators, consisting of those admissible functions which have a moderate amount
of time-scale concentration.
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1.2. Density, Redundancy, and Localization

The recent paper [2] developed a powerful machinery relating the fundamental notions
of density, redundancy, and localization of frames. However, irregular and even classical
wavelet systems do not fit into the framework of that paper. Whether a similar relation
can be derived in the wavelet setting is a question of basic importance—can the redun-
dancy of a wavelet system be linked to its density and localization properties? A notion
of density for irregular wavelet systems, called affine density, was introduced indepen-
dently in [16] and [25], and some results linking the geometry of Λ with frame properties
of the wavelet system were obtained in [19,20,25,26]. In this paper we make a first step
towards linking affine density, redundancy, and localization of irregular wavelet frames,
by showing that irregular wavelet frames do possess the Homogeneous Approximation
Property, which is a weak version of the types of localization conditions introduced in [2].
The fact that the HAP holds provides a basic first step for a future development of the
implications of redundancy and localization for wavelet systems.

1.3. Nyquist Density

A third motivation for studying the Homogeneous Approximation Property for wavelets
comes from the well-known question posed by Daubechies in [9, Sec. 4.1], namely, to ex-
plain why wavelet frames do not exhibit a Nyquist density phenomenon analogous to the
one satisfied by Gabor frames. In short, for Gabor systems {e2πibxg(x− a)}(a,b)∈Λ there
is a critical or Nyquist density for the set of indices Λ which separates frames from non-
frames, and furthermore the Riesz bases sit exactly at this critical density (see [21,22,6]).
But for wavelets there is no analogue of the Nyquist density, even given constraints on
the norm or on the admissibility constant of the wavelet (see the example of Daubechies
[8, Thm. 2.10] and the more extensive analysis of Balan in [1]). Some insight into this
lack of a critical density was already revealed in [19], but this fundamental question is
far from being satisfyingly answered. In this paper we approach this question by asking
whether an analog of the key tool for proving the existence of a Nyquist density for
Gabor systems is satisfied for wavelet systems, and, if so, how the implications of that
tool differs between the two cases. That tool is the Homogeneous Approximation Prop-
erty, and we show that wavelets do possess this property. The surprise then is that while
both Gabor and wavelet frames possess the HAP, and while in the Gabor case the HAP
implies the Nyquist phenomenon, in the wavelet case the implications of the HAP are
quite different. Namely, we show that there is indeed a relationship between the density
of any given wavelet frame compared to the density of any given wavelet Riesz basis, but
this relationship depends on the rate of approximation in the HAP rather than being
absolute as it is in the Gabor case. Further study of this relationship may reveal a more
complete understanding of the essential differences between wavelet and Gabor systems.

1.4. Main Results

In this paper we will show that, with a natural assumption on the time-scale concen-
tration of the generator ψ, wavelet frames do satisfy the HAP. In particular, the ap-
proximation rates of a function f described in Section 1.1 are invariant under time-scale
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shifts. This gives hope that a relation between affine density, redundancy, and localiza-
tion of irregular wavelet frames, as suggested in Section 1.2, might indeed be established.
Further, as mentioned in Section 1.3, we prove that, as a consequence of the HAP, there
exists a fundamental comparison between the affine densities of different wavelet frames.
This leads to affine density conditions where the density is strongly tied to the generator
of the frame, which is quite different than the Nyquist phenomenon exhibited by Gabor
frames.

In addition to these main results, our techniques introduce some new tools for the
study of wavelet systems. In particular, we show that any generator of a wavelet frame
which satisfies our regularity assumption provides continuous wavelet transforms that lie
in a particular Wiener amalgam space on the affine group.

All our results generalize with minor changes to the case of wavelet systems with
multiple generators, or to wavelet systems in the spaces H2

+(R) or H2
−(R) consisting of

functions in L2(R) whose Fourier transforms are supported in [0,∞) or (−∞, 0], respec-
tively.

Our paper is organized as follows. In Section 2 we present some background and nota-
tion, and review the definition of density on the affine group. In Section 3 we investigate
the amalgam space properties of the continuous wavelet transform. Finally, in Section 4
we derive the HAP for wavelets and use it to obtain necessary conditions for the existence
of wavelet frames.

2. Notation and Preliminary Results

2.1. General Notation

Let A = R+ × R denote the affine group, endowed with the multiplication

(a, b)(x, y) =
(

ax, bx + y
)

.

The identity element of A is e = (1, 0), and inverses are given by (a, b)−1 =
(

1
a ,−ab

)

.

The left-invariant Haar measure on A is µ = dx
x dy. We denote the norm and inner

product on L2(A) with respect to this Haar measure by ‖·‖L2(A) and 〈·, ·〉L2(A), respec-
tively, whereas the norm and inner product on L2(R) will be denoted by ‖·‖2 and 〈·, ·〉.

Let σ be the unitary representation of A on L2(R) defined by
(

σ(a, b)f
)

(x) = DaTbf(x) = a−1/2f(xa − b),

where Daf(x) = a−1/2f(xa ) is the dilation operator and Tbf(x) = f(x− b) is translation.
Given ψ ∈ L2(R) and a sequence Λ contained in A, the wavelet system generated by

ψ and Λ is

W(ψ,Λ) =
{

DaTbψ
}

(a,b)∈Λ
=

{

σ(a, b)ψ
}

(a,b)∈Λ
=

{

a−1/2ψ(xa − b)
}

(a,b)∈Λ
.

Although Λ will always denote a sequence of points in A and not merely a subset, for
simplicity we will write Λ ⊆ A.

The distance from f ∈ L2(R) to a closed subspace V ⊆ L2(R) is dist(f, V ) = inf{‖f −
v‖ : v ∈ V } = ‖f − PV f‖, where PV is the orthogonal projection of L2(R) onto V .

We normalize the Fourier transform on L1(R) as f̂(ξ) =
∫

f(x) e−2πiξx dx.
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2.2. The Continuous Wavelet Transform

Given ψ ∈ L2(R), called an analyzing wavelet, the continuous wavelet transform
(CWT) of f ∈ L2(R) with respect to ψ is

Wψf(a, b) =
〈

f, σ(a, b)ψ
〉

=
〈

f, DaTbψ
〉

= a−1/2

∫ ∞

−∞

f(x)ψ(xa − b) dx

for (a, b) ∈ A. We have that Wψf is a continuous function on A.
We say that ψ ∈ L2(R) is admissible if

Cψ =

∫ ∞

−∞

|ψ̂(ξ)|2
dξ

|ξ|
< ∞,

and we set C+
ψ =

∫ ∞

0 |ψ̂(ξ)|2 dξ
|ξ| and C−

ψ =
∫ 0

−∞ |ψ̂(ξ)|2 dξ
|ξ| . We define

L2
A(R) = {ψ ∈ L2(R) : ψ is admissible}.

Note that if ψ ∈ L1(R) ∩ L2
A(R), then we must have ψ̂(0) = 0, since ψ̂ is continuous.

If ψ is admissible, then Wψ maps L2(R) into L2(A), cf. [14, Thm. 10.1]. Precisely, we
have that if ψ ∈ L2

A(R) and f ∈ L2(R), then

‖Wψf‖
2
L2(A) = C+

ψ

∫ ∞

0

|f̂(ξ)|2 dξ + C−
ψ

∫ 0

−∞

|f̂(ξ)|2 dξ ≤ Cψ ‖f‖2
2.

2.3. Affine Beurling Density

Let {Qh}h>0 denote a fixed family of increasing, exhaustive neighborhoods of the
identity in A. For simplicity of computation, we will take

Qh = [e−h, eh) × [−h, h).

For (x, y) ∈ A, let (x, y)Qh be the set Qh left-translated by (x, y) via the group action,
i.e.,

(x, y)Qh =
{

(xa, ya + b) : a ∈ [e−h, eh), b ∈ [−h, h)
}

.

Although Qh is a rectangle, (x, y)Qh will not be rectangular in general, but we will still
refer to it as a “box” and call (x, y) its “center.” The Haar measure of the box (x, y)Qh

is

µ((x, y)Qh) = µ(Qh) =

∫ h

−h

∫ eh

e−h

dx

x
dy = 4h2.

The following definition was introduced in [16] (although a different set of neighbor-
hoods Qh was used there); a similar definition was introduced in [25]. A comparison
among these and related definitions was made in [18].

Definition 2.1 The upper and lower affine Beurling densities of a sequence Λ ⊆ A are,
respectively,

D+(Λ) = lim sup
h→∞

sup(x,y)∈A #(Λ ∩ (x, y)Qh)

µ(Qh)
,

D−(Λ) = lim inf
h→∞

inf(x,y)∈A #(Λ ∩ (x, y)Qh)

µ(Qh)
.
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If D−(Λ) = D+(Λ) then we say that Λ has uniform affine Beurling density.

Some basic properties of affine and weighted affine Beurling densities were derived
in [16]. Also, examples computing the density of classical affine systems, quasi-affine
systems, co-affine systems, and oversampled affine systems are given there.

The following technical lemma will be needed later.

Lemma 2.2 Let δ > 0 be given. Given R′ > 1 define

R = R′e2δ + δe2δ + δe4δ.

Then for every (p, q) ∈ A we have

(p, q)Qδ \QR 6= ∅ =⇒ (p, q)Qδ ∩ QR′ = ∅.

PROOF. Suppose that (p, q) ∈ A and there exists (a, b) ∈ (p, q)Qδ \QR. We must show
that if (c, d) ∈ Qδ then

(pc, qc + d) = (p, q)(c, d) /∈ QR′ .

We proceed through cases, based on the facts that

(a, b) /∈ QR = [e−R, eR) × [−R,R), (1)

(ap ,−
pq
a + b) = (p, q)−1(a, b) ∈ Qδ = [e−δ, eδ) × [−δ, δ), (2)

(c, d) ∈ Qδ = [e−δ, eδ) × [−δ, δ). (3)

Suppose that a ≥ eR. Then, using (1)–(3),

pc =
p

a
a c ≥ e−δ eR e−δ = eR−2δ ≥ eR

′

,

the last inequality following from the fact that R = R′e2δ + δe2δ + δe4δ ≥ R′ + δ + δ.
Similarly, if a < e−R then pc < e−R

′

. In either case we conclude that (p, q)(c, d) /∈ QR′ .
Now consider the case b ≥ R. We have

q

c
+ d = −

a

p

1

c

(

−
pq

a
+ b

)

+ b
a

p

1

c
+ d ≥ −eδeδδ +Re−δe−δ − δ = R′.

Similarly, if b < −R then q
c + d < −R′. In either case we conclude that (p, q)(c, d) /∈

QR′ . 2

2.4. Frames

We briefly recall the definition and basic properties of frames in Hilbert spaces. For
more information we refer to [9,27,5]. A sequence {fi}i∈I is a frame for a Hilbert space
H if there exist constants A, B > 0 such that

∀ f ∈ H, A ‖f‖2 ≤
∑

i∈I

|〈f, fi〉|
2 ≤ B ‖f‖2. (4)

The constants A and B are called lower and upper frame bounds, respectively. The frame
operator Sf =

∑

i∈I〈f, fi〉 fi is a bounded, positive, and invertible mapping of H onto
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itself. The canonical dual frame is {f̃i}i∈I where f̃i = S−1fi. For each f ∈ H we have
the frame expansions

f =
∑

i∈I

〈f, fi〉 f̃i =
∑

i∈I

〈f, f̃i〉 fi.

A sequence which satisfies the upper frame bound estimate in (4), but not necessarily
the lower estimate, is called a Bessel sequence and B is a Bessel bound. In this case,

∥

∥

∥

∑

i∈I

cifi

∥

∥

∥

2

≤ B
∑

i∈I

|ci|
2 for any (ci)i∈I ∈ `2(I). (5)

In particular, ‖fi‖2 ≤ B for every i ∈ I .
A frame is a basis if and only if it is a Riesz basis, i.e., the image of an orthonormal basis

for H under a continuous, invertible mapping. In this case the frame and its canonical
dual frame are biorthogonal, i.e., 〈fi, f̃j〉 = δij .

3. Amalgam Spaces and the CWT

3.1. Amalgam Spaces on the Affine Group

An amalgam space combines a local criterion for membership with a global criterion.
The first amalgam spaces were introduced by Wiener in his study of generalized harmonic
analysis. A comprehensive general theory of amalgam spaces on locally compact groups
was introduced and extensively studied by Feichtinger, e.g., [11–13]. For an expository
introduction to Wiener amalgams on R with extensive references to the original literature,
we refer to [15]. For our purposes, we will need the following particular amalgam spaces
on the affine group.

Definition 3.1 Given 1 ≤ p < ∞, the amalgam space WA(L∞, Lp) on the affine group
consists of all functions F : A → C such that

|||F |||WA(L∞,Lp) =

(
∫∫

A

ess sup
(a,b)∈A

|F (a, b) Φ((x, y)−1(a, b))|p
dx

x
dy

)1/p

< ∞,

where Φ is a fixed continuous function with compact support satisfying 0 ≤ Φ(x, y) ≤
1 for all (x, y) ∈ A and Φ(x, y) = 1 on some compact neighborhood of the identity.
The amalgam space WA(C, Lp) is the closed subspace of WA(L∞, Lp) consisting of the
continuous functions in WA(L∞, Lp).

WA(L∞, Lp) is a Banach space, and its definition is independent of the choice of Φ,
in the sense that each choice of Φ yields the same space under an equivalent norm. For
proofs and more details, see [11,12].

Our next goal is to derive an equivalent discrete-type norm for WA(L∞, Lp). First we
need the following notation and lemma.

Given h > 0, for j, k ∈ Z define the following translates of Qh and Q2h:

Bjk = Bjk(h) = (e2jh, 2khe−h)Qh, (6)

B̃jk = B̃jk(h) = (e2jh, 2khe−h)Q2h. (7)

Lemma 3.2 If h > 0, then
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(a)
⋃

j,k∈Z
Bjk = A, and

(b) given m, n ∈ Z, the box B̃mn can intersect at most N = 5(2e3h+1) boxes B̃jk with
j, k ∈ Z.

PROOF. (a) Given (x, y) ∈ A, there is a unique j ∈ Z and a ∈ [e−h, eh) such that
x = e2jha, i.e., lnx = 2jh+ ln a. Since 2h

aeh ≤ 2h, there exists at least one integer k ∈ Z

and number b ∈ [−h, h) such that y = 2kh
aeh + b. Consequently,

(x, y) = (e2jha, 2kh
aeh + b) = (e2jh, 2khe−h)(a, b) ∈ (e2jh, 2khe−h)Qh = Bjk.

(b) Let (x, y) = (e2mh, 2nhe−h). We must show that B̃mn = (x, y)Q2h can intersect at
most N = 5(2e3h + 1) sets B̃jk with j, k ∈ Z.

Suppose that (u, v) ∈ (x, y)Q2h∩ B̃jk . Then there exist points (a, b) ∈ Q2h and (c, d) ∈
Q2h such that both

(u, v) = (ax, ya + b) = (x, y)(a, b) ∈ (x, y)Q2h

and

(u, v) = (e2jhc, 2kh
ehc + d) = (e2jh, 2khe−h)(c, d) ∈ (e2jh, 2khe−h)Q2h = B̃jk.

We have ax = e2jhc, so

e−4hx =
e−2hx

e2h
≤

ax

c
= e2jh =

ax

c
≤

e2hx

e−2h
= e4hx,

and hence −4h+ lnx ≤ 2jh ≤ 4h+ lnx. This inequality is satisfied for at most 5 values
of j. Further, ya + b = 2kh

ehc
+ d, so

k =
yehc

a2h
+
behc

2h
−
dehc

2h
≤

yeh

a2h

ax

e2jh
+
hehe2h

2h
+
hehe2h

2h
=

xy

2he(2j−1)h
+ e3h,

and similarly k ≥ xy
2he(2j−1)h − e3h. For a given value of j, there are at most 2e3h + 1

values of k for which these inequalities are satisfied. Hence, (x, y)Q2h can intersect at
most N = 5(2e3h + 1) sets B̃jk . 2

Proposition 3.3 If 1 ≤ p <∞ and h > 0, then the following is an equivalent norm for
WA(L∞, Lp):

‖F‖WA(L∞,Lp) =

(

∑

j,k∈Z

∥

∥F · χBjk

∥

∥

p

∞

)1/p

. (8)

PROOF. Define X = {(e2jh, 2khe−h)}j,k∈Z. In the language of [12], Lemma 3.2(a) says
that X is Qh-dense, and Lemma 3.2(b) says that X is relatively separated. In fact, if we
set N = 5(2e3h + 1), then

1 ≤
∑

m,n∈Z

χBmn
≤

∑

m,n∈Z

χ
B̃mn

≤ N. (9)

Let φjk : A → R be continuous functions such that

(i) 0 ≤ φjk ≤ 1,
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(ii) supp(φjk) ⊆ B̃jk ,
(iii) φjk(x, y) = 1 for (x, y) ∈ Bjk,

and define

θjk =
φjk

∑

m,n∈Z

φmn
.

Then {θjk}j,k∈Z is a bounded uniform partition of unity (BUPU) in the terminology

of [12]. Therefore, [12, Prop. 3.7] implies that ‖F‖ =
(
∑

j,k‖F · θjk‖p∞
)1/p

defines an
equivalent norm for WA(L∞, Lp). Since χBjk

≤ N θjk ≤ N χ
B̃jk

, and since the sets Bjk

cover A with no Bmn intersecting more than N sets B̃jk, we have

1

Np

∑

j,k∈Z

∥

∥F · χBjk

∥

∥

p

∞
≤

∑

j,k∈Z

∥

∥F · θjk
∥

∥

p

∞
≤

∑

j,k∈Z

∥

∥F · χB̃jk

∥

∥

p

∞
≤ Np

∑

j,k∈Z

∥

∥F · χBjk

∥

∥

p

∞
.

Hence (8) defines an equivalent norm for WA(L∞, Lp). 2

Corollary 3.4 If 1 ≤ p ≤ q <∞, then WA(L∞, Lp) ⊆WA(L∞, Lq).

3.2. A Basic Class of Analyzing Wavelets

The basic class B0 of analyzing wavelets that our results will apply to is defined as
follows.

Definition 3.5 The space B0 consists of all functions ψ on R which satisfy:

(a) |ψ(x)| ≤ C(1 + |x|)−α for some C > 0 and α > 2,

(b) ψ ∈ C1(R), i.e., ψ is differentiable, and ψ′ is continuous and bounded, and

(c) ψ̂(0) = 0.

The most important property of the class B0 is that its elements possess some time-
scale concentration. This concentration is naturally measured by the amalgam space
properties of the continuous wavelet transform, as given in the following theorem. The
proof of this result is given in Appendix A.

Theorem 3.6 (a) B0 ⊆ L2
A(R). In particular, every element of B0 is admissible.

(b) If f , ψ ∈ B0, then Wψf ∈ WA(C, L1).

(c) If ψ ∈ B0, then Wψψ ∈WA(C, L1).

While it is possible to construct wavelet frames for L2(R) using generators whose con-
tinuous wavelet transforms are not concentrated in time and scale, in practice such frames
will have limited applicability. For example, in order that frame expansions converge in
a range of function spaces rather than just L2, or in order that the frame coefficients
encode more properties of functions than just L2-norm, requires analyzing wavelets with
some regularity.

Note that if we let SA = {ψ ∈ S(R) : ψ̂(0) = 0} be the set of admissible Schwartz-
class functions, then SA ⊆ B0 ⊆ L2

A(R). Thus the basic class B0 is dense in the set of
admissible wavelets, which is itself dense in L2(R).
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In Gabor analysis, the basic space of windows that can reasonably be used as generators
of Gabor frames is the Feichtinger algebra S0, which is also known as the modulation
space M1 (we refer to [14] for details on the modulation spaces). This space is defined
by the time-frequency concentration of its elements, which corresponds to concentration
of the Short-Time Fourier Transform (STFT) instead of the CWT. In particular, S0

consists of those functions g whose STFT Vgg belongs to W (C, L1), the amalgam space
on the time-frequency plane R2. The natural analog of S0 for wavelet analysis would
be the space B consisting of all functions ψ such that Wψψ ∈ WA(C, L1). Our space B0

is slightly smaller, and we expect that our results should actually hold for all ψ ∈ B,
although we cannot yet prove this.

4. The HAP for Wavelet Frames

4.1. The HAP

In this section we define two versions of the HAP and prove that wavelet frames with
generators from our basic class B0 satisfy the Strong version of the HAP. Recall that if
W(ψ,Λ) is a frame for L2(R) then a canonical dual frame exists in L2(R), but that dual
frame need not itself be a wavelet frame.

Definition 4.1 Let ψ ∈ L2(R) and Λ ⊆ A be such that W(ψ,Λ) = {σ(a, b)ψ}(a,b)∈Λ is

a wavelet frame for L2(R), and let {ψ̃a,b}(a,b)∈Λ denote its canonical dual frame.
For each h > 0 and (p, q) ∈ A, define a space

W (h, p, q) = span
{

ψ̃a,b : (a, b) ∈ (p, q)Qh ∩ Λ
}

. (10)

By [16, Thm. 1.1], we have D+(Λ) < ∞, so there are only finitely many points of Λ in
each box (p, q)Qh, and hence W (h, p, q) is finite-dimensional.

(a) We say that W(ψ,Λ) possesses the Weak Homogeneous Approximation Property
(Weak HAP) if for each f ∈ L2(R),

∀ ε > 0, ∃R = R(f, ε) > 0 such that

∀ (p, q) ∈ A, dist
(

σ(p, q)f, W (R, p, q)
)

< ε.
(11)

(b) We say that W(ψ,Λ) possesses the Strong Homogeneous Approximation Property
(Strong HAP) if given any f ∈ L2(R)

∀ ε > 0, ∃R = R(f, ε) > 0 such that ∀ (p, q) ∈ A,
∥

∥

∥
σ(p, q)f −

∑

(a,b)∈(p,q)QR∩Λ

〈

σ(p, q)f, σ(a, b)ψ
〉

ψ̃a,b

∥

∥

∥

2
< ε. (12)

In either case we call R(f, ε) an associated radius function.

Note that since the function
∑

(a,b)∈(p,q)QR∩Λ

〈

σ(p, q)f, σ(a, b)ψ
〉

ψ̃a,b is one element of

the space W (R, p, q), the Strong HAP implies the Weak HAP.

Theorem 4.2 Let ψ ∈ B0 and Λ ⊆ A be such that W(ψ,Λ) is a frame for L2(R). Then
W(ψ,Λ) satisfies the Strong HAP.

10



PROOF. Let A, B be frame bounds for W(ψ,Λ). In this case 1
B , 1

A are frame bounds

for the canonical dual frame {ψ̃a,b}(a,b)∈Λ.
First we will show that the conditions of the Strong HAP, i.e., equation (12), are

satisfied for functions in B0, and then extend by density to all of L2(R). Choose g ∈ B0

and fix ε > 0. Choose any δ > 0. By [16, Thm. 1.1], we have D+(Λ) <∞, so

M = sup
(x,y)∈A

#(Λ ∩ (x, y)Qδ) < ∞.

Then for any (p, q) ∈ A we also have

sup
(x,y)∈A

#((p, q)−1Λ ∩ (x, y)Qδ) = sup
(x,y)∈A

#(Λ ∩ ((p, q)(x, y))Qδ) = M < ∞.

Since g, ψ ∈ B0, it follows from Theorem 3.6 that Wψg ∈WA(C, L1) ⊆WA(C, L2). By
Lemma 3.2, the sets Bjk = Bjk(δ) defined by (6) cover A, with no element of this family
intersecting more than N = 3(2e2δ+1) of the others. Considering the discrete-type norm
for WA(C, L2) given in (8), we conclude that if R′ is large enough and we set

J =
{

(j, k) ∈ Z
2 : Bjk ∩QR′ = ∅

}

, (13)

then
∑

(j,k)∈J

∥

∥Wψg · χBjk

∥

∥

2

∞
<

Aε2

M
.

Set R = R(g, ε) = R′e2δ + δe2δ + δe4δ.
Consider now any point (p, q) ∈ A. The function σ(p, q)g has the frame expansion

σ(p, q)g =
∑

(a,b)∈Λ

〈

σ(p, q)g, σ(a, b)ψ
〉

ψ̃a,b.

By applying equation (5) we have
∥

∥

∥
σ(p, q)g −

∑

(a,b)∈(p,q)QR∩Λ

〈

σ(p, q)g, σ(a, b)ψ
〉

ψ̃a,b

∥

∥

∥

2

2

=
∥

∥

∥

∑

(a,b)∈Λ\(p,q)QR

〈

σ(p, q)g, σ(a, b)ψ
〉

ψ̃a,b

∥

∥

∥

2

2

≤
1

A

∑

(a,b)∈Λ\(p,q)QR

∣

∣

〈

g, σ((p, q)−1(a, b))ψ
〉∣

∣

2

=
1

A

∑

(a,b)∈Λ\(p,q)QR

∣

∣Wψg((p, q)
−1(a, b))

∣

∣

2

=
1

A

∑

(c,d)∈(p,q)−1Λ\QR

∣

∣Wψg(c, d)
∣

∣

2
. (14)

Now, each point (c, d) ∈ (p, q)−1Λ \QR must lie in some set Bjk , and furthermore by
Lemma 2.2 can only do so when Bjk ∩QR′ = ∅, i.e., when (j, k) ∈ J . Moreover, each set
Bjk can contain at most M elements of (p, q)−1Λ. Hence we can continue (14) as follows:

1

A

∑

(c,d)∈(p,q)−1Λ\QR

∣

∣Wψg(c, d)
∣

∣

2
≤

M

A

∑

(j,k)∈J

∥

∥Wψg · χBjk

∥

∥

2

∞
< ε2.

11



Thus (12) is satisfied for the function g.
Now suppose that f is any function in L2(R), and choose any ε > 0. Since B0 is dense

in L2(R), there exists g ∈ B0 such that

‖f − g‖2 <
εA1/2

3B1/2
.

Set R(f, ε) = R(g, ε3 ), and denote this quantity by R. Then for any (p, q) ∈ A, we have
∥

∥

∥
σ(p, q)f −

∑

(a,b)∈(p,q)QR∩Λ

〈

σ(p, q)f, σ(a, b)ψ
〉

ψ̃a,b

∥

∥

∥

2

≤
∥

∥σ(p, q)f − σ(p, q)g
∥

∥

2

+
∥

∥

∥
σ(p, q)g −

∑

(a,b)∈(p,q)QR∩Λ

〈

σ(p, q)g, σ(a, b)ψ
〉

ψ̃a,b

∥

∥

∥

2

+
∥

∥

∥

∑

(a,b)∈(p,q)QR∩Λ

〈

σ(p, q)g − σ(p, q)f, σ(a, b)ψ
〉

ψ̃a,b

∥

∥

∥

2

<
εA1/2

3B1/2
+

ε

3
+

(

1

A

∑

(a,b)∈(p,q)QR∩Λ

∣

∣

〈

σ(p, q)g − σ(p, q)f, σ(a, b)ψ
〉∣

∣

2
)1/2

≤
ε

3
+

ε

3
+

(

B

A

∥

∥σ(p, q)g − σ(p, q)f
∥

∥

2

2

)1/2

< ε.

In the above calculation, the second inequality uses the fact that g satisfies the Strong
HAP and that {ψ̃a,b}(a,b)∈Λ has an upper frame bound of 1

A . The third inequality follows
from the fact that {σ(a, b)ψ}(a,b)∈Λ has an upper frame bound of B. Thus (12) is satisfied
for the function f , so W(ψ,Λ) satisfies the Strong HAP. 2

4.2. The Comparison Theorem

We saw in Theorem 4.2 that all wavelet frames W(ψ,Λ) with generators ψ ∈ B0 satisfy
the Strong HAP. In this section we will show that all such wavelet frames must fulfill
necessary density conditions with respect to any other wavelet Riesz bases. In fact, we
will prove more generally that these density conditions apply to any frame that satisfies
just the Weak HAP, even if the generator does not lie in B0.

Note that in the following result, the reference Riesz basis W(φ,∆) is not required
to satisfy the HAP, so any Riesz basis can be used, including the classical orthonormal
wavelet bases. However, there is a very important difference between this result and the
analogous Comparison Theorem for Gabor systems, namely that the density estimate
depends on the value of the radius function associated to the frame W(ψ,Λ), whereas in
the Gabor case it is independent of this value.

Theorem 4.3 (Comparison Theorem) Assume that

(a) ψ ∈ L2(R) and Λ ⊆ A are such that W(ψ,Λ) is a frame for L2(R) that satisfies the
Weak HAP, and

(b) φ ∈ L2(R) and ∆ ⊆ A are such that W(φ,∆) is a Riesz basis for L2(R).

12



Let {φ̃a,b}(a,b)∈∆ denote the canonical dual frame of W(φ,∆), and set

C = sup
(p,q)∈∆

‖φ̃p,q‖2. (15)

Then for each ε > 0 we have

1 − Cε

e2R(φ,ε)
D−(∆) ≤ D−(Λ) and

1 − Cε

e2R(φ,ε)
D+(∆) ≤ D+(Λ).

PROOF. Note that the elements of any frame are uniformly bounded in norm, so the
value C defined in (15) is indeed finite. Let {ψ̃a,b}(a,b)∈Λ denote the canonical dual frame
of W(ψ,Λ).

For each h > 0 and (p, q) ∈ A, define

W (h, p, q) = span
{

ψ̃a,b : (a, b) ∈ (p, q)Qh ∩ Λ
}

,

V (h, p, q) = span
{

σ(a, b)φ : (a, b) ∈ (p, q)Qh ∩ ∆
}

.

These spaces are finite-dimensional.
Fix any ε > 0, and let R = R(φ, ε) be the value such that (11) holds for the function

f = φ. Let (p, q) ∈ A, h > 0, and (a, b) ∈ (p, q)Qh be given. If (x, y) ∈ (a, b)QR ∩Λ, then
since QhQR ⊆ QeRh+R, we have

(x, y) ∈ (a, b)QR ⊆ (p, q)QhQR ⊆ (p, q)QeRh+R.

Thus (x, y) ∈ (p, q)QeRh+R ∩ Λ, which in turn implies

W (R, a, b) ⊆W (eRh+R, p, q).

Combining this with the definition of the Weak HAP, we see that

dist
(

σ(a, b)φ, W (eRh+ R, p, q)
)

≤ dist
(

σ(a, b)φ, W (R, a, b)
)

< ε, (16)

and this is valid for all (p, q) ∈ A, h > 1, and (a, b) ∈ (p, q)Qh.
Now let h > 0 and (p, q) ∈ A be fixed. Denote the orthogonal projections of L2(R)

onto V (h, p, q) and W (eRh + R, p, q) by PV and PW , respectively. Additionally, define
the map T : V (h, p, q) → V (h, p, q) by T = PV PW . Since the domain of T is V (h, p, q),
we have T = PV PWPV , and hence T is self-adjoint.

By definition,
{

σ(a, b)φ : (a, b) ∈ (p, q)Qh ∩ ∆
}

is a basis for V (h, p, q). Although the

elements φ̃a,b corresponding to the same indices need not lie in V (h, p, q), their orthogonal
projections are in that space, and we have for (a, b) and (c, d) in (p, q)Qh ∩ ∆ that

〈

σ(a, b)φ, PV (φ̃c,d)
〉

=
〈

PV (σ(a, b)φ), φ̃c,d
〉

=
〈

σ(a, b)φ, φ̃c,d
〉

= δa,c δb,d. (17)

Since V (h, p, q) is finite-dimensional, this implies that
{

PV (φ̃a,b) : (a, b) ∈ (p, q)Qh ∩∆
}

is the dual basis to
{

σ(a, b)φ : (a, b) ∈ (p, q)Qh ∩ ∆
}

in V (h, p, q). Consequently, the
trace of T is

tr(T ) =
∑

(a,b)∈(p,q)Qh∩∆

〈

T (σ(a, b)φ), PV (φ̃a,b)
〉

=
∑

(a,b)∈(p,q)Qh∩∆

〈

PV T (σ(a, b)φ), φ̃a,b
〉

=
∑

(a,b)∈(p,q)Qh∩∆

〈

T (σ(a, b)φ), φ̃a,b
〉

. (18)

13



Now, for (a, b) ∈ (p, q)Qh ∩ ∆, we have
〈

T (σ(a, b)φ), φ̃a,b
〉

=
〈

PV PW (σ(a, b)φ), φ̃a,b
〉

=
〈

PW (σ(a, b)φ), PV (φ̃a,b)
〉

=
〈

σ(a, b)φ, PV (φ̃a,b)
〉

+
〈

(PW − I)(σ(a, b)φ), PV (φ̃a,b)
〉

. (19)

By (17), the first term in (19) is
〈

PV (σ(a, b)φ), φ̃a,b
〉

=
〈

σ(a, b)φ, PV (φ̃a,b)
〉

= 1.

By the Cauchy–Schwarz inequality and equations (15) and (16), the second term in (19)
is bounded by

∣

∣

〈

(PW − I)(σ(a, b)φ), PV (φ̃a,b)
〉
∣

∣ ≤ ‖(PW − I)(σ(a, b)φ)‖2 ‖PV (φ̃a,b)‖2 ≤ εC.

This yields a lower bound for the trace of T :

tr(T ) ≥
∑

(a,b)∈(p,q)Qh∩∆

(1 − Cε) = (1 − Cε) #((p, q)Qh ∩ ∆).

On the other hand, the operator norm of T satisfies ‖T‖ ≤ ‖PV ‖ ‖PW ‖ ≤ 1, so all
eigenvalues of T must satisfy |λ| ≤ ‖T‖ ≤ 1. This in turn provides us with an upper
bound for the trace of T , because the trace is the sum of the nonzero eigenvalues, so

tr(T ) ≤ rank(T ) ≤ dim
(

W (eRh+R, p, q)
)

≤ #((p, q)QeRh+R ∩ Λ).

Combining these two estimates, we see that for each h > 1 and all (p, q) ∈ A, we have

(1 − Cε) #((p, q)Qh ∩ ∆) ≤ #((p, q)QeRh+R ∩ Λ).

Therefore,

(1 − Cε)
#((p, q)Qh ∩ ∆)

4h2
≤

#((p, q)QeRh+R ∩ Λ)

4(eRh+R)2
4(eRh+R)2

4h2
.

Taking the infimum over all points (p, q) ∈ A and then the liminf as h → ∞, or the
supremum over all points (p, q) ∈ A and then the limsup as h→ ∞, therefore yields the
estimates

(1 − Cε)D−(∆) ≤ e2RD−(Λ) and (1 − Cε)D+(∆) ≤ e2RD+(Λ).

Since we took R = R(φ, ε), this completes the proof. 2

As a corollary, we obtain the following necessary density condition. This density condi-
tion was also obtained in [16, Thm. 1.1(b)], but with the extremely restrictive additional
hypothesis that D+(Λ−1) < ∞. Moreover, Theorem 4.3 provides more information, in
terms of the value of the associated radius function, than merely the fact that D−(Λ)
must be positive. In particular, the following result applies to any frame generated by a
wavelet ψ ∈ B0, since by Theorem 4.2, such a frame will satisfy the Strong (and hence
the Weak) HAP.

Corollary 4.4 Let ψ ∈ L2(R) and Λ ⊆ A be such that W(ψ,Λ) is a frame for L2(R)
that satisfies the Weak HAP. Then 0 < D−(Λ) ≤ D+(Λ) <∞.
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PROOF. The fact that D+(Λ) < ∞ follows from [16, Thm. 1.1(a)]. To show the lower
density is positive, let φ = χ

[0, 12 ) − χ
[ 12 ,1)

∈ L2(R) be the Haar wavelet and set ∆ =

{(2j , k)}j,k∈Z. Then W(φ,∆) is the classical Haar orthonormal basis for L2(R). A proof
similar to [16, Prop. 4.3] shows that D−(∆) = 1

ln 2 . Therefore, Theorem 4.3 applied to
the frame W(ψ,Λ) and the Haar basis W(φ,∆) implies that for any 0 < ε < 1 we have

D−(Λ) ≥
1 − ε

e2R(φ,ε) ln 2
> 0,

which completes the proof. 2

Appendix A. A Sufficient Condition for Membership in the Basic Class B0

In this appendix we will prove Theorem 3.6.
First, we require the following two results concerning decay of the CWT. The first

result is similar to [9, Thm. 2.9.1].

Theorem A.1 Assume that

(a)
∫ ∞

−∞
(1 + |x|) |ψ(x)| dx <∞, and

(b) f ∈ C1(R), i.e., f is differentiable and f ′ is continuous and bounded,

(c) ψ̂(0) = 0.

Then there exists C > 0 such that |Wψf(a, b)| ≤ C a3/2 for all (a, b) ∈ A.

PROOF. By the Mean-Value Theorem, we have |f(x)−f(y)| ≤ ‖f ′‖∞ |x−y|. Therefore,

|Wψf(a, b)| =

∣

∣

∣

∣

a−1/2

∫ ∞

−∞

f(x)ψ(xa − b) dx− a−1/2f(ab)

∫ ∞

−∞

ψ(xa − b) dx

∣

∣

∣

∣

≤ a−1/2

∫ ∞

−∞

|f(x) − f(ab)| |ψ(xa − b)| dx

≤ a−1/2 ‖f ′‖∞

∫ ∞

−∞

|x− ab| |ψ(x−aba )| dx

= a−1/2 ‖f ′‖∞ a2

∫ ∞

−∞

|xψ(x)| dx = C a3/2. 2

Theorem A.2 Assume that the functions ψ and f satisfy

|ψ(x)| ≤ C(1 + |x|)−α and |f(x)| ≤ C(1 + |x|)−α

for some C > 0 and α > 1. Then there exists C ′ > 0 such that

|Wψf(a, b)| ≤ C ′ a
1/2

1 + a

(

1 +
a|b|

1 + a

)−α

, (a, b) ∈ A.

PROOF. The wavelet transform W̃ψf used in [17] is related to the wavelet transform

of this paper by the equality W̃ψf(a, b) = a−1/2Wψf(a, b/a). By [17, Thm. 11.0.2], we
have

|W̃ψf(a, b)| ≤ C ′ 1

1 + a

(

1 +
|b|

1 + a

)−α

.
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A change of variables therefore completes the proof. 2

We can now prove Theorem 3.5.

PROOF. [Proof of Theorem 3.5] Assume that ψ, f belong to B0. In particular, we have
that

(a) there exists C > 0 and α > 2 such that |f(x)|, |ψ(x)| ≤ C(1 + |x|)−α,
(b) f , ψ ∈ C1(R), and

(c) f̂(0) = ψ̂(0) = 0.

Since α > 2, we have that ψ ∈ L2(R)∩L1(R). Since we also have ψ̂(0) = 0, this implies
that ψ is admissible, cf. [9, p. 24].

Furthermore,
∫ ∞

−∞

(1 + |x|) |ψ(x)| dx ≤ C

∫ ∞

−∞

(1 + |x|)1−α dx < ∞, (A.1)

so Theorem A.1 implies that there exists C1 > 0 such that

|Wψf(a, b)| ≤ C1 a
3/2, (a, b) ∈ A. (A.2)

Additionally, by Theorem A.2, there exists C2 > 0 such that

|Wψf(a, b)| ≤ C2
a1/2

1 + a

(

1 +
a|b|

1 + a

)−α

, (a, b) ∈ A. (A.3)

Now set h = 1, and let Bjk = Bjk(1) = (e2j , 2k
e )Q1 as in (6). Since α > 2, we can

find γ such that 2α−1
α−1 < γ < 3. Set Nj = e−γj+2.

Define

S1 =

∞
∑

j=1

∑

k∈Z

‖Wψf · χBjk
‖∞,

S2 =

0
∑

j=−∞

∑

|k|≤Nj

‖Wψf · χBjk
‖∞,

S3 =

0
∑

j=−∞

∑

|k|>Nj

‖Wψf · χBjk
‖∞.

We will show that S1, S2, S3 < ∞. This implies by Proposition 3.3 that Wψf ∈
WA(L∞, L1), and since we already know that Wψf is continuous, the proof will be com-
plete.

Before doing this, however, let us make a generic observation. If we take a point
(a, b) ∈ Bjk for some j, k ∈ Z, then

(a, b) = (e2j , 2k
e )(x, y) = (e2jx, 2k

ex + y)

for some (x, y) ∈ Q1 = [ 1e , e) × [−1, 1). Therefore

e2j−1 ≤ a ≤ e2j+1 and
2|k|

e2
− 1 ≤ |b| ≤ 2|k| + 1.
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Estimate S1. Suppose that (a, b) ∈ Bjk with j > 0, k ∈ Z. Then a ≥ 1, so

1 +
a|b|

1 + a
≥ 1 +

|b|

2
≥ 1 +

|k|

e2
−

1

2
=

2|k| + e2

2e2
.

Hence, we have from (A.3) that

|Wψf(a, b)| ≤ C2
e(2j+1)/2

1 + e2j−1

(

2e2

2|k| + e2

)α

≤ C3 e
−j 1

(2|k| + e2)α
.

Since α > 1, we therefore have

S1 =

∞
∑

j=1

∑

k∈Z

‖Wψf · χBjk
‖∞ ≤ C3

∞
∑

j=1

e−j
∑

k∈Z

1

(2|k| + e2)α
< ∞.

Estimate S2. Suppose that (a, b) ∈ Bjk with j ≤ 0, |k| ≤ Nj = e−γj+2. By (A.2), we
have

|Wψf(a, b)| ≤ C1 a
3/2 ≤ C4 e

3j .

Therefore, since Nj ≥ 1 for all j ≤ 0, we have

S2 =

0
∑

j=−∞

∑

|k|≤Nj

‖Wψf · χBjk
‖∞ ≤

0
∑

j=−∞

∑

|k|≤Nj

C4 e
3j

≤ C4

0
∑

j=−∞

(2Nj + 1)e3j

≤ 3e2C4

0
∑

j=−∞

e−γj+3j < ∞,

the finiteness following from the fact that γ < 3.

Estimate S3. If (a, b) ∈ Bjk with j ≤ 0, |k| > Nj = e−γj+2, then, since a ≤ 1,

1 +
a|b|

1 + a
≥

a|b|

2
≥

e2j−1

2

(

2|k|

e2
− 1

)

= e2j
(

2|k| − e2

2e3

)

.

Therefore, by (A.3) and the fact that |k| > Nj ≥ e2, we have

|Wψf(a, b)| ≤ C2
e(2j+1)/2

1 + 0

(

e−2j 2e3

2|k| − e2

)α

= C5 e
j(1−2α) 1

(2|k| − e2)α
.

Now, since Nj ≥ e2 we have for each j ≤ 0 that

∑

|k|>Nj

1

(2|k| − e2)α
≤ 2

∫ ∞

Nj

1

(2x− e2)α
dx =

1

α− 1

1

(2Nj − e2)α−1

≤
1

α− 1
N1−α
j

=
e2(1−α)

α− 1
eγj(α−1).
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Hence

S3 =

0
∑

j=−∞

∑

|k|>Nj

‖Wψf · χBjk
‖∞ ≤

0
∑

j=−∞

∑

|k|>Nj

C5 e
j(1−2α) 1

(2|k| − e2)α

≤ C6

0
∑

j=−∞

ej(1−2α) eγj(α−1)

= C6

0
∑

j=−∞

ej(1−2α+γ(α−1)).

However,

1 − 2α+ γ(α− 1) > 1 − 2α+
2α− 1

α− 1
(α− 1) = 0,

so we have S3 <∞. 2
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[3] P. G. Casazza and J. Kovaĉević, Equal-norm tight frames with erasures, Adv. Comput. Math., 18

(2003), 387–430.

[4] R. H. Chan, S. D. Riemenschneider, L. Shen, and Z. Shen, Tight frame: an efficient way for high-
resolution image reconstruction, Appl. Comput. Harmon. Anal., 17 (2004), 91–115.

[5] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.
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[7] C. K. Chui, W. He, and J. Stöckler, Compactly supported tight and sibling frames with maximum
vanishing moments, Appl. Comput. Harmon. Anal., 18 (2002), 224–262.

[8] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans.
Inform. Theory, 39 (1990), 961–1005.

[9] I. Daubechies, ”Ten Lectures on Wavelets,” SIAM, Philadelphia, 1992.

[10] I. Daubechies, B. Han, A. Ron, and Z. Shen, Framelets: MRA-based constructions of wavelet frames,
Appl. Comput. Harmon. Anal., 14 (2003), 1–46.

[11] H. G. Feichtinger, Banach convolution algebras of Wiener type, in: Functions, Series, Operators,
Proc. Conf. Budapest 38, Colloq. Math. Soc. János Bolyai, 1980, 509–524.
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