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Over the past decade, deep learning’s widespread success led to its increasing adoption in various fields,

including high-stakes and legally sensitive domains such as autonomous systems, finance, and healthcare. To

mitigate potential negative effects and increase accountability, regulators have proposed legal frameworks

such as the European AI Act. The necessity of these regulations is underlined by the lack of trustworthiness in

deep learning, describing the fact that comprehensible, safe, and reliable methods are missing. Consequently,

legal requirements also propose measures to increase these aspects. We present a mathematical viewpoint

based on computing theory to connect technical with legal requirements. In particular, it allows us to assess
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if a certain algorithmic implementation on a given hardware is in principle capable of meeting trustworthy

demands and thereby legal requirements. Subsequently, we apply this mathematical framework to analyze

two tasks closely associated with deep learning – namely, classification and learning. A key finding is that

certain conditions on the problem description determine the theoretical realizability of trustworthiness in

these scenarios.

CCS Concepts: • Theory of computation → Machine learning theory; Computability; • Applied
computing→ Law; • Computing methodologies → Neural networks.
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1 Introduction

We have witnessed groundbreaking advancements in various fields with the rise of deep learning

technologies [55, 56, 59, 60]. The performance of deep neural networks makes them the go-to

strategy to tackle a multitude of problems in relevant applications such as image classification,

speech recognition, and game intelligence, as well as more recent developments including image

and sound synthesis, chat tools, and protein structure prediction, to name a few [1, 34, 47, 50, 54,

68, 71]. This underlines the expanding significance of the evolving deep learning models, making

erroneous or incomprehensible decisions of these systems impactful on societal and individual

levels. Consequently, regulators began to propose legal frameworks to mitigate unforeseen and

unwanted effects of deep learning. Notable among these are the European AI Act [37] and the G7

Hiroshima Leaders Communique [41], which set forth guidelines and regulations that AI systems,

including deep learning models, should satisfy. The European AI Act, in particular, lays out a clear

legal framework that might serve as a blueprint for further regulatory proposals across the globe.

Onemight argue that such frameworks are crucial since, despite the impressive power [32, 40, 48]

and performance of deep learning, it typically comes at the cost of downsides such as black-box

behavior and non-interpretability, as well as instability, non-robustness, and susceptibility to

adversarial manipulation [2, 3, 5, 25, 43, 46, 53, 65, 69, 78]. In certain applications, the highlighted

drawbacks, informally summarized by a lack of trustworthiness [17, 38], are tolerable or even

avoidable by a human-in-the-loop approach [75]. However, increasing the autonomy of deep learn-

ing systems without introducing potentially catastrophic failure modes poses a great technological

challenge, especially in safety-critical or high-responsibility tasks such as autonomous driving.
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To avoid these scenarios proposed legal regulations stress the importance of trustworthiness.

In particular, they try to ensure trustworthiness via abstract principles such as transparency,

accountability, and right to explanation, which describe requirements for traceability of AI-based

decision-making as well as responsibilities and rights for the provider and user of said systems

[35, 36]. Nevertheless, from a technical point of view, it is not clear how to satisfy and implement

these demands. Ideally, deep learning systems would provide ‘hard’ performance guarantees, i.e.,

verifiably correct results, which by design substantiate trustworthiness. A less restrictive approach

would only ask for deep learning models that recognize whenever they cannot correctly solve a

given task or instance. Thus, erroneous responses would be avoided by enabling the system to

stop and ask (a human) for help, thereby implementing its trustworthiness. Finally, by disclosing

the factors and their interplay which leads to a decision, the trustworthiness of a deep learning

system could be increased in foresight or assessed in hindsight. Now, the crucial question is to

what degrees these approaches can be implemented in practice.

Different concepts exist to tackle this problem on various levels. In this paper, we take the

viewpoint of computing theory, which aims to mathematically model computation and answer

questions about the algorithmic solvability and complexity of given problems. The connection

between computing theory and legal frameworks promoting trustworthiness is the following.

Computations, e.g., prescribed by an algorithm such as deep learning, are performed on specific

hardware platforms. Computing theory then provides exactly the mathematical framework to

formalize the possible hardware platforms. Therefore, we can study if a certain implementation

on a given hardware is in principle capable of meeting trustworthy demands and thereby legal

requirements.

1.1 Impact

Next, we provide a high-level overview of our findings and their impact on legal requirements

concerning trustworthiness in deep learning. The most commonly studied model of computation is

the Turing machine [70], which is an idealized version of real-world digital computers neglecting

time and space constraints. The feasibility and properties of the trustworthiness approaches from

the previous paragraph have been studied by translating them into the computability framework.

It turned out that under certain circumstances they are equivalent on digital hardware [17].

We further deepen this analysis by showing that it is infeasible in this computing model to

establish trustworthiness (in the described sense) in deep learning in certain settings. This implies

that theoretical trustworthiness guarantees cannot be provided for digital computations in this

setting. Consequently, potential legal requirements such as transparency and right to explanation

may be impossible to satisfy on digital hardware. We also highlight the importance of the ground

truth description of the considered process in these results. Ground truth description refers to
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the mathematical representation of a problem and acts as a blueprint for a potential algorithm.

A key finding is that the algorithmic implementation of decision processes for analog (physical)

processes on digital hardware does not satisfy trustworthy requirements.

However, these results also need to be put into perspective. First, as already highlighted, the

results concerning the impossibility of trustworthiness guarantees heavily rely on the ground

truth descriptions of the given task. Certain representations of the ground truth problem avoid the

impossibility result. Moreover, by taking into account the intended scope of a task, the ground truth

description and the feasibility of trustworthiness may vary; further details are discussed in Section

3.2. Second, the applied notion of trustworthiness based on verifiable correctness via computability

is rather strict. Other notions of trustworthiness are more amenable to practical implementations

and choosing an appropriate one is highly relevant; for a more in-depth discussion of this topic,

we refer to [17].

1.2 Outline

In Section 2, we introduce the applied formalisms, including neural networks, as the main

workhorse of deep learning, and computing theory. Moreover, we provide a short overview of ex-

isting work at the intersection of computability and trustworthiness. Subsequently, we present our

main results concerning failures of trustworthiness from the computability perspective in Section

3.1 and conclude by studying strategies to cope with the failures. The proofs of the statements are

provided in Appendix D.

2 Preliminaries

2.1 Computability Theory

We first establish some basic concepts and notation used in the following. Turing machines provide

the means to study digital computations [70]. We distinguish between two different modes of

computations – problems on continuous and discrete domains. The former typically represents

an idealized scenario whereas the latter treats a setting closer to the actual realization of digital

hardware. For instance, complex physical processes – a realistic application scenario for deep

learning techniques due to their increasing capabilities – may be represented by a model with

continuous state and parameter space despite the eventual implementation on digital hardware.

The distinction is nevertheless crucial since the underlying computability concepts depend on the

input domain and the associated ground truth solution of the tackled problem.

In recent years, there has been an increased interest in the computability of continuous problems,

studying the capabilities of inherently discrete digital computers when employed in the real, i.e.,

continuous, domain. We only sketch the most important ideas and refer to Appendix A for a more
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thorough introduction. The key concepts in this framework are computable real functions; here we

present two related definitions (see [4, Appendix 2.9] for an overview). Borel-Turing computability

can be seen as the standard intuitive notion of computation, i.e., an algorithm approximating a

given function to any desired accuracy. On the other hand, Banach-Mazur computability is the

weakest common definition of computability meaning that a function is not computable in any

usual sense if it is not Banach-Mazur computable.

Definition 2.1. Let 𝐷 ⊂ R𝑑
. A function 𝑓 : 𝐷 → R𝑚

𝑐 is

(1) Borel-Turing computable if there exists a Turing machine𝑀 such that, for all 𝒙 ∈ 𝐷 ∩ R𝑑
𝑐 and

all representations (𝒒𝑘 )∞𝑘=1 of 𝒙 , the sequence (𝑀 (𝒒𝑘 ))∞𝑘=1 is a representation of 𝑓 (𝒙);
(2) Banach-Mazur computable if for all computable sequences (𝒙𝑘 )∞𝑘=1 ⊂ 𝐷 ∩ R𝑑

𝑐 the sequence

(𝑓 (𝒙𝑘 ))∞𝑘=1 is also computable.

Remark 2.2. Informally, a representation refers to a computable (rapidly converging) Cauchy

sequence and a sequence is computable if a representation (via computable Cauchy sequences)

of the sequence exists (see Appendix A). The set of real numbers that possess a representation,

the so-called computable real numbers, are denoted by R𝑐 . It is well known that all Borel-Turing

computable functions are also Banach-Mazur computable, and computable functions in either

sense are continuous – that is, continuous on R𝑐 with the inherited topology [4]. For simplicity,

we often refer to “computable” functions rather than “Borel-Turing computable”, as this is our

framework’s standard version of computability. We explicitly specify whenever we apply the

notion of Banach-Mazur computability.

By formalizing problems in terms of functions, we can analyze the algorithmic solvability of the

underlying problem. In particular, Borel-Turing computability (theoretically) guarantees verifiable

correct results with error control and, thus, bridges the gap to various trustworthiness notions. A

technical and detailed depiction of this link is presented in [17]. The key take-away is however

that we may study computability as a prerequisite to trustworthiness. In this work, we proceed

by analyzing two types of algorithmic failure, whereby we associate in the real domain the more

intuitive term “algorithm” with “Borel-Turing computable function”:

• We say that a problem suffers from Type 1 failure of computability if it has no computable

solver, that is, for any algorithm there exists an instance of the problem to which the algorithm

provides an incorrect solution.

• A problem is subject to Type 2 failure of computability if a solver cannot be algorithmically

found based on data, that is, for any learning algorithm Γ there exists a problem instance 𝑠

such that for any dataset X the output Γ(X) of the algorithm is not a correct solver of 𝑠 .

Manuscript submitted to ACM



6 Holger Boche, Vit Fojtik, Adalbert Fono, and Gitta Kutyniok

Note that Type 1 as a special case of Type 2 failure is more fundamental since a (computable)

solution cannot be learned from data if it does not exist. However, we show in Section 3.1 that

Type 2 free of Type 1 failure exists in the context of training neural networks. Here, the problem

instance is an unknown function and the goal of the learning algorithm is to find a neural network

that represents the sought function based on samples.

2.2 Neural Networks

From a mathematical perspective, a neural network is simply a structure with a certain architecture

and an associated realization.

Definition 2.3. Let 𝐿 ∈ N. An architecture of depth 𝐿 is a vector 𝑆 := (𝑁0, 𝑁1, . . . , 𝑁𝐿−1, 𝑁𝐿) ∈ N𝐿+1
.

A neural network with architecture 𝑆 is a sequence of pairs of weight matrices and bias vectors
((𝐴ℓ , 𝒃ℓ ))𝐿ℓ=1 such that 𝐴ℓ ∈ R𝑁ℓ×𝑁ℓ−1

and 𝒃ℓ ∈ R𝑁ℓ
for all ℓ = 1, . . . , 𝐿. We denote the set of neural

networks with architecture 𝑆 by NN(𝑆) and the total number of parameters in the architecture

by 𝑁 (𝑆) := ∑𝐿
ℓ=1(𝑁ℓ𝑁ℓ−1 + 𝑁ℓ ).

Remark 2.4. Typically, we consider 𝑏𝐿 := 0 and denote the input dimension 𝑁0 := 𝑑 . Also,

throughout this paper, we focus on the case 𝑁𝐿 = 1 for simplicity of presentation, even though the

results can be reformulated for the general case.

The architecture and the parameters then induce the network’s input-output function, the

so-called realization.

Definition 2.5. For Φ ∈ NN(𝑆), 𝐷 ⊂ R𝑁0
, and 𝜎 : R → R denote by 𝑅𝐷

𝜎 (Φ) : 𝐷 → R𝑁𝐿
the

realization of the neural network Φ with activation 𝜎 and domain 𝐷 , that is,

𝑅𝐷
𝜎 (Φ) := 𝑇𝐿 ◦ 𝜎 ◦ · · · ◦ 𝜎 ◦𝑇1 |𝐷 ,

where Φ = ((𝐴ℓ , 𝒃ℓ ))𝐿ℓ=1 and 𝑇ℓ (𝒙) := 𝐴ℓ𝒙 + 𝑏ℓ , ℓ = 1, . . . , 𝐿.

Parameters of neural networks are almost always the result of a learning algorithm. Let us briefly

recapitulate the learning process since it pertains to our discussion on computability. A learning

algorithm, typically some version of stochastic gradient descent, receives as input a dataset of

sample pairs (𝒙𝑖 ,𝒚𝑖)𝑛𝑖=1, which are usually sampled from some underlying goal function 𝑓 , that

is, 𝑓 (𝒙𝑖) = 𝒚𝑖 . The aim of learning is to find a neural network Φ optimizing some loss function

L : NN(𝑆) ×
(
R𝑁0 × R𝑁𝐿

)𝑛 → R. Thus we can view the learning algorithm as a Borel-Turing

computable function Γ : R𝑛 (𝑁0+𝑁𝐿 )
𝑐 → R𝑁 (𝑆 )

𝑐 . To distinguish between networks with real and

computable parameters, we introduce the notation NN𝑐 (𝑆) for the set of neural networks with
architecture 𝑆 and parameters in R𝑐 .
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Definition 2.6. Given 𝑛 ∈ N, 𝑓 : R𝑑 → R𝑚
and 𝐷 ⊂ R𝑑

, we denote by D𝑛
𝑓 ,𝐷

the set of all datasets
of size 𝑛 generated from 𝑓 on the input domain 𝐷 , that is,

D𝑛
𝑓 ,𝐷

:=
{
(𝒙𝑖 , 𝑓 (𝒙𝑖))𝑛𝑖=1 ∈ (R𝑑 × R𝑚)𝑛 | 𝒙𝑖 ∈ 𝐷, 𝑖 = 1, . . . , 𝑛

}
.

For a neural network Φ ∈ 𝑁𝑁 (𝑆) with activation 𝜎 we denote for short D𝑛
Φ,𝐷 := D𝑛

𝑅𝐷
𝜎 (Φ),𝐷 .

2.3 Previous Work

Non-computability has been a point of high interest in algorithmic computation since the results of

Church [28] and Turing [70]. For continuous problems, the non-existence of a computable solver

(Type 1 failure) has been shown in various applications including optimization, inverse problems,

signal processing, and information theory [8, 13, 15, 16, 18–22, 24, 57].

In the context of neural network training, ‘hardness’ results have a long tradition going back to

[12, 72], where it was shown that the training process can be NP-complete for certain architectures.

The infeasibility of algorithmically learning an existing computable neural network (Type 2 failure)

in a continuous setting has been shown for the specific case of inverse problems in [29] and

classification problems in [9]. Furthermore, [57] showed that no algorithm can reach near-optimal

training loss on all possible datasets even for elementary neural networks. Further properties

of deep learning from the computability perspective concerning adversarial attacks, implicit

regularization, and hardness of approximation were studied in [9, 42, 74]. A different context of

learning an existing neural network has been studied in [10], where difficulties in the form of

an explosion of required sample size were shown, rather than algorithmic intractability. Similar

results concerning the sample complexity were established in the framework of statistical query

algorithms in [26].

Understanding the inner workings of deep learning and enabling the user to comprehend their

decision-making points out a way to establish trustworthy methods. A key challenge is to increase

the interpretability of deep learning algorithms, which is typically hindered due to their black-

box behavior [51, 62, 65]. Another approach relies on verifying the accuracy and correctness of

deep learning methods without explicitly tracing internal computations [11, 52, 61, 77]. However,

the findings in [7, 17] indicate that certifying the accuracy and robustness of deep learning in

the computability framework is challenging if at all possible in certain scenarios, which poses

challenges for future applications. A potential direction to cope with this issue was considered in

[14], where certain inverse problems that are not computable on digital computers were shown

to be computable in a model of analog computation enabling implicit correctness guarantees in

theory.
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3 Main Results

The key findings in this paper extend the theory of computability in deep learning and highlight

the importance of ground truth descriptions. As discussed in Section 2, we apply the notion of

Borel-Turing computability to assess the attainability of trustworthiness as a surrogate for potential

legal demands. In particular, by characterizing Type 1 and Type 2 failure of computability, we

describe conditions under which trustworthiness cannot be achieved in certain scenarios. We

establish Type 1 and Type 2 failure in two crucial aspects associated with deep learning. First,

we analyze classification tasks, a major application field of deep learning, and show in Theorem

3.1 that Type 1 failure arises in classification on the real domain. Subsequently, we study the

feasibility of training neural networks – having reliable, flexible, and universal learning algorithms

is essential to the success of deep learning. Theorem 3.2 shows that no general learning algorithm

applicable to all (real-valued) networks exists implying that Type 2 failure is unavoidable in this

scenario.

Can we avoid or overcome these Type 1 and Type 2 limitations of computability? We analyze

different approaches to either reformulate or relax the tackled problems thus making them less

amenable to computability failures. First, the effect of incorporating a reasonable error mode in

the computation is evaluated, but it turns out that this strategy does typically not alleviate Type 1

failure in the classification setting; we refer to Appendix C.1 for more details. Subsequently, we

investigate the impact of moving the problem from the real to a discrete space via quantization.

In quantization, real numbers are approximated by a discrete set of rationals since access to real-

valued data and parameters with unlimited precision can not be expected in many applications

[6, 44, 49, 67]. In perhaps the simplest quantization paradigm, fixed-point quantization, real

numbers are replaced by rational numbers with a fixed number 𝑘 of decimal places in some base

system 𝑏, i.e., algorithms strictly operate on the set 𝑏−𝑘Z. Naturally, the question arises of how

these quantization techniques affect the properties of algorithmic computations, including the

limitations of computability on continuous domains. For instance, quantized deep learning has

been a topic of interest, comparing its theoretical and practical capabilities to non-quantized

deep learning [58, 76]; in fact, the capabilities of quantized and real networks align in the limit

[23, 33, 45].

By assuming fixed-point quantization we can restrict our analysis without loss of generality to

classification problems on Z𝑑 as well as neural networks with integer parameters and data. The

concept of algorithmic computations on integers is described by recursive functions (which the

framework of Borel-Turing computable functions extends to the real domain); we refer to [30]

for more details on recursive functions and classical computability on discrete sets. In Theorems

3.6 and 3.7 we show that when considering quantized versions of the previous settings, issues of
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non-computability do not arise. However, Theorem 3.9 provides a word of caution, stating that

the act of quantization itself exhibits Type 1 failure – we cannot algorithmically determine which

quantized values faithfully represent the original (real-valued) problem. Hence, the choice of the

ground truth description can also influence the computability of a problem. How can we identify an

appropriate choice? While there is no definite answer, we want to highlight the following approach.

If we consider the underlying question in computing as “What can be (efficiently) automated?” [?
], then the ground truth description confines the answer to the considered domain. In this sense,

trustworthy algorithmic automation is not feasible if the task itself includes the quantization

process.

3.1 Computability Limitations

A classification problem is modeled by a function

𝑓 : 𝐷 → {1, . . . ,𝐶}, 𝐷 ⊂ R𝑑 , 𝐶 ∈ N,

that assigns each input 𝒙 ∈ 𝐷 a corresponding class 𝑐 ∈ {1, . . . ,𝐶}. A typical example is image

classification where the input domain 𝐷 is for instance given by 𝐷 = [0, 256]ℎ×𝑤 with [0, 256] and
ℎ,𝑤 ∈ N encoding color and size (height and width) of an image, respectively. The range [0, 256]
may also be quantized so that a discrete set such as {0, . . . , 256} represents the input domain. We

first explore the general case before returning to the quantized setting in Section 3.2.

Our first result states that a classification problem cannot be computable unless all its classes are

strictly separated. This typically does not occur in practice, where the problem and the underlying

classification task are associated with some continuous process. Therefore, performance guarantees

cannot be provided for common classification problems, i.e., Type 1 failure of computability arises.

Theorem 3.1. Let 𝑓 : 𝐷 → {1, . . . ,𝐶} be a function such that there exists 𝑖 ≠ 𝑗 ∈ {1, . . . ,𝐶} with
dist(𝑓 −1(𝑖), 𝑓 −1( 𝑗)) = 0. Then, 𝑓 |R𝑑

𝑐
is not computable.

For a proof and further details on the computability of classification problems, we refer to

Appendix B.

Next, we focus on Type 2 failure of computability, i.e., situations where a computable approxima-

tor may exist but cannot be algorithmically found based on data. We explore this phenomenon in

the context of deep learning, within a general framework by studying the learnability of functions

that can be represented by a neural network from data, independently of the concrete application.

This includes any instance of deep learning where Type 1 computability failure does not arise,

going beyond the previous context of classification.

The following theorem states that for any learning algorithm, there exist functions representable

by computable neural networks (i.e., not suffering from Type 1 failure) that the algorithm cannot
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learn from data. This implies that there is no universal algorithm for training neural networks,

even when a ‘correctly solving’ network exists. Thus, deep learning suffers from Type 2 failure of

computability.

Theorem 3.2. Let 𝜎 : R → R be a Lipschitz continuous, but not affine linear activation function,
such that 𝜎 |R𝑐

is Banach-Mazur computable. Let 𝑆 = (𝑑, 𝑁1, . . . , 𝑁𝐿−1, 1) be an architecture of depth
𝐿 ≥ 2 with 𝑁1 ≥ 3. Let 𝐷 ⊂ R𝑑

𝑐 be bounded with a nonempty interior.
Then, for all 𝜀 > 0, 𝑛 ∈ N, and all Banach-Mazur computable functions Γ : (R𝑑

𝑐 × R𝑐)𝑛 → R𝑁 (𝑆 )
𝑐

there exists Φ ∈ NN𝑐 (𝑆) such that for all X ∈ D𝑛
Φ,𝐷 and all Φ′ ∈ NN𝑐 (𝑆) with 𝑅𝐷

𝜎 (Φ′) = 𝑅𝐷
𝜎 (Φ)

we have
∥Γ(X) − Φ′∥

2
> 𝜀. (1)

Remark 3.3. The assumption that 𝜎 is not affine linear excludes none of the commonly used

activations such as ReLU, tanh, or sigmoid. Moreover, the computability assumption concerning

𝜎 is not restrictive since it guarantees a computable realization, a prerequisite for subsequent

algorithmic evaluation in usage.

As a consequence, we cannot reconstruct the original input-output function.

Corollary 3.4. Under the assumptions of Theorem 3.2, there exists no Banach-Mazur computable
function Γ : (R𝑑

𝑐 × R𝑐)𝑛 → R𝑁 (𝑆 )
𝑐 for 𝑛 ∈ N such that for all Φ ∈ NN𝑐 (𝑆) there exists a dataset

X ∈ D𝑛
Φ,𝐷 satisfying

𝑅𝐷
𝜎 (Γ(X)) = 𝑅𝐷

𝜎 (Φ).

3.2 Strategies for Failure Circumvention

First, we show that under fixed-point quantization, the negation of Theorem 3.2 holds. That is, an

algorithm exists that can re-learn the exact realization of neural networks of fixed architecture on

the training data. To that end, we introduce the set of neural networks with integer parameters.

Definition 3.5. Let 𝑆 be an architecture. Denote byNNZ(𝑆) ⊂ NN𝑐 (𝑆) the set of neural networks
with architecture 𝑆 and parameters in Z.

Now, we can formulate the exact statement about re-learning neural networks.

Theorem 3.6. Let 𝑆 = (𝑑, 𝑁1, . . . , 𝑁𝐿−1, 1) be an architecture and let 𝜎 : R → R.
Then, for all 𝑛 ∈ N there exists a recursive function Γ : (Z𝑑 × Z)𝑛 → Z𝑁 (𝑆 ) such that for all

Φ ∈ NNZ(𝑆) there exists a dataset X ∈ D𝑛

Φ,Z𝑑
with

𝑅Z𝑑
𝜎 (Γ(X)) = 𝑅Z𝑑

𝜎 (Φ).
Manuscript submitted to ACM
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Turning our attention to classification and Type 1 failure, we note that in most applications,

classification is performed on a bounded domain 𝐷 , such as in image classification described

in Section 3.1. Hence, the quantized version of the input domain is finite so any integer-valued

function on the quantized domain is computable - one can encode the input-output pairs directly

in an algorithm.

Theorem 3.7. Let 𝐷 ⊂ Z𝑑 and 𝑓 : 𝐷 → {1, . . . ,𝐶}. If 𝐷 is bounded, then 𝑓 is recursive.

Remark 3.8. Unbounded sets typically do not appear in practical quantized classification problems

since they correspond to working on an infinite domain. However, in such a scenario we cannot

provide formal guarantees on the computability of classifiers.

While these results are positive, for them to apply, a ground truth problem on a continuous

domain must first be converted into an appropriate quantized problem that approximates the

original one. However, for a non-computable ground truth problem such an algorithmic verification

contradicts its non-computability. Thus, quantization itself is a non-computable task and no

algorithmic guarantees can be provided concerning the faithfulness of the quantized problem.

Theorem 3.9. Let 𝑓 : R → R such that 𝑓 |R𝑐
is not computable and define for all 𝑥 ∈ R𝑐

ˆ𝑓 (𝑥) := 𝑓
(
⌈𝑥 − 1

2
⌉
)
.

Then, there exists 𝜀0 > 0 such that for all 𝜀 ≤ 𝜀0 the function Γ𝜀 : R𝑐 → R𝑐 given by

Γ𝜀 (𝒙) =

1, if ∥ 𝑓 (𝒙) − ˆ𝑓 (𝒙)∥ < 𝜀,

0, otherwise

is not computable.
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A Computability of Real Functions

We begin by reviewing definitions from real-valued computability theory necessary for our analysis.

For a more comprehensive overview, see, for instance, [4, 64, 73]. We also omit elementary topics

of computability theory such as recursive functions and Turing machines. Here we refer the reader

to [30].

Previous results in applied computability on the real domain introduce many different, although

partly equivalent, versions of computation and computability. We follow standard definitions

introduced by Turing [70].

Definition A.1. A sequence of rational numbers (𝑞𝑘 )∞𝑘=1 ⊂ Q is computable if there exist recursive
functions 𝑎, 𝑏, 𝑠 : N → N such that

𝑞𝑘 = (−1)𝑠 (𝑘 ) 𝑎(𝑘)
𝑏 (𝑘) .

A rational sequence (𝑞𝑘 )∞𝑘=1 converges effectively to 𝑥 ∈ R, if there exists a recursive function

𝑒 : N → N such that for all 𝑘0 ∈ N and all 𝑘 ≥ 𝑒 (𝑘0)

|𝑥 − 𝑞𝑘 | ≤
1

2
𝑘0
.

A real number 𝑥 ∈ R is computable if there exists a computable rational sequence (𝑞𝑘 )∞𝑘=1 con-
verging effectively to 𝑥 . Such a sequence is called a representation (or a rapidly converging Cauchy
name) of 𝑥 . We denote the set of all computable reals by R𝑐 .

Before defining computable real functions, we need to specify what it means for a real sequence

to be computable.

Definition A.2. A real sequence (𝑥𝑘 )∞𝑘=1 ⊂ R is computable if there exists a computable double-

indexed rational sequence (𝑞𝑘,ℓ )∞𝑘,ℓ=1 such that, for some recursive function 𝑒 : N × N → N and all
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𝑘, ℓ0 ∈ N and ℓ ≥ 𝑒 (𝑘, ℓ0), we have ��𝑥𝑘 − 𝑞𝑘,ℓ
�� ≤ 1

2
ℓ0
.

Remark A.3. All previous definitions can be extended to R𝑑
and R𝑑

𝑐 with 𝑑 > 1 by requiring that

each (one-dimensional) component or component-wise sequence is computable, respectively.

B Computability of Classification

As described in Section 2.2, the goal of deep learning is to learn a function
ˆ𝑓 : 𝐷 ∩R𝑑

𝑐 → {1, . . . ,𝐶}
based on samples (𝒙𝑖 , 𝑓 (𝒙𝑖))𝑛𝑖=1 ⊂ 𝐷 × {1, . . . ,𝐶} such that

ˆ𝑓 is close to 𝑓 with respect to a suitable

measure. Hence, a crucial question is whether
ˆ𝑓 can be obtained from an algorithmic computation

given a specific closeness condition. Equivalently, this question can be expressed in terms of

(semi-)decidability on the input domain of 𝑓 in R𝑑
if

ˆ𝑓 is expected to exactly emulate 𝑓 , i.e.,

ˆ𝑓 = 𝑓 |R𝑑
𝑐
.

Definition B.1. A set 𝐴 ⊂ 𝐷 ∩ R𝑑
𝑐 is

• decidable in 𝐷 , if its indicator function 1𝐴 : 𝐷 ∩ R𝑑
𝑐 → R𝑐 is computable;

• semi-decidable in 𝐷 , if there exists a computable function 𝑓 : 𝐷 ′ → R𝑐 , 𝐷
′ ⊂ 𝐷 ∩ R𝑑

𝑐 , such

that 𝐴 ⊂ 𝐷 ′
and 𝑓 = 1𝐴 |𝐷 ′ .

Remark B.2. The notion of (semi-)decidability can be explicitly expressed via algorithms in the

following way. The set 𝐴 is Borel-Turing decidable in 𝐷 if there exists a Turing machine𝑀 taking

as inputs representations of 𝒙 ∈ 𝐷 ∩ R𝑑
𝑐 which correctly identifies after finitely many iterations

whether 𝒙 ∈ 𝐴 or 𝒙 ∈ 𝐷 \𝐴. Similarly, 𝐴 is semi-decidable in 𝐷 if there exists a Turing machine𝑀

taking as inputs representations of 𝒙 ∈ 𝐷 which correctly identifies (after finitely many iterations)

every input 𝒙 ∈ 𝐴, but which may run forever for 𝒙 ∈ 𝐷 \𝐴.

Recall that computable functions are necessarily continuous on R𝑑
𝑐 . However, indicator functions

are discontinuous on R𝑑
𝑐 (excluding the trivial cases R𝑑

𝑐 and ∅). Thus, only sets of the type R𝑑
𝑐 ∪ 𝐵,

𝐵 ⊂ R𝑑 \ R𝑑
𝑐 , are decidable in R𝑑

. Therefore, decidability in R𝑑
is a very restrictive notion

that typically will not be satisfied by a classifier 𝑓 . Regarding semi-decidability, the following

equivalence is immediate due to the discrete image of 𝑓 . In particular, the proposition provides a

necessary condition for learning a perfect emulator
ˆ𝑓 = 𝑓 |R𝑑

𝑐
since computability is a prerequisite

for learnability.

Proposition B.3. Let 𝐷 ⊂ R𝑑 and consider 𝑓 : 𝐷 → {1, . . . ,𝐶}. Then, 𝑓 |R𝑑
𝑐
is computable if and

only if each set 𝑓 −1(𝑖), 𝑖 = 1, . . . ,𝐶 , is semi-decidable in 𝐷 .

Remark B.4. Note that if each set 𝑓 −1(𝑖), 𝑖 = 1, . . . ,𝐶 , is semi-decidable in 𝐷 , then also each set

𝑓 −1(𝑖) is decidable in 𝐷 . Therefore, for 𝑓 to be computable, 𝐷 has to have a specific structure.
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In particular, if 𝐷 ∩ R𝑑
𝑐 is a connected set homeomorphic to R𝑑

𝑐 , e.g., 𝐷 = (0, 1)𝑑 , then 𝑓 is not

computable unless it is constant on 𝐷 ∩ R𝑑
𝑐 . However, in this case, the classification problem is

itself trivial. Thus, a necessary condition for computability is that the sets 𝑓 −1(𝑖) are separated
to a certain degree. As a simple example for this type of problems consider 𝐷 = 𝑓 −1(1) ∪ 𝑓 −1(2)
with 𝐶 = 2, 𝑓 −1(1) = (0, 1) and 𝑓 −1(2) = (2, 3). Here, a simple check of whether a given input is

smaller or larger than 1.5 is sufficient to determine the associated class of the input.

From these observations follows the statement of Theorem 3.1.

C Further Strategies for Failure Circumvention

The requirement of exact emulation
ˆ𝑓 = 𝑓 |R𝑑

𝑐
of a classification function 𝑓 or exact reconstruction

of neural networks as analyzed in Section 3.1 may be too strict. In a practical setting, errors may

be unavoidable or even acceptable to a certain degree. In particular, approximation of 𝑓 |R𝑑
𝑐
via

ˆ𝑓

or reconstructing an approximate network based on an appropriate metric is a simpler task than

exact emulation or reconstruction, respectively. However, in both cases, we certainly would like

to have guarantees either in the form of a description of inputs that lead to deviations from the

ground truth or via worst/average case error bounds. Whether and to what degree such guarantees

are achievable is the subject of the following analysis.

C.1 Computable Unpredictability of Correctness in Type 1 Failure

A key observation in classification was that Type 1 failure, i.e., the non-semi-decidability of the

classes, is closely associated with the decision boundaries of the classes. Informally speaking,

the semi-decidability of classes hinges on the ability to algorithmically describe the decision

boundary so that inputs on the decision boundary can be properly classified. Therefore, identifying

these critical inputs or indicating that the computation for a given input may be inaccurate

would certainly be beneficial. Is it possible to implement this identification – a so-called exit

flag – algorithmically? In a bigger picture, related questions were already raised in different

contexts such as general artificial intelligence by Daniel Kahneman [39] or robotics by Pieter

Abbeel [31]: Can we expect algorithms (powering autonomous agents) to recognize whenever they

cannot correctly solve a given task or instance enabling them to ask (a human) for help instead

of executing an erroneous response? In other words: ‘Do they know when they don’t know?’

[27, 66] We immediately observe that this problem depends on an exit flag computation in the

computability framework. Hence, by studying exit flag computations, we can also theoretically

assess the feasibility of automated help-seeking behavior of autonomous agents in certain scenarios.

To study the posed question we do not restrict ourselves to classification functions but consider

a slightly more general framework. We formalize the problem for general real-valued functions
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𝑓 : 𝐷 → R, 𝐷 ⊂ R𝑑
. Assume we are given a computable function

ˆ𝑓 : 𝐷𝑐 → R𝑐 , 𝐷𝑐 = 𝐷 ∩ R𝑑
𝑐 ,

typically constructed by an algorithmic method to approximate 𝑓 . Our aim is to algorithmically

identify inputs 𝒙 ∈ 𝐷𝑐 such that
ˆ𝑓 satisfies

∥ 𝑓 (𝒙) − ˆ𝑓 (𝒙)∥ < 𝜀 for given 𝜀 > 0.

In other words, we ask if there exists an algorithm (a Borel-Turing computable function) Γ𝜀 : 𝐷𝑐 →
R𝑐 such that

Γ𝜀 (𝒙) =

1, if ∥ 𝑓 (𝒙) − ˆ𝑓 (𝒙)∥,
0, otherwise.

(2)

One can also further relax the complexity of the task by demanding that an algorithm Γ+𝜀 only

identifies inputs 𝒙 for which
ˆ𝑓 (𝒙) satisfies the 𝜀-closeness condition in (2), but does not neces-

sarily indicate when it does not hold. For instance, Γ+𝜀 (𝒙) may either output zero or not stop

the computation in finite time on the given input 𝒙 if ∥ 𝑓 (𝒙) − ˆ𝑓 (𝒙)∥ ≥ 𝜀. If 𝑓 is a computable

function, we can construct Γ𝜀 for any 𝜀 > 0. Hence, more interesting problems arise when 𝑓 is not

computable. However, choosing 𝜀 large enough, certainly still entails the existence of Γ𝜀 if 𝑓 is, for

instance, a bounded function. Therefore, the relevant cases are associated with non-computable 𝑓

and appropriately small 𝜀. By associating Γ𝜀 and Γ+𝜀 with classification functions, we can apply

Proposition B.3 to derive the following result.

Proposition C.1. Let 𝑓 : 𝐷 → R, 𝐷 ⊂ R𝑑 and assume that ˆ𝑓 : 𝐷𝑐 → R𝑐 , 𝐷𝑐 = 𝐷 ∩ R𝑑
𝑐 , is a

computable function. Define for 𝜀 > 0 the set

𝐷<
𝜀 :=

{
𝒙 ∈ 𝐷𝑐

�� ∥ 𝑓 (𝒙) − ˆ𝑓 (𝒙)∥ < 𝜀

}
Then the following holds:

(1) The function Γ𝜀 : 𝐷𝑐 → R𝑐 given by

Γ𝜀 (𝒙) =

1, if ∥ 𝑓 (𝒙) − ˆ𝑓 (𝒙)∥ < 𝜀,

0, otherwise,

is computable if and only if 𝐷<
𝜀 is decidable in 𝐷 .

(2) A computable function Γ+𝜀 : 𝐷 ′
𝑐 → R, 𝐷 ′

𝑐 ⊂ 𝐷𝑐 , such that 𝐷<
𝜀 ⊂ 𝐷 ′

𝑐 and Γ
+
𝜀 = Γ𝜀 |𝐷 ′

𝑐
exists if and

only if 𝐷<
𝜀 is semi-decidable in 𝐷 .

Remark C.2. Depending on the context, we might be more interested in finding the set of inputs

where
ˆ𝑓 fails rather than succeeds. This would lead us to the analogous observation that the

semi-decidability of the set

𝐷≥
𝜀 =

{
𝒙 ∈ 𝐷𝑐

�� ∥ 𝑓 (𝒙) − ˆ𝑓 (𝒙)∥ ≥ 𝜀

}
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determines computability of Γ−𝜀 : 𝐷 ′
𝑐 → R, 𝐷 ′

𝑐 ⊂ 𝐷𝑐 , given by Γ−𝜀 = Γ𝜀 |𝐷 ′
𝑐
with 𝐷≥

𝜀 ⊂ 𝐷 ′
𝑐 .

In the case of a connected input domain, the application of Proposition 3.1 yields the following

result. Informally, it is a direct consequence of the already mentioned fact that only trivial subsets

of R𝑑
𝑐 are decidable.

Corollary C.3. Under the conditions of Proposition C.1, additionally assume that𝐷 is connected. Then
an approximator ˆ𝑓 such that 𝐷<

𝜀 is decidable exists if and only if 𝑓 can be computably approximated
with precision 𝜀, that is, if there exists a computable function ˜𝑓 such that

∥ 𝑓 − ˜𝑓 ∥∞ < 𝜀.

Remark C.4. As the following example shows, a similar statement does not hold if 𝐷<
𝜀 is only

assumed to be semi-decidable. Consider the sign function sgn : R → R, which is non-continuous

on R𝑐 and therefore non-computable, and take ŝgn(𝑥) = 2

𝜋
arctan(𝑥). For a given 𝜀 > 0 we

can computably construct intervals (−∞,−𝑥0) and (𝑥0,∞) where |sgn(𝑥) − ŝgn(𝑥) | < 𝜀, i.e.,

𝐷<
𝜀 = (−∞,−𝑥0) ∪ (𝑥0,∞) is semi-decidable. In fact, we can adjust the approximator to achieve

the desired precision on a given interval (𝑥0,∞), 𝑥0 > 0. However, due to the discontinuity at 0,

no computable function approximating sgn on the entire real line with precision 𝜀 < 1 exists.

These results also directly apply to the classification setting as a special case of the considered

framework. By design, the classification setting even allows for stronger statements regarding the

magnitude of the error 𝜀. In particular, requiring precision of 𝜀 < 1

2
for the approximator

ˆ𝑓 of a

classifier 𝑓 mapping to {1, . . . ,𝐶} is equivalent to requiring exact emulation
ˆ𝑓 = 𝑓 |R𝑑

𝑐
. However,

this scenario was already covered in Subsection B, where Type 1 failure was established. Hence,

we can conclude that exit flag computations may be beneficial in certain situations but it is not

appropriate to tackle Type 1 failure in classification.

Instead of analyzing individual inputs, one could also derive global guarantees for the approxi-

mator
ˆ𝑓 . For instance, one could determine the magnitude of the failure set for some appropriate

measure, i.e., assess the likelihood of errors for some given input domain. Although this approach

is interesting it has two main limitations for our intended goals. First, there does not exist an

acknowledged algorithmic notion covering this framework that allows for theoretical studies.

Second and more importantly, this strategy typically leads to a global quantitative measure of

failure whereas we are interested in local guarantees for a given input. In essence, this framework

does not tackle the limitations of individual inputs but provides further information on the entire

input domain of the general problem.

Finally, we want to highlight that Proposition C.1 and Corollary C.3 imply that the algorithms

envisioned by Kahneman and Abbeel can not be realized on digital hardware. For any algorithm Γ

tackling a problem described by a non-computable function, there exist instances that Γ answers
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incorrectly and there is no algorithm Γexit that recognizes the failure for all erroneous instances.

Hence, the answer to ‘Do they know when they don’t know?’ from the digital computing perspec-

tive is negative in certain scenarios.

D Proofs

D.1 Proof of Theorem 3.2

The proof of Theorem 3.2 is based on two results we present next. The key component of the first

lemma lies behind many non-computability results, such as in [29] for the special case of inverse

problems, but here we formulate a general version.

LemmaD.1. LetΘ be a nonempty set,Λ a nonempty set of functions fromΘ toR𝑐 , 𝜀 > 0, andΞ : Θ →
P(R𝑚

𝑐 ), where𝑚 ∈ N and P denotes the power set. Assume there exist sequences (𝜄1
𝑘
)∞
𝑘=1

, (𝜄2
𝑘
)∞
𝑘=1

⊂ Θ

satisfying

(i)
��𝑓 (𝜄1

𝑘
) − 𝑓 (𝜄2

𝑘
)
�� → 0 uniformly in 𝑓 ∈ Λ. That is,

∀𝛿 > 0 ∃𝑘0 ∈ N ∀𝑘 ≥ 𝑘0 ∀𝑓 ∈ Λ :

��𝑓 (𝜄1
𝑘
) − 𝑓 (𝜄2

𝑘
)
�� < 𝛿 ;

(ii) for all 𝑘 ∈ N, dist(Ξ(𝜄1
𝑘
),Ξ(𝜄2

𝑘
)) > 𝜀.

Then, for all 𝑛 ∈ N and all Banach-Mazur computable functions Γ : R𝑛
𝑐 → R𝑚

𝑐 there exists 𝜄 ∈ Θ such
that for all (𝑓1, . . . , 𝑓𝑛) ∈ Λ𝑛 :

dist(Γ(𝑓1(𝜄), . . . , 𝑓𝑛 (𝜄)),Ξ(𝜄)) >
𝜀

3

.

Proof. For contradiction assume that for some 𝑛 ∈ N there exists a Banach-Mazur computable

function Γ : R𝑛
𝑐 → R𝑚

𝑐 such that for all 𝜄 ∈ Θ there exists (𝑓1, . . . , 𝑓𝑛) ∈ Λ𝑛
with

dist(Γ(𝑓1(𝜄), . . . , 𝑓𝑛 (𝜄)),Ξ(𝜄)) ≤
𝜀

3

. (3)

Since Γ is Banach-Mazur computable, it is continuous on R𝑛
𝑐 [73], that is,

∀𝜂 > 0 ∃𝛿 > 0 ∀𝒙1, 𝒙2 ∈ R𝑛
𝑐 : ∥𝒙1 − 𝒙2∥ < 𝛿 ⇒ ∥Γ(𝒙1) − Γ(𝒙2)∥ < 𝜂.

Take 𝜂 = 𝜀
3
. For the corresponding 𝛿 there exists by condition (i). some 𝑘 ∈ N such that for all

𝑓 ∈ Λ we have

��𝑓 (𝜄1
𝑘
) − 𝑓 (𝜄2

𝑘
)
�� < 𝛿

𝑛
. This implies for all (𝑓1, . . . , 𝑓𝑛) ∈ Λ𝑛

that

(𝑓1(𝜄1𝑘 ), . . . , 𝑓𝑛 (𝜄1𝑘 )) − (𝑓1(𝜄2𝑘 ), . . . , 𝑓𝑛 (𝜄
2

𝑘
))
 =

√√
𝑛∑︁
𝑖=1

(
𝑓𝑖 (𝜄1𝑘 ) − 𝑓𝑖 (𝜄2𝑘 )

)
2

≤
𝑛∑︁
𝑖=1

√︂(
𝑓𝑖 (𝜄1𝑘 ) − 𝑓𝑖 (𝜄2𝑘 )

)
2

=

𝑛∑︁
𝑖=1

��𝑓𝑖 (𝜄1𝑘 ) − 𝑓𝑖 (𝜄2𝑘 )
�� < 𝛿,
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and therefore Γ(𝑓1(𝜄1𝑘 ), . . . , 𝑓𝑛 (𝜄1𝑘 )) − Γ(𝑓1(𝜄2𝑘 ), . . . , 𝑓𝑛 (𝜄
2

𝑘
))
 < 𝜀

3

.

Together with (3) we get

dist

(
Ξ(𝜄1

𝑘
),Ξ(𝜄2

𝑘
)
)
≤ dist

(
Γ(𝑓1(𝜄1𝑘 ), . . . , 𝑓𝑛 (𝜄

1

𝑘
)),Ξ(𝜄1

𝑘
)
)
+Γ(𝑓1(𝜄1𝑘 ), . . . , 𝑓𝑛 (𝜄1𝑘 )) − Γ(𝑓1(𝜄2𝑘 ), . . . , 𝑓𝑛 (𝜄

2

𝑘
))
+

dist

(
Γ(𝑓1(𝜄2𝑘 ), . . . , 𝑓𝑛 (𝜄

2

𝑘
)),Ξ(𝜄2

𝑘
)
)

< 3

𝜀

3

= 𝜀,

which contradicts condition (ii). □

The following is a reformulation of Theorem 4.2 from [63], stating that there exist functions

representable by neural networks that are arbitrarily close in the supremum norm but can only be

represented by networks with weights arbitrarily far apart. The norm ∥·∥
scaling

on the (parameter)

space of neural networks is used in the mentioned theorem because it provides a bound on the

Lipschitz constant of neural network realizations Lip(𝑅𝐷
𝜎 (·)), i.e., Lip(𝑅𝐷

𝜎 (Φ)) ≤ 𝐶 ∥Φ∥
scaling

for

some 𝐶 > 0 and a network Φ, thus connecting the parameter space and the function space.

Definition D.2. For a neural network Φ = ((𝐴ℓ , 𝒃ℓ ))𝐿ℓ=1 set

∥Φ∥
scaling

:= max

1≤ℓ≤𝐿
∥𝐴ℓ ∥max

= max

1≤ℓ≤𝐿
max

𝑖, 𝑗
| (𝐴ℓ )𝑖, 𝑗 |.

Lemma D.3 ([63, Theorem 4.2]). Let 𝜎 : R → R be Lipschitz continuous, but not affine linear. Let
𝑆 = (𝑑, 𝑁1, . . . , 𝑁𝐿−1, 1) be an architecture of depth 𝐿 ≥ 2 with 𝑁1 ≥ 3. Let 𝐷 ⊂ R𝑑 be bounded with
a nonempty interior. Then there exist sequences (Φ𝑘 )∞𝑘=1, (𝜇𝑘 )

∞
𝑘=1

⊂ NN(𝑆) such that

(i) ∥𝑅𝐷
𝜎 (Φ𝑘 ) − 𝑅𝐷

𝜎 (𝜇𝑘 )∥∞ → 0,

(ii) for any (Φ′
𝑘
)∞
𝑘=1

, (𝜇′
𝑘
)∞
𝑘=1

⊂ NN(𝑆) with 𝑅𝐷
𝜎 (Φ′

𝑘
) = 𝑅𝐷

𝜎 (Φ𝑘 ) and 𝑅𝐷
𝜎 (𝜇′𝑘 ) = 𝑅𝐷

𝜎 (𝜇𝑘 ) for all
𝑘 ∈ N, it holds that

Φ′
𝑘
− 𝜇′

𝑘


scaling → ∞.

Remark D.4. It can be shown that the divergence in point (ii) is uniform in the following sense:

∀𝜀 > 0 ∃𝑘0 ∀𝑘 ≥ 𝑘0

∀Φ′
𝑘
, 𝜇′

𝑘
∈ NN(𝑆) such that 𝑅𝐷

𝜎 (Φ′
𝑘
) = 𝑅𝐷

𝜎 (Φ𝑘 ), 𝑅𝐷
𝜎 (𝜇′𝑘 ) = 𝑅𝐷

𝜎 (𝜇𝑘 ) :Φ′
𝑘
− 𝜇′

𝑘


scaling

> 𝜀.
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To see this, assume𝑅𝐷
𝜎 (𝜇𝑘 ) ≡ 0, and for contradiction let there be a subsequence (Φ′

𝑘ℓ
)∞ℓ=1 ⊂ NN(𝑆)

with 𝑅𝐷
𝜎 (Φ′

𝑘ℓ
) = 𝑅𝐷

𝜎 (Φ𝑘ℓ ) and
Φ′

𝑘ℓ


scaling

≤ 𝜀 for some 𝜀 > 0. Then for some 𝐶 > 0:

Lip(𝑅𝐷
𝜎 (Φ𝑘ℓ )) = Lip(𝑅𝐷

𝜎 (Φ′
𝑘ℓ
)) ≤ 𝐶

Φ′
𝑘ℓ


scaling

≤ 𝐶𝜀,

which contradicts Lip

(
𝑅𝐷
𝜎 (Φ𝑘ℓ )

)
→ ∞ in condition (ii).

From the proof in [63] it can also be seen that for a computable 𝜎 at least one such pair of these

sequences of neural networks lies in NN𝑐 (𝑆).

Proof of Theorem 3.2. Let Θ =
{
𝑅𝐷
𝜎 (Φ) | Φ ∈ NN𝑐 (𝑆)

}
. For 𝑖 ∈ {1, . . . , 𝑑} and 𝒙 ∈ 𝐷 denote

by 𝑓 𝑖𝒙 : Θ → R𝑐 the constant operator

𝑓 𝑖𝒙 (𝑔) = 𝑥𝑖

and by 𝑓(𝒙 ) : Θ → R𝑐 the operator

𝑓(𝒙 ) (𝑔) = 𝑔(𝒙) .
Let Λ =

{
𝑓 𝑖𝒙 | 𝒙 ∈ 𝐷, 𝑖 ∈ {1, . . . , 𝑑}

}
∪
{
𝑓(𝒙 ) | 𝒙 ∈ 𝐷

}
and define Ξ : Θ → P(R𝑁 (𝑆 )

𝑐 ) by

Ξ(𝑔) =
{
Φ | 𝑅𝐷

𝜎 (Φ) = 𝑔
}
.

By Lemma D.3 there exists a pair of sequences (𝑔𝑘 )∞𝑘=1, (ℎ𝑘 )
∞
𝑘=1

⊂ Θ such that ∥𝑔𝑘 − ℎ𝑘 ∥∞ → 0.

Therefore also

��𝑓(𝒙 ) (𝑔𝑘 ) − 𝑓(𝒙 ) (ℎ𝑘 )
�� → 0 uniformly in 𝒙 ∈ 𝐷 . The same trivially holds for all 𝑓 𝑖𝒙 ,

therefore condition (i). of Lemma D.1 is satisfied.

By Remark D.4, the sequences diverge uniformly in the scaling norm and therefore also in the

Euclidean norm, meaning dist(Ξ(𝑔𝑘 ),Ξ(ℎ𝑘 )) → ∞ and, in particular, for any 𝜀 > 0 there exists 𝑘0

such that dist(Ξ(𝑔𝑘 ),Ξ(ℎ𝑘 )) > 3𝜀 for 𝑘 ≥ 𝑘0. Hence, condition (ii). of Lemma D.1 holds with 3𝜀.

Together, by Lemma D.1 for all 𝑛 ∈ N and all Banach-Mazur computable functions Γ : (R𝑑
𝑐 ×

R𝑐)𝑛 → R𝑁 (𝑆 )
𝑐 there exists 𝑔 ∈ Θ, such that for all

(
𝑓1, . . . , 𝑓𝑛 (𝑑+1)

)
∈ Λ𝑛 (𝑑+1)

we have

dist

(
Γ(𝑓1(𝑔), . . . , 𝑓𝑛 (𝑑+1) (𝑔)),Ξ(𝑔)

)
> 𝜀.

However, by construction of Λ and Ξ, this entails that there exists Φ ∈ Ξ−1(𝑔), i.e., Φ ∈ NN𝑐 (𝑆),
such that for all 𝒙1, . . . , 𝒙𝑛 ∈ 𝐷 and all Φ′ ∈ NN𝑐 (𝑆) with 𝑅𝐷

𝜎 (Φ′) = 𝑅𝐷
𝜎 (Φ) = 𝑔 we have

∥Γ(X) − Φ′∥
2
> 𝜀.

□
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D.2 Proof of Theorem 3.6

An enumeration argument similar to the ones in the previous proofs implies Theorem 3.6. In

particular, the idea is to encode the target network as a single datapoint, which can be done

recursively for integer vectors representing neural networks with integer parameters.

Proof of Theorem 3.6. Given an architecture 𝑆 = (𝑑, 𝑁1, . . . , 𝑁𝐿−1, 1), NNZ(𝑆) can be associ-

ated with Z𝑁 (𝑆 )
, which in turn can be recursivelly encoded into Z𝑑 by a recursivelly invertible

function 𝑔 : Z𝑁 (𝑆 ) → Z𝑑 (see for instance [30] for details). Then, taking Γ(X) = 𝑔−1(𝒙1) with
X = {(𝒙1, 𝑦1) . . . , (𝒙𝑛, 𝑦𝑛)}, a single datapoint of the form

(
𝑔(Φ), 𝑅Z𝑑

𝜎 (Φ) (𝑔(Φ)), 0, . . .
)
∈ (Z𝑑 ×Z)𝑛

can be used to reconstruct any neural network Φ ∈ NNZ(𝑆). Here we utilize the fact, that we can
choose the dataset for each network specifically. □
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