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Memory-Optimal Neural Network Approximation
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ABSTRACT

We summarize the main results of a recent theory—developed by the authors—establishing fundamental lower
bounds on the connectivity and memory requirements of deep neural networks as a function of the complexity of
the function class to be approximated by the network. These bounds are shown to be achievable. Specifically, all
function classes that are optimally approximated by a general class of representation systems—so-called affine
systems—can be approximated by deep neural networks with minimal connectivity and memory requirements.
Affine systems encompass a wealth of representation systems from applied harmonic analysis such as wavelets,
shearlets, ridgelets, α-shearlets, and more generally α-molecules. This result elucidates a remarkable universality
property of deep neural networks and shows that they achieve the optimum approximation properties of all
affine systems combined. Finally, we present numerical experiments demonstrating that the standard stochastic
gradient descent algorithm generates deep neural networks which provide close-to-optimal approximation rates
at minimal connectivity. Moreover, stochastic gradient descent is found to actually learn approximations that
are sparse in the representation system optimally sparsifying the function class the network is trained on.

Keywords: Deep neural networks, function approximation, optimal sparse approximation, connectivity, shear-
lets.

This paper is a summary of https://arxiv.org/abs/1705.01714 with some minor additions and embel-
lishments.

1. INTRODUCTION

Neural networks arose from the seminal work by McCulloch and Pitts [1] in 1943 which, inspired by the function-
ality of the human brain, introduced an algorithmic approach to learning with the aim of building a theory of
artificial intelligence. Roughly speaking, a neural network consists of neurons arranged in layers and connected
by weighted edges; in mathematical terms this boils down to a concatenation of (potentially learned) affine linear
functions and relatively simple non-linearities.

Despite significant theoretical progress in the 1990s [2, 3], the area has seen practical advances only during
the past decade, triggered by the drastic improvements in computing power, and, in particular, the availability
of vast amounts of training data. Specifically, deep neural networks, i.e., networks with large numbers of layers
are now state-of-the-art technology for a wide variety of practical applications, such as image classification [4],
speech recognition [5], or game intelligence [6], to name a few. For an in-depth overview we refer to the survey
paper by LeCun, Bengio, and Hinton [7] and the recent book [8].

A neural network effectively implements a non-linear mapping and can be used to either perform classification
directly or to extract features that are then fed into a classifier, such as a support vector machine [9]. In the former
case, the primary goal is to approximate an unknown classification function based on a given set of corresponding
input-output value pairs. This is typically accomplished by learning the network’s weights through, e.g., the
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standard gradient descent via backpropagation algorithm [10]. In a classification task with, say, two classes, the
function to be learned would take only two values, whereas in the case of, e.g., the prediction of the temperature
in a certain environment, it would be real-valued. It is therefore clear that characterizing to what extent deep
neural networks are capable of approximating general functions is a question of significant practical relevance.

Deep neural networks employed in practice often consist of hundreds of layers and may depend on billions
of parameters, see for example the work [11] on image classification. Training and operation of networks of this
scale entail formidable computational challenges which often still present a bottleneck. As a case in point, we
mention speech recognition on a smart phone such as, e.g., Apple’s SIRI-system, which operates in the cloud.
Android’s speech recognition system has meanwhile released an offline version that is based on a neural network
with sparse connectivity, meaning that the number of edges with nonzero weights is small.

The desire to reduce the complexity of network training and operation naturally leads to the question of
function approximation through neural networks with sparse connectivity. In addition, the network’s memory
requirements in terms of the number of bits needed for its storage are of concern in practice.

The purpose of this paper is to summarize recent results by the authors [12] (with minor additions and
embellishments) which characterize the approximation-theoretic properties of deep neural networks with sparse
connectivity and under memory constraints. Specifically, defining the complexity of a signal class C as the number
of bits needed to describe any element in C to within a prescribed accuracy, we shall ask the following question:

Given a signal class C, how does the complexity of a neural network that approximates every function
in C to within a prescribed accuracy depend on the complexity of C?

Interpreting the network as an encoder in Donoho’s min-max rate distortion theory [13], we establish fundamental
lower bounds on connectivity and memory requirements for a network to guarantee uniform approximation rates
for a given signal class C. Moreover, we demonstrate that these bounds can be attained for a broad family of
signal classes, namely those that can be optimally approximated by a general class of representation systems—
so-called affine systems. Affine systems include wavelets, shearlets, ridgelets, α-shearlets, and more generally
α-molecules. This result reveals an interesting universality property of deep neural networks; they achieve
the optimum approximation properties of all affine systems combined. The technique we develop to proof
this statement is interesting in its own right as it establishes a general framework for transferring statements
on function approximation through representation systems to analogous results for approximation by neural
networks.

1.1 Deep Neural Networks

While various network architectures exist in the literature, we focus on the following setup:

Definition 1.1. Let L, d,N1, . . . , NL ∈ N. A map Φ : Rd → RNL given by

Φ(x) = WLρ (WL−1ρ (. . . ρ (W1(x)))), x ∈ Rd, (1)

is called a neural network. It is composed of affine linear maps W` : RN`−1 → RN` , 1 ≤ ` ≤ L, where N0 := d,
and non-linear functions—often referred to as rectifiers—ρ acting component-wise. Here, d is the dimension of
the input layer, L denotes the number of layers, N1, . . . , NL−1 stands for the dimensions of the L − 1 hidden
layers, and NL is the dimension of the output layer.

The term “network” arises from the interpretation of the mapping Φ as a weighted acyclic directed graph
with nodes arranged in L hierarchical layers and edges only between adjacent layers. In fact, the affine linear
map W` is defined by a matrix A` ∈ RN`×N`−1 and an affine part b` ∈ RN` via W`(x) = A`x + b`. (A`)i,j is
the weight associated with the edge between the j-th node in the (`− 1)-th layer and the i-th node in the `-th
layer, while (b`)i is the weight associated with the i-th neuron in the `-th layer. This assignment is depicted in
Figure 1. We refer to the nodes of the graph as neurons and note that the total number of neurons is given by
N := d+

∑L
j=1Nj .

The real numbers (A`)i,j and (b`)i are said to be the network’s weights; the total number of non-zero edge
weights, denoted by M , is the network’s connectivity. If M is small relative to the number of connections possible



(b2)1 (b2)2

(b1)1 (b1)2 (b1)3

(A2)1,1 (A2)1,2 (A2)2,3

(A1)1,1

(A1)3,3(A1)2,3(A1)1,2

(A1)1,1

A2 =

(
(A2)1,1 (A2)1,2 0

0 0 (A2)2,3

)

A1 =

 (A1)1,1 (A1)1,2 0
0 0 (A1)2,3

0 0 (A1)3,3



Output layer

Hidden layer

Input layer

Figure 1. Assignment of the weights (A`)i,j and (b`)i to the neurons and edges. The network has sparse connectivity.

(i.e., the number of edges in the graph that is fully connected between adjacent layers), we say that the network
is sparsely connected.

Throughout the paper, we consider the case Φ : Rd → R, i.e., NL = 1, which includes situations such as the
classification and prediction problems described above. All our results can readily be generalized to NL > 1.

We denote the class of networks Φ : Rd → R with no more than L layers, no more than M non-zero edge
weights, and rectifier ρ by NNL,M,d,ρ. Moreover, we let

NN∞,M,d,ρ :=
⋃
L∈N
NNL,M,d,ρ, NNL,∞,d,ρ :=

⋃
M∈N

NNL,M,d,ρ, NN∞,∞,d,ρ :=
⋃
L∈N
NNL,∞,d,ρ.

Now, given a function f : Rd → R, we can ask how well a neural network Φ ∈ NNL,M,d,ρ can approximate
f . Clearly, this depends on the algorithm chosen to learn the network’s weights. But one can also take the
following vantage point: The best possible approximation of f by NNL,M,d,ρ provides a fundamental lower
bound on the approximation error independently of the learning algorithm. We shall be particularly interested
in the dependence of this bound on the connectivity M , and the number of bits required to encode the network.
Clearly, smaller M entails lower computational complexity in terms of evaluating (1).

1.2 Quantifying Approximation Quality

We next briefly review a widely used approach for characterizing the approximation quality of functions given
restricting conditions on the approximant, in our case the neural network, with the restriction imposed by its
connectivity.

Fix Ω ⊂ Rd. A common approach to function approximation is to consider a class of functions C ⊆ L2(Ω),
termed signal class and a corresponding complete system D := (ϕi)i∈I ⊆ L2(Ω), termed (representation) system,
or dictionary, with the restriction on the approximant imposed by a limit on the number of elements in D allowed
to participate in the approximation. One then studies the error of best M -term approximation of f ∈ C:
Definition 1.2. [14] Given d ∈ N, Ω ⊆ Rd, a signal class C ⊆ L2(Ω), and a representation system D, we define,
for f ∈ C and M ∈ N,

ΓDM (f) := inf
IM⊂I,#IM=M,(ci)i∈IM

‖f −
∑
i∈IM

ciϕi‖L2(Ω). (2)

We call ΓDM (f) the best M -term approximation error of f with respect to D. Every fM =
∑
i∈IM ciϕi attaining

the infimum is referred to as a best M -term approximation of f in the system D. The supremum of γ > 0 such
that there exists C > 0 with

sup
f∈C

ΓDM (f) ≤ CM−γ , for all M ∈ N,



determines the optimal M -term approximation rate of C in the system D, and will henceforth be referred to as
γ∗(C,D).

A wealth of structured representation systems D is provided by the area of applied harmonic analysis, starting
with wavelets [15], followed by ridgelets [16], curvelets [17], shearlets [18], parabolic molecules [19], and most
generally α-molecules [20], which include all previously named systems as special cases. Other examples include
tensor product wavelets [21], Gabor frames [22], and wave atoms [23].

For α-shearlet systems D, optimal sparse approximation properties have been completely characterized for
the signal class C of so-called α-cartoon-like functions E 1

α ([0, 1]2), these are piecewise C1/α(R2) functions on the
unit square with a C1/α discontinuity curve and α ∈ [ 1

2 , 1]. Under weak technical conditions on the α-shearlet

system, it was shown in [24,25] that γ∗(C,D) = 1
2α for C = E 1

α ([0, 1]2).

1.3 Approximation by Deep Neural Networks

We now substitute the concept of M -term approximation with representation systems by approximation through
neural networks with M edges, i.e., sparsity in terms of the number of participating elements of a representation
system is replaced by sparsity in terms of connectivity.

More formally, we consider the following setup.

Definition 1.3. Given d ∈ N, Ω ⊆ Rd, a signal class C ⊆ L2(Ω), and ρ : R → R, we define, for f ∈ C and
M ∈ N,

ΓNNM (f) := inf
Φ∈NN∞,M,d,ρ

‖f − Φ(f)‖L2(Ω). (3)

We call ΓNNM (f) the best M -edge approximation error of f . The supremal γ > 0 such that a C > 0 with

sup
f∈C

ΓM (f) ≤ CM−γ , for all M ∈ N, (4)

exists, determines the optimal M -edge approximation rate of C achievable by neural networks NN∞,∞,d,ρ, and
will henceforth be referred to as γ∗NN (C).

We emphasize that the infimum in (3) is taken over all networks with no more than M edges of non-zero
weight. In particular, this means that the optimum is taken over all possible edge positions and associated
weights.

Knowledge of the optimal M -edge approximation rate hence provides a bound on the approximation rate of a
sparsely connected deep neural network. This bound is fundamental as it must be met by all learning algorithms.
While we do not evaluate specific learning algorithms, our framework provides a means for assessing the quality
of a given learning algorithm in the sense of measuring how close the rate induced by the algorithm comes to
the optimal M -edge approximation rate.

1.4 Previous Work and Contributions

The theory of (M -edge) approximation with neural networks is a classical topic and we refer to [3,16,26–31] for
a non-exhaustive list of relevant references. We hasten to add that these works consider exclusively the problem
of studying lower bounds on γ in (4) for function classes C such as unit balls in Sobolev spaces, functions with
bounded first moments, or continuously differentiable functions.

Our work [12] generalizes the results available in the literature in several respects:

• We study the impact of network weight quantization and characterize the associated memory requirements.
While this may appear a mundane matter, we will see in Section 2.2 that the M -edge approximation rate
alone is in general devoid of information related to the storage complexity of an approximating network.
In contrast, our results directly lead to bounds on the storage complexity of networks that deliver optimal
M -edge approximations.



• Under the (natural) assumption that the weights of an M -edge approximating network can be efficiently
quantized, a notion made precise below, we provide upper bounds on γ in (4) for arbitrary signal classes
C. These bounds are universal in the sense of applying to all learning algorithms.

• We characterize explicitly the optimal M -edge approximation rate for a wide family of signal classes C.

2. EFFECTIVE M-TERM AND M-EDGE APPROXIMATION AND BOUNDS ON
UNIVERSAL APPROXIMATION

2.1 Effective M-term Approximation

Any dictionary D that is dense in L2(Rd) will achieve γ∗(C,D) = ∞ independently of the signal class C. The
catch, of course, is that (i) finding an optimal M -term approximation in such a dictionary is computationally
intractable, and (ii) storage of the coefficients and indices of a corresponding optimal M -term approximation in
such a dictionary may require more bits than direct encoding of the signal f . We summarize:

The quantity γ∗(C,D) per se, in general, does not contain any information on the complexity of C.

To address these issues, we define a variation of the concept of “best M -term approximation subject to
polynomial-depth search” introduced in [13] and further developed in [32].

Definition 2.1. Let Ω ⊂ Rd. Consider the signal class C ⊂ L2(Ω) and the representation system D = (ϕi)i∈N ⊂
L2(Ω). C is said to have effective M -term approximation rate γ > 0 in D if there exist a univariate polynomial
π and constants C,D > 0 such that for all M ∈ N and f ∈ C

‖f −
∑
i∈IM

ciϕi‖L2(Ω) ≤ CM−γ , (5)

for some index set IM ⊂ {1, . . . , π(M)} with #IM = M and the coefficients (ci)i∈IM satisfy maxi∈IM |ci| ≤ D.

The supremum of all γ > 0 such that C has effective M -term approximation rate γ in D determines the
optimal effective M -term approximation rate of C in D and will henceforth be referred to as γ∗,eff(C,D).

It can be shown [13] that an effective M -term approximation of an element in a signal class C in a dictionary
D can be stored with O(M · log(M)) bits, i.e., in optimal storage complexity (up to logarithmic factors).

2.2 Effective M-edge Approximation

We now turn to optimal M -edge approximations in neural networks. Our starting point is the following remark-
able result.

Theorem 2.2. [33, Theorem 4] There exists a C∞-function ρ : R→ R which is strictly increasing and sigmoidal
(i.e., limx→∞ ρ(x) = 1 and limx→−∞ ρ(x) = 0) such that for every d ∈ N, every bounded Ω ⊂ Rd, every
f ∈ C([0, 1]d), and every ε > 0 there exists a neural network Φ with rectifier ρ and two hidden layers of
dimensions N1 = 3d and N2 = 6d+ 3 satisfying

sup
x∈Ω
|f(x)− Φ(x)| ≤ ε. (6)

We note that the number of neurons, edges, and layers of the approximating network in Theorem 2.2 all do
not depend on the approximation error ε. A direct consequence of Theorem 2.2 is the existence of a rectifier
ρ such that γ∗NN (C) = ∞ independently of the signal class C. Again, the catch is that storing the weights of a
corresponding optimal M -edge approximating network may require more bits than direct encoding of the signal
f . In other words, while the representation of the approximating network Φ in (6) only requires a fixed number
of real numbers, the associated storage complexity may be intractable. We summarize:

The quantity γ∗NN (C) does, in general, not contain any information on the complexity of C.



To address these issues, the following definition was introduced in [12].

Definition 2.3. Let Ω ⊂ Rd. Consider the signal class C ⊂ L2(Ω) and the rectifier ρ. C is said to have effective
M -edge approximation rate γ > 0 in neural networks with rectifier ρ if there exists a univariate polynomial π
such that there is a constant C > 0 so that for all M ∈ N and all f ∈ C

‖f − Φ‖L2(Ω) ≤ CM−γ (7)

for some Φ ∈ NN∞,M,d,ρ with the weights of Φ all bounded in absolute value by π(M).

The supremum of all γ > 0 such that C has effective M -edge approximation rate γ determines the optimal
effective M -edge approximation rate of C by neural networks (with rectifier ρ) and will be denoted as γ∗,eff

NN (C).
Using results from min-max rate distortion theory, briefly reviewed below, we will be able to show that, in

contrast to γ∗NN (C), the quantity γ∗,eff
NN (C) accurately reflects the complexity of the function class C.

2.3 Min-Max Rate Distortion Theory

Min-max rate distortion theory provides a theoretical foundation for deterministic lossy data compression. We
recall the following notions and concepts from [13, 32]. For a detailed description of min-max rate-distortion
theory, we refer to the excellent survey article [34].

Let d ∈ N, Ω ⊆ Rd and consider the function class C ⊂ L2(Ω). Then, for each ` ∈ N, we denote by

E` := {E : C → {0, 1}`}

the set of binary encoders mapping elements of C to bit strings of length `, and we let

D` := {D : {0, 1}` → L2(Ω)}

be the set of binary decoders mapping bit strings of length ` to elements of L2(Ω). An encoder-decoder pair
(E,D) ∈ E` ×D` is said to achieve distortion ε > 0 over the function class C if

sup
f∈C
‖D(E(f))− f‖L2(Ω) ≤ ε.

This means that the worst case error incurred by applying the encoder-decoder pair (E,D) ∈ E` × D` to an
element of C is upper-bounded by ε, often also expressed as the uniform error over C being bounded by ε.

A quantity of central interest is the minimal length ` ∈ N for which there exists an encoder-decoder pair
(E,D) ∈ E` ×D` that achieves distortion ε > 0 over the function class C, and its asymptotic behavior as made
precise in the following definition.

Definition 2.4. Let d ∈ N and C ⊂ L2(Ω). Then, for ε > 0 the minimax code length L(ε, C) is given by

L(ε, C) := min{` ∈ N : ∃(E,D) ∈ E` ×D` : sup
f∈C
‖D(E(f))− f‖L2(Ω) ≤ ε}.

Moreover, the optimal exponent γ∗(C) is defined by

γ∗(C) := inf{γ ∈ R : L(ε, C) = O(ε−γ)}.

The optimal exponent γ∗(C) describes how fast L(ε, C) tends to infinity as ε decreases. For function classes
C1 and C2, γ∗(C1) < γ∗(C2) says that asymptotically, i.e., for ε → 0, the length of the encoding bit string for
C2 is larger than that for C1. In other words, a smaller exponent indicates smaller description complexity. The
optimal exponent γ∗(C) therefore determines the minimal memory requirements for storing signals f ∈ C such
that reconstruction with a uniformly bounded error is possible.

We mention that sometimes in the literature the reciprocal of γ∗(C) is termed the optimal exponent. The
optimal exponent is known for several function classes, such as subsets of Besov spaces Bsp,q(Rd) with 1 ≤ p, q <
∞, s > 0, and q > (s+1/2)−1, namely all functions in Bsp,q(Rd) whose norm is bounded by a constant C > 0 [35].



For this class we have γ∗(C) = d
s . We will be particularly interested in so-called β-cartoon-like functions, for

which the optimal exponent is given by 2
β .

The optimal exponent γ∗(C) is related to the quantities γ∗,eff(C,D), γ∗,eff
NN (C) as follows.

Theorem 2.5. Let d ∈ N, Ω ⊂ Rd bounded, and C ⊂ L2(Ω) a signal class. Then, the following statements hold.

(i) For every dictionary D, we have

γ∗,eff(C,D) ≤ 1

γ∗(C)
.

(ii) Suppose that the rectifier ρ is either globally Lipschitz-continuous, or differentiable with derivative of at
most polynomial growth. Then,

γ∗,eff
NN (C) ≤ 1

γ∗(C)
.

Proof. The result (i) is well known, a proof can be found in [32]. For the proof of (ii) we refer to [12]. In

both cases the main idea is to show that for all γ < γ∗,eff(C,D), respectively γ < γ∗,eff
NN (C), an effective M -term,

respectively an effective M -edge, approximation can be encoded by a bit string of length O(M log(M)) with
distortion at most O(M−γ). In the neural network case, such an encoding can be achieved by a quantization
procedure whose analysis requires a novel weight-perturbation result for neural networks [12]. Based on these
encodings, one can directly appeal to the definition of the optimal exponent to get the desired inequalities.

2.4 Universal Lower Bounds for Neural Network Approximation

Theorem 2.5 readily provides a lower bound on the connectivity and the memory requirements of any learning
algorithm guaranteeing uniform approximation rates for a given signal class. For a given network Φ, we denote
its connectivity, i.e., the number of nonzero edge weights, by M(Φ). Then, the following result holds (see [12,
Theorem 2.7]).

Theorem 2.6. Let Ω ⊂ Rd, d ∈ N, ρ : R → R a rectifier that is either globally Lipschitz-continuous, or
differentiable with derivative of at most polynomial growth, and let C ⊂ L2(Ω). Further, let

Learn :

(
0,

1

2

)
× C → NN∞,∞,d,ρ

be a map such that, for each pair (ε, f) ∈ (0, 1
2 )×C, every weight of the neural network Learn(ε, f) is polynomially

bounded in ε−1, and
sup
f∈C
‖f − Learn(ε, f)‖L2(Ω) ≤ ε. (8)

Then,
sup

ε∈(0, 12 )

εγ · sup
f∈C
M(Learn(ε, f)) =∞, for all γ < γ∗(C). (9)

This result quantifies the minimum network connectivity needed to allow approximation of all elements in C
to within an error of ε. In particular, it says that the minimum (complexity) exponent at which the number of
edges in the network needs to scale is given by γ∗(C). It furthermore establishes a universal link between the
connectivity of the approximating network and the complexity of the function class that it is to approximate.

3. OPTIMAL NEURAL NETWORK APPROXIMATION

The previous section established a lower bound on the connectivity (and memory requirements) of neural networks
guaranteeing uniform approximation rates for arbitrary signal classes. We next discuss the sharpness of these
bounds. Motivated by Theorem 2.5, we introduce the following definition.

Definition 3.1. Let d ∈ N, Ω ⊂ Rd bounded, and C ⊂ L2(Rd) a signal class.



(i) Let D ⊂ L2(Ω) be a dictionary. Then, C is said to be optimally effectively representable in D if

γ∗,eff(C,D) =
1

γ∗(C)
.

(ii) Suppose that the rectifier ρ is either globally Lipschitz-continuous, or differentiable with derivative of at
most polynomial growth. Then, C is said to be optimally effectively representable by neural networks (with
rectifier ρ) if

γ∗,eff
NN (C) =

1

γ∗(C)
.

Note that, by Theorem 2.5, optimal effective representability of a signal class C by neural networks implies
the existence of a learning algorithm yielding a best M -edge approximation with asymptotically optimal memory
requirements. While optimal effective representability in dictionaries is a well-studied subject, the literature is
essentially void of results on optimal effective representability by neural networks. In what follows, we illustrate
how to leverage known results on approximation in dictionaries to get statements on approximation via neural
networks.

3.1 A Transference Principle

Given the benchmark result Theorem 2.5, we now ask the following question:

Which signal classes are optimally effectively representable by (deep) neural networks?

It turns out, as shown in [12], that the answer to this question is: A large family of signal classes. The
mathematical technique developed in [12] to establish this statement is interesting in its own right as it constitutes
a general framework for transferring results on function approximation through dictionaries to analogous results
on approximation by neural networks. To this end, we first need the following.

Definition 3.2. Let Ω ⊂ Rd, ρ : R → R, and D = (ϕi)i∈N ⊂ L2(Ω) a representation system. Then, D is said
to be effectively representable by neural networks (with rectifier ρ) if there exist a polynomial π : R2 → R and
R ∈ N such that for all η > 0 and every i ∈ I, there is a neural network Φi,η ∈ NN∞,R,d,ρ with

‖ϕi − Φi,η‖L2(Ω) ≤ η

such that the absolute values of the weights of the Φi,η are bounded by π(i, η−1).

We are now ready to state our main transference result (see [12, Theorem 3.4]).

Theorem 3.3. Let Ω ⊂ Rd, d ∈ N, ρ : R → R a rectifier that is either globally Lipschitz-continuous, or
differentiable with derivative of at most polynomial growth, let D ⊂ L2(Ω) be a dictionary and C ⊂ L2(Ω) a
signal class. Suppose that D is effectively representable by neural networks with rectifier ρ. Then, we have

γ∗,eff
NN (C) ≥ γ∗,eff(C,D).

In particular, optimal effective representability in D implies optimal effective representability by neural net-
works with rectifier ρ.

3.2 Affine Systems

In this section, we verify that dictionaries of affine systems, defined formally next, are effectively representable by
neural networks. With Theorem 3.3 this will then allow us to characterize function classes C that are optimally
M -edge approximated by neural networks.



Definition 3.4. Let d ∈ N, Ω ⊂ Rd bounded, and h ∈ L2(Rd) compactly supported. Let δ > 0, (csi )
r
i=1 ⊂ R, for

s = 1, . . . , S, and (di)
r
i=1 ⊂ Rd. Moreover, let (Aj)j∈N ⊂ Rd×d be expanding. Consider the compactly supported

functions

gs :=

r∑
i=1

csih(· − di), s = 1, . . . , S. (10)

We define the corresponding affine system as

D :=
{
gj,bs := det(Aj)

1/2gs(Aj · − δ · b) · χΩ : s = 1, . . . , S, b ∈ Zd, j ∈ N, and gj,bs 6= 0
}
,

where χΩ denotes the indicator function of Ω.

Affine systems comprise a wealth of popular representation systems used in computational harmonic analysis
such as wavelets, shearlets, α-molecules, and tensor products thereof. We next show that verifying whether an
affine system is effectively representable requires verifying effective representability for its generator function h
only.

Theorem 3.5. Suppose that Ω ⊂ Rd is bounded and D = (ϕi)i∈N ⊂ L2(Ω) is an affine system according
to Definition 3.4. Suppose further that for the rectifier function ρ : R → R there exist a constant M and a
polynomial π : R2 → R such that for all D, ε > 0 there is ΦD,ε ∈ NNL,M,d,ρ with weights bounded in absolute
value by π(ε−1, D) and

‖h− ΦD,ε‖L2([−D,D]d) ≤ ε, (11)

where h is as in Definition 3.4. Assume furthermore, that there exist a, c > 0 such that for all j ∈ N

j−1∑
k=1

det(Ak) ≥ c|det(Aj)|a.

Then, D is effectively representable by neural networks with rectifier function ρ.

To obtain optimal effective representability of a function class C by a wavelet-, shearlet-, ridgelet-, or α-
molecule system, the precise nature of the generator h does not play a role, rather its smoothness and vanishing
moment properties only. The key idea of our construction is to build generators that are arbitrarily smooth bump
functions which then, by choosing csi in (10) accordingly, lead to wavelet-, shearlet-, ridgelet-, or α-molecule
systems with smooth generators with vanishing moments.

Approximation of smooth bump functions, at arbitrary precision, with neural networks of fixed size is certainly
not possible for all rectifiers ρ. We therefore have to restrict ourselves to networks with suitable rectifiers and
recall the following definition from [3,36].

Definition 3.6. A continuous function ρ : R→ R is called a sigmoidal function of order k ∈ N, k ≥ 2, if there
exists K > 0 such that

lim
x→−∞

1

xk
ρ(x) = 0, lim

x→∞

1

xk
ρ(x) = 1, and |ρ(x)| ≤ K(1 + |x|)k, for x ∈ R.

The function ρ is called strongly sigmoidal of order k, if there exist constants a, b,K > 0 such that∣∣∣∣ 1

xk
ρ(x)

∣∣∣∣ ≤ K|x|−a, for x < 0,

∣∣∣∣ 1

xk
ρ(x)− 1

∣∣∣∣ ≤ Kx−a, for x ≥ 0, |ρ(x)| ≤ K(1 + |x|)k, for x ∈ R,

and ∣∣∣∣ ddxρ(x)

∣∣∣∣ ≤ K|x|b, for x ∈ R.

For m ∈ N we denote the univariate cardinal B-spline of order m ∈ N by Nm, i.e., N1 = χ[0,1], and
Nm+1 = Nm ∗ χ[0,1], for all m ≥ 1. Multivariate B-splines are simply tensor products of univariate B-splines.



Additionally, we define, for d ∈ N, the d-dimensional B-spline of order m by Nd
m. It was established in [36] that

B-splines can be well approximated by neural networks with sigmoidal rectifiers. Nonetheless, the result of [36]
does not establish that dictionaries based on B-splines are effectively representable by neural networks. This
stronger statement will be made possible by strong sigmoidality of ρ as established in [12, Theorem 4.4].

Theorem 3.7. Let d,m, k ∈ N, and ρ strongly sigmoidal of order k ≥ 2. Further, let L := dlog(md −
d)/ log(k)e + 1. Then, there exists M ∈ N, possibly dependent on s,m, k, such that for all D, ε > 0, there is a
network ΦD,ε ∈ NNL,M,d,ρ with

‖Nd
m − ΦD,ε‖L2([−D,D]d) ≤ ε.

Moreover, there exists a polynomial π : R2 → R such that the absolute values of the weights of the network ΦD,ε
are bounded by π(D, ε−1).

This result in combination with Theorem 3.5 implies that affine systems with generators based on linear
combinations of B-splines are effectively representable by neural networks with strongly sigmoidal rectifiers. In
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Figure 2. (a): Function with curvilinear singularity to be approximated by the network. (b): Approximation error as a
function of the number of edges. (c)-(f): Shearlet-like subnetworks. (g): Reconstruction using only the 10 subnetworks
with the largest supports. (h): Reconstruction using only subnetworks with medium-sized support. (i): Reconstruction
using only subnetworks with very small support.



combination with Theorem 3.3 we conclude that neural networks provide optimal M -edge approximation rates for
all signal classes that are optimally effectively representable in any affine system (wavelets, shearlets, ridgelets,
or α-molecules) with generators based on linear combinations of B-splines.

In addition, we also conclude that the memory requirements for storing the corresponding optimal M -edge
approximating networks are asymptotically optimal. This result serves as an explanation for the “unreasonable
effectiveness” of neural networks: they combine the optimal approximation properties of all affine systems taken
together and do so with minimal memory requirements.

4. NUMERICAL RESULTS

We illustrate our theoretical findings with a numerical example from [12]. The signal class C under consideration
is given by so-called cartoon-like images which are piecewise C2 functions separated by a C2 discontinuity curve,
see Figure 2(a) for an example. It is well known that γ∗(C) = 1 and that C is optimally effectively representable
by shearlets, or more generally parabolic molecules [19]. As shearlets constitute an instance of affine systems [12]

we would expect an optimal M -edge approximation rate of γ∗,eff
NN (C) = 1. Figure 2(b) illustrates that this

optimal rate can be observed empirically by training a neural network using stochastic gradient descent via
backpropagation. We refer to [12, Section 7] for further details.
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