THE ZAK TRANSFORM ON CERTAIN LOCALLY COMPACT
GROUPS

GITTA KUTYNIOK

ABSTRACT. For a class of locally compact groups, which includes all con-
nected and simply connected 2-step nilpotent Lie groups whose Lie algebra
admits a basis with respect to which the structure constants are rational,
we introduce a definition of the Zak transform. We prove that this Zak
transform is quasi-periodic. Further, we show that it is a Hilbert space
isomorphism when the range functions are restricted to a fundamental do-
main. Finally, we study several examples of locally compact groups with
respect to properties of their Zak transform.

1. INTRODUCTION

1.1. History. The Zak transform on R was introduced in 1950 by Gelfand
[Gel50] and it was rediscovered by Weil [Wei64] and independently by Zak
[Zak67] in 1967 who used it to construct a quantum mechanical representation
for the description of the motion of a Bloch electron in the presence of a
magnetic or electric field. For f € L?(R), the Zak transform is the function
Zf:R xR — C defined by

Zf(w,y)= Y fla+ k)ek,

k=—00

The Zak transform later became a major tool in the analysis of Gabor systems,
since it turned out to be highly efficient, for example, for integer oversampling.
A review of the theory and of applications to signal analysis can be found in
the survey article of Janssen [Jan88|.

Weil [Wei64] already introduced the Zak transform in the general context of
locally compact abelian groups. In the last 10 years this has been rediscovered
in engineering for such groups as Z or finite cyclic groups [AGT92, Hei89]. But
so far there are only a few papers dealing with the Zak transform on general
locally compact abelian groups ([FS98, Chapter 6] and [KK98]).

1.2. Outline. In the present paper we generalize the notion of Zak transform
to a large class of locally compact groups including all connected and simply
connected 2-step nilpotent Lie groups whose Lie algebra admits a basis with
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respect to which the structure constants are rational, study some of their
properties and present several examples.

This paper is organized as follows.

In the second section we introduce some notation, recall a few definitions
and a simple basic result which will be used in the sequel.

The purpose of the third section is to define the Zak transform on certain
locally compact groups by ensuring that many of the main properties of the
classical Zak transform remain true. We also state some general hypotheses
for this section and the following two sections.

In Section 4 we check whether the general definition reduces to the classical
definition for G = R. Further, we prove some quasi-periodicity relation for
the Zak transform and show that the range functions of the Zak transform are
uniquely determined by their values on a fundamental domain.

The fifth section deals with the problem under which conditions the Zak
transform is an isometry and in particular a Hilbert space isomorphism, when
the range functions are restricted to a fundamantal domain.

In the last section we discuss several examples of groups like locally compact
abelian groups and connected and simply connected 2-step nilpotent Lie groups
whose Lie algebra admits a basis with respect to which the structure constants
are rational and examine properties of their Zak transform.

2. PRELIMINARIES AND NOTATION

Let G be a locally compact group with neutral element denoted by e. For
K C G, K < @G denotes the fact that K is a subgroup of G. A subgroup
K of G will be called a uniform lattice, if it is discrete and cocompact. A
fundamental domain for K in G is a measurable cross section Sk, that means
a measurable set S C G such that every z € GG can be uniquely written in
the form x = ks where £k € K and s € Si. The existence of a fundamental
domain for K is guaranteed by the following lemma, which is [KK98, Lemma
2]. Tt is stated in [KK98] only for locally compact abelian groups, but it also
holds for non-abelian locally compact groups using the same proof.

Lemma 2.1. Let G be a locally compact group and let K be a uniform lattice
in G. Then there exists a relatively compact fundamental domain for K in G.

Let L?*(G) denote the space of square-integrable functions on G with respect
to some left Haar measure on G. The group of all mappings of G onto G
that are simultaneously automorphisms and homeomorphisms, endowed with
multiplication given by composition, is denoted by Aut(G). Let G and H be
two locally compact groups and 7 : G —Aut(H) be a homomorphism such
that the mapping (z,h) — 7,(h) is a continuous mapping of G x H onto H.
Then the cartesian product G x H endowed with the multiplication

(21, h1) (2, ha) = (2172, ha Ty, (h2))

and with the product topology is called a semidirect product of G and H and
is denoted by G x, H.
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Now let G be a locally compact abelian group. The dual group of G is always
denoted by G with unit element 1¢ (or just 1). Let K be a subgroup of G.
Then the subgroup A(K, G)={we G :wk)=1forall k € K} is called the
annihilator of K in G. For a uniform lattlce K in G, the subgroup A(K,G)
is a uniform lattice in G, since A(K,G) = G/K and G/A(K,G) = K ([HR63,
Lemma 24.5]) and since the dual of a compact abelian group is discrete and
vice versa. As a general reference to duality theory of locally compact abelian
groups we mention [HR63].

The Heisenberg group associated with G, H(G), is the semidirect product

G x, (G x T), where
TG = Aut(GxT), 7o(w,z)=(w,2w(z)).

In the following we will consider the so-called Schrdidinger representation,
which is the irreducible unitary representation of H(G) on L?(G) defined by

(ra(z,w,2)f)(t) = zw(t) f(a1).
This is the natural generalization of the Schrodinger representation of H(R)
dealt with in Gabor analysis. For further information concerning Heisenberg
groups we refer to [Fol89.

3. DEFINITION OF THE ZAK TRANSFORM

Let G be a locally compact abelian group. The Zak transformAZ f associated
with a uniform lattice K in G of f € L?(G) is defined on G x G by

Zf(z,w) = Zf

keK

Let Sk and Qg be fundamental domains for K in G and for A(K, @) in G,
respectively. Since the Zak transform satisfies

Zf(zk,wy) = wk)Zf(z,w) for all (z,w) € G x G, (k,v) € K x A(K,G),

the so-called quasi-periodicity relation, the function Z f is uniquely determined
by its values on Sk x Q. By [KK98, Lemma 3], the mapping Z : L*(G) —
L*(Sk x Q) is an isometry. Moreover, if G is second countable, it can be
shown that it is even a Hilbert space isomorphism ([Ku00, Theorem 3.1.7]).

Now we are interested in a generalization of this definition of the Zak trans-
form to some non-abelian locally compact groups. This should be achieved in
such a way that the above mentioned properties remain true. Notice first that
we may rewrite the Zak transform in the following way

Zf(z,w) = (pa(z,w, 1) f) (k).

keK

The map pg is a representation of the Heisenberg group associated with G,
H(G), on L*(G). Note that we have H(G) = G X, (G x T), where 7 : G —
Aut(G x T) is given by 7, (w, z) = (w, zw(x)). In addition, we have Z(H(G)) =
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T. Denoting S, the stabilizer of (e,1) € G x Z (= (G x T)™), it is easily
checked that S(,1y = {e}. It is well-known that the Schrédinger representation
pc is equivalent to the representation induced by the character (e,1) € G X Z.

Now let G' be a locally compact group and let K be a uniform lattice in
G. Moreover, let L and Z be locally compact abelian groups and let 7 :
G — Aut(L x Z) be an action such that Z(G x, (L x Z)) = Z. Then the
group G X, (L x Z) will play a similar role as the Heisenberg group. Further

we suppose that there exists some x € 7 such that S, = {e}. Then the
induced representation

pi=ind 50D (12,%) 1 G %, (L x Z) > U(L*(G))

replaces the Schrédinger representation.

Thus, throughout the remainder of this section and Sections 4 and 5, let G
be a locally compact group and let K be a uniform lattice in G. By Lemma
2.1, there exists a relatively compact fundamental domain for K in G which
we will denote by Sk in the following. In addition, suppose that

(I) there exist locally compact abelian groups L and Z and some action
7= (W, 7®) . G - Aut(L x Z) such that Z(G x, (L x Z)) = Z and

such that the map y — T,gl)(y, e), L — L, is an isomorphism for all k € K,

(IT) there exists some x € Z such that the map
o x(rO(e), G-I,
is injective.

For the definition of the representation, which shall generalize the Schrédin-
ger representation, we need the following lemma.
Lemma 3.1. We have

Sax) = {e}-
Proof. Using the fact that Z(G x, (L X Z)) = Z, it is easily checked that
Say ={z€G:x(7P(y,e)) =1 forallye L}.

Hence the claim follows from (IT) of the preceding assumptions. O

From now on let p: G, (L x Z) — U(L?(G)) be the unitary representation
defined by

o 1GX-(LxZ)
p = 1nd{e}xT(sz)(1i, X)-

By [Fol95, Section 6.1], we obtain

(p(z,y, 2) ) (1) = x(2)x (12 (y, €)) f (tz)
for all (z,y,2) € G x, (L x Z),t € G and f € L*(G).
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Definition 3.2. The Zak transform Zf associated with K (and L,Z,T and
x) of f € L?(QG) is defined on G x L by

Zf(z,y) =Y (plz,y,e)f) (k) =Y x(1t (y,€)) f (ka).

keEK keK

Concerning convergence of the series compare Proposition 5.1.

To generalize some results from abelian to non-abelian locally compact
groups we need a replacement of the annihilator in the abelian case. Thus, for
the remainder of this paper, let I'x be the subgroup of L defined by

Ik:={melL: X(T,SQ)(m, e))=1 forall k € K}.

In the classical situation of a locally compact abelian group the subgroup I'x
is just the annihilator of K in G' (compare Subsection 6.2).

4. SOME BASIC FACTS

The next lemma is easily seen, but it is stated here explicitly, since it is used
for all the following calculations.

Lemma 4.1. Let a: G — Aut(L X Z) be an action.
(i) The following conditions are equivalent.
(a) Z(Gxqo (L x Z))=Z.
(b) For all z € G and (y,z) € L X Z, we have az(y, z) = (e, 2)az(y, €).
(i) Suppose that Z(G x4 (L X Z)) = Z. Then, for all z,2' € G, y € L,

a® () (y,e), ) = ol (y, ) (@D (y, €))L,

It is desirable that the Zak transform of Definition 3.2 coincides with the
classical Zak transform for G = R. This is the subject of the following example.

Ezrample 4.2. Let G = R. Each non-trivial discrete subgroup of R is of the
form K = rZ with r € R*. Notice that Sk := [0,7) is a relatively compact
fundamental domain for K. Now let L := Z := R. We intend to calculate
possible Zak transforms in the sense of Definition 3.2.

Let 7 : R — Aut(R?) be an action. By Lemma 4.1 (i), there exist functions
v,¥ : R — R such that 7 is of the form

Tx=<¢(x) 0) for all z € R.

P(z) 1
Since 7 is a homomorphism, we obtain, for all z,y € R,
(1) ez +y) = p(z)e(y)
and
(2) Y +y) =v@)e(y) +¥(y) = YY)e(@) + P ().

Equation (1) and the fact that 7 is an action imply that either ¢ = 0 or there
exists a > 0 such that, for all z € R,

o(z) = a”.
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But 7, € Aut(R?) for all z € R implies ¢ # 0. We have to consider two cases.

Case a # 1.
Then (2) can be rewritten in the following way

Y(z)(@? —1) =¢(y)(a®—1) forall z,y € R
Choosing y = 1 yields the existence of some b (= 1(1)) € R such that, for all
Tz €R,

b
Y(w) =
It is easily checked that (I) is satisfied and that (II) is fulfilled if and only if
b # 0. Hence 7 yields a Zak transform in the sense of Definition 3.2, which
does not coincide with the classical Zak transform. But notice that the Zak
transform associated with 7 satisfies no quasi-periodicity relation, since the
subgroup 'k is trivial.

(a® —1).

Case a = 1.
Then (2) implies that 1) is a homomorphism and hence there exists s € R
such that, for all x € R,

Y(z) = sx.
Note that (I) is always fulfilled and that (II) is satisfied if and only if s # 0.
Then R %, (R x R) coincides with the Heisenberg group associated with R.
Hence p is the Schrodinger representation and therefore 7 yields the classical
Zak transform with the additional factor r. But this factor sometimes also
appears in the definition of the Zak transform ([Jan88, Section 1]).

Hence we proved that, for L = Z = R, Definition 3.2 does yield different
Zak transforms, but the only ones fulfilling further important properties are
the Zak transforms arising from the classical one with an additional factor. If

L and Z are chosen in a different way, clearly this yields a different transform,
for example, with L =R? and Z = R.

Moreover, the Zak transform on a locally compact abelian group is also a
Zak transform in the sense of Definition 3.2. For this, compare Subsection 6.2.

Next we have to check whether the properties of the Zak transform in the
abelian case carry over to the non-abelian case.

First, we will investigate whether the general Zak transform also satisfies a
quasi-periodicity relation. For this, recall the definition of the subgroup ['k,
which will replace the annihilator in the abelian case.

Proposition 4.3. For all f € L*(G) and (z,y) € G x L,(I,m) € K x 'k,

2] (lz,m7" (y, €)) = x(7” (4, €)) Z f (x,y):
Proof. Let f € L?(G) and let (z,y) € G x L, (I, m) € K x I'k. The definition
of I'c implies that

S (ol m,e) f)(k) =3 x(r? (m,e) f(kD) 2 ST f(k).

kEK keK keK



THE ZAK TRANSFORM ON CERTAIN LOCALLY COMPACT GROUPS 7
This yields
Zf(z,m7"(y,e) = Y (p((l,m, (77 (y,€)))(z,y,€) f) (k)

keEK

= Y o,m, (72 (y,€) ) (p(@, y, ) ) (k)

keK
= X (. €)) Y pllm, €) (p(w,y, €) ) (k).
keK
Now the claim follows from the first part of the proof. O

The next lemma establishes an important property of the connection be-
tween ' and 7.

Lemma 4.4. For all k € K,
Tk x {e}) = k.

Proof. Let k € K. First, we prove that T,El)(PK x {e}) < I'k. For this, let
m € I'k. Then, by Lemma 4.1 (ii) and the definition of 'k,

X (7" (m,e), €)) = x(17 (m, €))x (1) (m, ) = 1

for all [ € K. This implies T,gl)(m, e) € k.
Assume, towards a contradiction, that there exist y € L\I'x and k € K such
that 7',51) (y,e) € I'k. This implies the existence of some ky € K such that

X1 (y,€)) #1 and also 1= x(r (11" (y, €), €)) = x(7) (3, €))x (73 (y: €))
for all [ € K. Hence

x(mi (9:)) = x(1” (g, €)
for all [ € K. Choosing | € K as | := kok™!, we obtain, by the choice of ky,

X1 (y,€)) # 1
and hence, for all [ € K,

X2 (y,0) # 1.
With [ := k!, we get a contradiction.
Summarizing, we proved T]gl)(FK x {e}) < T'k and T]gl)((L\FK) x {e}) C
L\T'k for all £ € K. Applying (I) yields the claim. O

Remark 4.5. Suppose that ' is a uniform lattice in L. Then, by Lemma 2.1,
there exists a relatively compact fundamental domain for I'x which we will
denote by (2x. Hence every y € L can be uniquely written in the form y = mt
where m € T and ¢t € Q. Let k € K. This implies, using (I) and Lemma
4.4, that each y € L can be uniquely written in the form y = myt; where
my € 'k and t € 7',51) (g x {e}). Thus, by Proposition 4.3, for all f € L*(G),
the map Zf : G x L — C is uniquely determined by its values on Sg x Q.
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5. HILBERT SPACE ISOMORPHISM

In the abelian case it is important for many applications that the Zak trans-
form f — Zf|s,xax is an isometry. Under certain conditions the Zak trans-
form is isometric also in the general situation.

Throughout this section suppose that G is unimodular and that 'k is a
uniform lattice in L. By Lemma 2.1, there exists a relatively compact fun-
damental domain for I'x in L which we will denote by k. Let the Haar
measure on GG be normalized so that Weil’s formula holds, when we take on
G/K the normalized G-invariant Radon measure and the counting measure
on K. Clearly, if G is o-compact (equivalently, K is countable) then Sk has
positive measure, (|Sk| > 0). However, this is also true in the general case. To
see this, choose a compactly generated open subgroup H of G containing Sk
and observe that Sk N H # 0 if and only if k € H. Since H is o-compact and
K is discrete, there are only countably many £ € K N H. Thus H is contained
in a countable union of sets Sk, k € K, whence |Sk| > 0.

The map @ : Sx — G/K, x — zK, is a continuous bijection and, for each
measurable subset M of Sk, Weil’s formula gives

M= [ o= [ (ZXM(xm) d(wK) = |B(M)|.

P GIx \keK

This implies that ® maps the measure on Sk induced by the Haar measure on
G to the normalized measure on G/K.

In addition, let the Haar measure on L be normalized so that Weil’s formula
holds, if we take on L/T'k the normalized Haar measure and the counting mea-
sure on ['x. Similarly, we see that the induced measure on g is transformed
into the Haar measure on L/I'k and [Qg| = 1.

Proposition 5.1. Retain the preceding assumptions and notations, and let
f € L*(GQ). Then, for almost all (z,y) € Sk x Qk,

Zf(z,w) =Y x(r7(y,e)) f (kz)

converges, and the function Z f belongs to L*(Sk x Q) and satisfies || Z f||o =
1£1l2-

Proof. For k € K, define f;, € L*(Sk x Q) by

fe(z,y) = x(72 (y, €)) f (k).

Then we have

SUrlE=3 [ [ 1hayde =3 [ 17k az=|7]5

kEK keKg G keKg
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Now let k,l € K such that k # [. We claim that (fx, f;) = 0. At first, we have

Unf) = / / F k) FI)x(r (0, )7 (5" 0)) dy da

Sk QK

= /f(kx)f(lx) dz / X(T,§2) (v, C)Tl(z) (y ', e))dy.

Sk Qx
By [HR63, Lemma 23.19], for a compact abelian group C' and for a non-trivial
character ¢ of C, [, ¢(y)dy = 0. Using the definition of I'x, we may apply
this to C = L/T'i and the character ¢ defined by

pWTk) =X (. )n (v e), ye L.
Note that ¢ is non-trivial by (II). We obtain
[xe o edr= [ el duTi) =0,

LT
Ox Tk

and this in turn implies (fi, f;) = 0. It follows that the series ), ., fx converges
in L?(Sk x Q) and satisfies

1D Sells =D 1Aellz = 115

keK keK
In particular, Z f (z,w) exists for almost all (z,w) € Sk X Q. O

As in the abelian case the Zak transform is even a Hilbert space isomorphism
for a large class of locally compact groups. (In Section 6 it will turn out that
(I) and (IT) and the condition that 'k has to be a uniform lattice are not very
restrictive. )

Theorem 5.2. Retain the preceding assumptions and notations. If the set
{(@.9) = x(7 2 (m, )x(7” () - (1m) € K x T}
is an orthonormal basis of L*(Sk X Qx), then
7 : L*(G) — L*(Sk x Qk)
15 a Hilbert space isomorphism.

Proof. By Proposition 5.1, Z : L?(G) — L*(Sk X Qk) is an isometry. Obvi-
ously, Z is also linear. Hence, to prove that Z is a Hilbert space isomorphism,
it remains to shows that Z : L?(G) — L*(Sk X Q) is also surjective.

Let U € U(L*(Q)) be defined by Uf(t) = f(¢t7'). Now consider the set
M, C L*(G), which is defined by

My = {pm = U '(p(l,m,e)([Uxsy))
= X(r®)(m,€)) - Lixsy : (I,m) € K x T},
Furthermore, consider the set My, C L?(Sk x Q), which is defined by
Mg = {ngl,m : (l,m) € K x FK}
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Now, for f € L?(G) and (z,y) € G x L, (I,m) € K x 'k, we obtain

Zorm(@y) = Y XD €)pum(kz)
keK
= Y X W, )7l 1 (m,€))xs, (7 k)
keK
k lk
= ZX le (y, € ((lk):v) 1(m, €))xsy (k).
keK

Since every z € GG can be uniquely written in the form z = ks where k € K
and s € Sk, xs,(kx) # 0 if and only if £ = e. This implies, using Lemma 4.1
(ii) and the definition of I'g,

Zorm(@,y) = X107 (W, €)x(rih-1(m,€))

= X2 (y,€)x (2 (m, ))x(rZ, (rM) (m, e), €))
= X1 (y,)x (2 (71 (m, e), ).

By Lemma 4.4,
(3) Mo = {x(7(y, ) x(7.2: (m, ) : (I, m) € K x T},
Since we supposed M, to be an orthonormal basis, the claim is proven. O

Now we shall investigate when the set

{(z,y) = x(72 (m, e))x(7 (y,€)) : (I,m) € K x I}

is an orthonormal basis of L?(Sk x k). The next proposition gives a necessary
and sufficient condition for this.

Proposition 5.3. Retain the preceding assumptions and notations. Then the
following conditions are equivalent.

(i) For allm €Tk, m # e,

/ X(T( 2 (m,e))dz =0
Sk
and the linear subspace

span{(z,y) — X(T( )1 (m,e))x (Tl@)(y,e)) :(l,m) e K x 'k}

is dense in L?(Sk X Q).
(ii) The set

{(z,9) = x(rZ (m, &))x(7 (y,€)) : (I, m) € K x g}

is an orthonormal basis of L*(Sx X Q).

Proof. For simplicity, let ¢;,,, C L?(Sk x Qk) be defined by
Sum(2,) = X(1225 (m, €)X (7" (y, €))
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for all (z,y) € Sk x Qk and (I,m) € K x I'x. Now, obviously, ||@,m||2 =1 for
all (I,m) € K x T'g. Next, for (I1,m1), (I, ms) € K X 'k, we obtain

<¢l1 mis (blz m2
_ / / ) (my, )2 (y, €)) - x(r% (e, )72 (y, €)) dy da
Sk J Qg

- / (7@, (my, €7@, (i, ¢)) da - / Wy, P ) dy.

Using [HR63, Lemma 23.19] (compare the proof of Proposition 5.1), we obtain
/ X(Tl(l )(y7 6)71(22) (y_17 6)) dy = 5l1,l2'
Qg
Moreover, for I, = Iy,
/ X(Ta(jz_)l (mla 6)7—;52_)1 (mz_l, 6)) d./,C = / X(Tz(Z—)l (mlmgl’ e)) d:L-
SK SK

This proves the equivalence of (i) and (ii). O

6. SOME SPECIAL CASES

Here we focus on some classes of examples of locally compact groups whose
Zak transform is a Hilbert space isomorphism.

6.1. The case 73" (-,e) = Id; for all z € G. One important class of groups
are those locally compact groups G, for which the associated action 7 (compare

(I)) satisfies 7251)(-, e) =1dy, for all z € G. It will turn out that, if we want (II)
to be satisfied, this condition forces G to be abelian. Moreover, we introduce
conditions which are easier to check and which imply that the associated Zak
transform is a Hilbert space isomorphism.

Now, for the remainder of this subsection, let G be a locally compact group
and K a uniform lattice in G. Further, suppose that there exist locally compact
abelian groups L and Z and some action 7 : G — Aut(L x Z) such that
Z(G %, (L x Z)) = Z and such that 78 (-,e) = Idy, for all z € G. Then,
obviously, the map y 7',51) (y,e), L — L, is an isomorphism for each k € K.
This implies (I). In addition, suppose that 'k is a uniform lattice in L. Let
Sk and Qg be relatively compact fundamental domains for K in G and for
'k in L, respectively (compare Lemma 2.1).

The following basic lemma, which follows immediately from Lemma 4.1 (ii),
will be used often throughout the next proofs.

Lemma 6.1. For each y € L, the map
T — ’7'3(32)(:1/,6), G— Z,

1s a homomorphism.
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The next proposition shows that in this case the action is constant on cosets
of the commutator subgroup of G. Thus it is indeed an action of G modulo
its commutator subgroup, hence of an abelian group.

Proposition 6.2. Let [G,G] denote the commutator subgroup of G. Then
7:G/|G,G] = Aut(L x Z).
Proof. Let y € L and let h, : G — Z be defined by
hy() = 72 (5, ).

By Lemma 6.1, h,, is a homomorphism. Since Z is abelian, we obtain h,(z) = e
for all z € [G, G]. Using Lemma 4.1 (i), this implies

(v, 2) = (y, 7P (y, 2)) = (y,2) forallz € [G,G), (y,2) € L x Z.
This proves the claim. O
Corollary 6.3. Let x € Z be such that (1) holds. Then G is abelian.

Proof. Towards a contradiction, assume that G is non-abelian. This implies
that |G, G], the commutator subgroup of G, is not trivial. By Proposition 6.2,

x(1?(y,e)) =1 for all z € [G, G| and y € L. This contradicts (II). O

In the special situation discussed here it is easy to check whether condition
(IT) holds.

Proposition 6.4. Let x € 7. Then the following conditions are equivalent.

(i) (II) holds.
(11) S(LX) = {6}

Proof. Note that, for x € 2,
Suy ={r €G:x(P(y,e)) =1 for all y € L}.
Now the claim follows from Lemma 6.1. O
Finally, we investigate when the set
{(z.y) = x(r 2 (m, ))x(1” (y,¢)) : (1, m) € K x T’}
is an orthonormal basis of L?(Sx x Q).

Proposition 6.5. Let y € 7 be such that (IT) holds. Then the following
conditions are equivalent.

(i) The set

{(z,y) = X2 (m, e))x(7P (y,€)) : (I, m) € K x T}

is an orthonormal basis of L?(Skg x Q).
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(ii) For eachm € ', m # e, the character on G defined by x — X(T;SZ) (m,e))
s non-trivial and we have

{(@,y) = x( 2 (m, ))x(7P(y,e)) : (I, m) € K x T}

= A(K,Q) x ATk, L).

Proof. Let m € ', m # e. Notice that, by Corollary 6.3, G is abelian. By
Lemma 6.1, the character z — X(Tf) (m,e)), G — T, is indeed a character on
G/K. Hence, using [HR63, Lemma 23.19] (compare the proof of Proposition

5.1) and the normalization of the measure on Sk for Proposition 5.1, we obtain

/ X(Tm(?_)1 (m,e))dx =0
Sk

if and only if the character mentioned above is non-trivial. This implies that
the set in question is an orthonormal system in L?(Sk X Q) if and only if, for
each m € T'x, m # e, the character = — (7 (m, €)) is non-trivial (compare
Proposition 5.3 and its proof).

Now the map
(z,y) = x(72 (m, )X (7 (y,€)), G x L —T,

is a character on G x L by Lemma 6.1 and belongs to A(K,G) x ATk, L).
A(K,G)x A(Tk, L) is an orthonormal basis of L?(Sk x Q). Applying Propo-
sition 5.3 once more finishes the proof. O

6.2. Locally compact abelian groups. Let GG be a locally compact abelian
group which contains a uniform lattice K. We define L, Z and 7 b}/f\ L := G,
Z:=Tand 7:G — Aut(G x T), 75(w, 2) := (w, 2w(z)). Let x € T = Z be
defined by x := 1. Since the situation discussed here is a special case of the
one studied in Subsection 6.1, it is easily checked that (I) and (II) are fulfilled.
Hence the canonical Zak transform for a locally compact abelian group is a

Zak transform in the sense of Definition 3.2. Furthermore, we obtain
'y = {ye@: X(T,SQ)(’y,e)) =1 forall ke K}
= {ye@G:yk)=1 forallke K}.
This implies that in this case the set I'x is just the annihilator of K in G.

6.3. Connected and simply connected 2-step nilpotent Lie groups.
In this subsection we intend to define a Zak transform for all connected and
simply connected 2-step nilpotent Lie groups. As a general reference to the
theory of connected and simply connected 2-step nilpotent Lie groups and Lie
algebras we mention [CG90] and [HN91].

Concerning the existence of uniform lattices in connected and simply con-
nected nilpotent Lie groups, the following famous result of Malcev (see [Rag72,
Theorem 2.12] and [Mal49]) provides a complete answer.
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Theorem 6.6. Let G be a simply connected nilpotent Lie group and let g
denote its Lie algebra. Then the following conditions are equivalent.

(i) G admits a uniform lattice.
(ii) g admits a basis with respect to which the structure constants are rational.

Hence let G be a connected and simply connected 2-step nilpotent Lie group
such that its Lie algebra g admits a basis with respect to which the structure
constants are rational. This is not very restrictive as it is shown in [Nie83].
Furthermore, let K be a uniform lattice in G and let Sk be a relatively compact
fundamental domain for K in G whose existence is guaranteed by Lemma 2.1.

In the following we present an example of locally compact abelian groups L
and Z and some action 7 such that the Zak transform associated with K, L,
Z, T and x is a Hilbert space isomorphism.

First, recall that the Baker-Campbell-Hausdorff formula defines a group-
multiplication * on g. Since G is a simply connected nilpotent Lie group, G is
isomorphic to (g, *). Next let {X1,...,X,} be a fixed basis of g with respect
to which the structure constants are rational and let {X7,... X} be the
dual basis of g*. Now we may identify g* with R® with respect to this basis.
Further, let exp : g — G denote the exponential map.

For the remainder of this subsection, let L = R"” and Z = R and let x € R*.
Furthermore, let Ad* denote the coadjoint representation of G on g*. Recalling
the preceding paragraph, we may define 7 : G — Aut(L x Z) by

ny ) = Gy + AdL(w), 2 + (@,9))

Lemma 6.7. In the above situation (I) and (II) hold.

Proof. Note that, for proving (I), it remains to show that the map y +—

T,Sl)(y,e), R* — R", is an isomorphism for all £ € K. For all X,Y € g
and [ € g*, we obtain

(Adgey xD)(Y)) = l(Ad(exp x)—1Y) = I{(=X YV x X) = (Y + [V, X]).
This implies
1 . 1
S+ Az DY) = LY + [V, X))
Next, fix some X € g and define for [ € g*, ®;, ¥, € g* by
1 1
o,(W) =1(W + i[W’ X]) and Y,(W)=I1(W — §[W’ X)).

It is easily checked that the map ¥ : g* — g*,l — ¥, is the inverse of
®: g — gl — ®. Moreover, both maps are continuous. Thus ® is an
isomorphism. By definition of 7, this proves (I).

Moreover, notice that

z = 2™XE@) G = (g, %) — R,

is injective for all x € R, x # 0. Thus also (II) holds. O
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Next we consider the subgroup I'x of R".
Lemma 6.8. I'x is a uniform lattice in R™.

Proof. First, A(K, ]1/@) is discrete if and only if for each pair of elements (u, v) €
R™ x (R*\{0}) there exist A € R and k € K such that (u,k) + \(v, k) & Z.
This is equivalent to the fact that for each v € R*\{0}, there exists k € K

such that (v,k) # 0. Hence A(K ,]1/@) is discrete if and only if K contains a
basis of R". .

Secondly, A(K,R") is cocompact if and only if there exists a basis {vy, ... ,v,}
of R” such that (v;,k) € Z for all 1 < ¢ < n and k£ € K. Now since

A({v1, .- ,unt, ]1/@) = A((vy, ..., )z, ]1/@), we obtain the following. A(K, ]1/@)
is cocompact if and only if there exists a uniform lattice J in R® such that

(x,k)y € Z for all z € J and k € K. This in turn is equivalent to the fact that

there exists a uniform lattice J in R™ such that K C A(J, ]l/@)
The claim follows from Theorem 6.6. O

Let Qx be a relatively compact fundamental domain for 'y in L (compare
Lemma 2.1). It remains to check whether the set

{(@,y) = X2 (m, ))x(7P(y,e)) : (I, m) € K x T}

is an orthonormal basis of L*(Sk x Q).

Lemma 6.9. The following conditions are equivalent.
(1) The set

{(2,9) = x(7, 2 (m. )x(7” (. €)) - (1m) € K x T}
is an orthonormal basis of L*(Sk x Q).
(i) K is a uniform lattice in (g,+).
Proof. Let I:{ = A(FK,]I/@). By Lemma 6.8, ' is a uniform lattice in R",
hence also K is a uniform lattice in R". Further, let Sk be some relatively
compact fundamental domain for K. Notice that, by the proof of Lemma 6.8,
we have K C K. Moreover, it is well-known that
{(@,9) = x(7; 2 (m, )x(7” (v, €)) - (1m) € K x T}
is an orthonormal basis of L?(Si x Qk). Thus the set

{(@,9) = x(7, 2 (m, )x(7” (v, €)) - (1m) € K x T}
is an orthonormal basis of L?(Sx x Q) if and only if K = K. This in turn is
equivalent to (ii). O
The previous results yield the following theorem.
Theorem 6.10. (i) The Zak transform Z : L?(G) — L?(Sk x Q) associ-
ated with K is an isometry.

(ii) Suppose that K < (g,+). Then the Zak transform Z : L*(G) — L*(Sk X
Qx) associated with K is a Hilbert space isomorphism.
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Proof. This follows immediately from Lemma 6.7, Lemma 6.8 and Lemma 6.9
applied to Proposition 5.1 and Theorem 5.2. O

Now we investigate whether there exist uniform lattices in G which are
subgroups of (g, +). The next proposition shows that there indeed exist both
uniform lattices which are subgroups of (g, +) and which are not.

Proposition 6.11. There exist uniform lattices K1 and Ky in G such that
Kl 7< (g,+) and KZ < (ga +)

Proof. Let {X1,...,X,} be a basis of g with respect to which the structure
constants are rational. Therefore, there exist pfcj €7, q,ij eN 1<14,5,k<n,
such that
n ij
X, X1 =3 "X, (1<ij<n).
k=1 9k

Define r, € Q, 1 < k <n, by
_ged{pf :1<i,j<n}
i lem{qy : 1 <i,j <n}

Further, let Y,...,Y; € {3p_, lere Xk : I € Z}, 1 < s < n, be a basis of g,
the commutator algebra of g, such that

(Yr,...,Y)z = {ZlkaXk lk€ZIng'.
k=1
Without loss of generality we can assume that {X;,... , X, Y1,..., Y} isa

basis of g.
We define K; C G by

n—s S 1”—5
Kioom (o miXt Yo%+ 5 3 mmy (X X;) sl € 2

i=1 j=1 i,j=1

1<]

forall1<i<n-—s,1<j<s}

First, we are going to prove that K; < (g, ). Note that this implies K; < G.

Let mg,mj, 15,05 € Zforall1 <i<n—s5,1<j<s. Then

i=1 j=1

ij=1
1<J

o [ o+ 1Y mmix X
i=1 j=1

i,j=1
1<J
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n—s S 1 n—s
= Z(m, + m;)XZ + Z(lj + l;)Y} + 5 Z(mzm] + m;m;)[X,, Xj]
i=1 j=1 zzj<:j1
1 n—s
+§ Z(mzm; —mym;)[Xi, X]
ziy<=jl
= > (mi+m)Xi+ Y (4 +1)Y; =Y mim[X;, X]
=1 3=1 ij=1
1<)
1 n—s
*3 Z(mi +my) (mj +m})[Xi, X)]
ii=1
1<J

belongs to K, since

n—s n n—s pij
> mimg[Xi, Xjl = | Y mimy s | Xi

Q=1 k=1 |i4,j=1 dx
1<j 1<j

n
€ {ZlkaXk € Z}ﬂgl = <Yi, ,Y;)Z.
k=1
Obviously, this is even a uniform lattice in G.

To prove K; £ (g,+) assume, towards a contradiction, that K; < (g, +).
Let u,v € {1,...,n} be arbitrary but fixed. This implies that X, + X, belongs
to Ky, since X,,, X, € K;. Hence there exist m;,l; € Zforalll <i<mn-s,1<
j < s, such that

n—s S 1 n—s
=1 j=1 ig=1
1<J

Since {X1,..., X, 5, Y1,..., Y} is a basis of g and {Y7,...,Y,[X;, X;]: 1<
i,j <n} C g, we obtain
my=my,=1and m; =0foralll <i<n-—s,i#u,v.

Thus there exist [; € Z for all 1 < j < s, such that

’ 1
> LY+ 5Xu, X)) =0.
7j=1
But, by the choice of r, there exist u,v € {1,...,n} such that

n

1 pwv
Z_%Xk ¢ <}/13 aYS)Za
k=1 2 q
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a contradiction.
Now we turn to the set Ky C G defined by

n—s 1 S
K, = {ZmiXi—FEleYj:mi,lj €Zforalll <i<n-—s1<j<s}
i=1 j=1

For mg,my, 1;,l; € Z,1<i<n—-s1<j<s,

(Z m; X; + % > zjyj) % (Z miX; + % > z;xg)
i=1 j=1 i=1 j=1

1 1
= 2:(mZ + m;)X; 3 Z(l]’ +15)Y; + 3 Z(mimg — mym;)[X;, X]
i=1 j=1 ij=1
1<J
belongs to K5 by the same argument as above. This implies Ko < G. Moreover,
K5 is also a uniform lattice in (G. Notice that K, coincides with the lattice in

g generated by {X1,..., X, %Yl, e ,%Y;} Thus K5 < (g,+). O

Remark 6.12. Let G = R and K = Z. Then the action 7 defined here yields
the classical Zak transform.

The action 7 seems to be defined arbitrarily, but its definition is quite natural
as we will see in a moment. Recall that the classical Heisenberg group can
be constructed using the so-called position and momentum operator. These
operators together with the identity operator generate a Lie algebra and then
the classical Heisenberg group is defined to be the associated Lie group [Fol89).
This construction may be applied to a more general setting, namely when R
is replaced by an arbitrary connected and simply connected 2-step nilpotent
Lie group G. This was done by Folland [Fol94, Section 2]. In the following
paragraph we state the main steps of the construction, since we will use them
thereafter. B

Let {Xi,...,X,} be a basis of g. Moreover, let ¢/ € R, 1 <4i,j,k <mn, be
defined by

(X, Xj] =) ¢/X; foralll<i,j<n.
k=1

As mentioned in the beginning of this subsection we may identify G with
(g,%). Let S(G) denote the class of Schwartz functions on G. The operators
Q1,-..,Qn : S(G) — S(G) defined by

Qif(xy,...,xn) =xif(z1,...,2,), 1 =1,...,n,
will replace the position operator. Moreover, the operators P, ..., P, : §(G) —
S(G) defined by

n
=1

) 1 "L )
Pif(xy,...,z,) = 8—5(:51,... ,xn)+§z (Zcfﬁx]) 8—;;(331,... , Tp)
t k=1 \j=1
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for all 4 € {1,...,n} will play the role of the momentum operator. These
operators are derivatives, which are left-invariant, that means

PAL.f) = L(Pf) (z€G,1<i<n)
Further, let I : S(G) — S(G) be defined by
I =1Ids).

The operators {Q;, P;, I : 1 < i < n} generate a 3-step nilpotent Lie algebra b
with

[P, P = ) /P foralll <i,j<n,
k=1
I ;. ,
(P, Qi] = I-I—Ekz_:lci-“Qk foralll1 <i<n and

I g
[P, Q5] = §ZC§ZQ1€ forall 1 <14,j <n,i#j.
k=1

By the Baker-Campbell-Hausdorff formula, the Lie group associated with § is
isomorphic to h as a set endowed with the following group multiplication

(Zl“kpk +Zkak +ZI> * (focpk +Zy2Qk +Z'I>
k=1

= Z(zk—{—xk—{— me' ” Pk+Zyk+yk+ Z zyj y] )Q
k=1 2,j=1 3,j=1
n

1 1
+(z+ 2"+ 3 Z(xzyé — yix;) + 3 Z (yh — yr)zizlicd )1
=1

1,J,k=1

From the preceding paragraph we see that g = (P,..., P,) is a subalgebra
of h. Moreover, § is even a semidirect product, where g acts on (Q1, ... ,Qn, I).
Let x1,... ,Zn,Y1,--- ,Yn,2 € Rand define X, Y e hby X =21 P +...+2,P,,
Y =y1Q1+...4ynQn+2I. Then the action 7 of g on (Q1,... ,Qn,I) is given
by

x(Y) = X*Y*(—X)
= Zyk-i- Zx,y] )Qk + (2 + (z, ).

1,j=1

We claim that

1 *
i(y +Adz(y)) = (wk + 5 Z 2iY5C5 ) 1<k<n

5,5=1

forallz € G, y € R".
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For this, let X = 1P + ... + 2, Py, W = w P, + ... +w,P, € g and let
l=wyP+...+y,P; € g*. Then, by using the proof of Lemma 6.7,

1
(l +Ad, x W) = I(W + S [W, X])
k=1 i,j=1
n 1 n y
= Z(wkyk + 3 Z CF Yk Wi
k=1 ij=1
= D e+ Z TiYicy
k=1 1,j=1
= I(w),
where
l~ yk + Z xzy] kz P*
k=1 2,j=1
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