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Reconstruction of Finite-Valued Sparse Signals

Sandra Keipera, Gitta Kutynioka, Dae Gwan Leeb, and Götz Pfanderb

aTU Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany
bKU Eichstätt-Ingolstadt, Ostenstraße 26, 85072 Eichstätt, Germany

ABSTRACT

The need of reconstructing discrete-valued sparse signals from few measurements, that is solving an undetermined
system of linear equations, appears frequently in science and engineering. Those signals appear, for example,
in error correcting codes as well as massive Multiple-Input Multiple-Output (MIMO) channel and wideband
spectrum sensing. A particular example is given by wireless communications, where the transmitted signals are
sequences of bits, i.e., with entries in {0, 1}. Whereas classical compressed sensing algorithms do not incorporate
the additional knowledge of the discrete nature of the signal, classical lattice decoding approaches do not utilize
sparsity constraints. In this talk, we present an approach that incorporates a discrete values prior into basis
pursuit. In particular, we address finite-valued sparse signals, i.e., sparse signals with entries in a finite alphabet.
We will introduce an equivalent null space characterization and show that phase transition takes place earlier
than when using the classical basis pursuit approach. We will further discuss robustness of the algorithm and
show that the nonnegative case is very different from the bipolar one. One of our findings is that the positioning
of the zero in the alphabet - i.e., whether it is a boundary element or not - is crucial.

Keywords: Compressed Sensing, Sparse Recovery, Null Space Property, Finite Alphabet, Phase Transition,
Box Constraints

1. INTRODUCTION

Compressed sensing was introduced as an effective tool to acquire signals from an underdetermined system of
linear equations under some realistic additional constraint. More precisely, in compressed sensing we aim to
solve the underdetermined system

Ax0 = b,

with A ∈ Rm×N (m < N) and b ∈ Rm by using the a priori information that most of the entries of x0 are
zero. In this situation, necessary and sufficient conditions, for instance, null space and incoherence properties of
the measurement matrix A for the exact recovery of the signal x0, even when b is contaminated with noise, are
known.

However, there are many applications, where the signal fulfills a secondary structure constraint besides
sparsity. That is, the nonzero entries of x0 stem from a finite or discrete alphabet. Those signals appear, for
example, in error correcting codes1 as well as massive Multiple-Input Multiple-Output (MIMO) channel2 and
wideband spectrum sensing.3 There also exist several examples of applications, where the transmitted data
originate from a general finite set A ⊂ R such as in source decoding4 or radar.5

In the following we will focus on signals with entries from a bounded lattice and show that compressed sensing
recovery guarantees for those signals can be improved significantly in some cases. More precisely, we will focus
on the following two structural assumptions. First the signal x0 ∈ RN is assumed to be k-sparse, for some
k ∈ [N ] = {1, . . . , N}, i.e., |{i : (x0)i 6= 0}| ≤ k. And, secondly, we will assume that the entries of the signal
x0 ∈ RN stem from a finite alphabet A, i.e., A ⊂ R is a finite set of real numbers.

We first consider the general case A = {−L1, . . . , L2}, L1, L2 ∈ N, and then A = {0, . . . , L}, L ∈ N.
Surprisingly, it will turn out that those alphabets exhibit quite different phenomena due to the positioning of
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the zero within the set. Note, that the cases A = {0, 1} and A = {−1, 0, 1} are particularly included. We will
see that the proposed recovery algorithm will exploit the structure of those signals exceptionally well.

So far sparsity and finiteness have been considered mostly separately. Compressed sensing focusses almost
entirely on sparsity without considering finiteness,6,7 whereas approaches such as lattice decoding8,9 utilize the
finite nature of a signal without taking sparsity into account. There are only few examples, which deal with
signals having entries from a finite alphabet. Drapper & Malekpour,10 and Tian, Leus & Lottici11 assumed that
A = {1, . . . , p} is a field, i.e., p is prime. More closely related is the work,12 in which signals with entries in
A = {−1, 1} have been considered as so-called saturated vectors. In [Lange, Pfetsch, Seib, Tillmann]13 conditions
for the unique recoverability of integer-valued signals have been studied. The therein considered problems are in
general NP-hard. However, for binary variables, medium-sized problems are shown to be solvable in reasonable
time.

There already exist some few cases in which compressed sensing algorithms were adapted to the finite or rather
discrete situation. One case is orthogonal matching pursuit (OMP), which has been considered in connection
with quantization, soft feedback14 and the sphere decoder.15 Additionally, in [Flinth, Kutyniok]16 the knowledge
of the discrete nature has been used to initialize the support set for the OMP algorithm. This approach is able to
slightly beat conventional compressed sensing algorithms. The first mentioned approaches show improvements
of the symbol error rates by incorporating the finite or discrete structure in OMP, however, they do not consider
the reduction of the number of measurements.

In this work we will consider versions of the so-called basis pursuit instead of the OMP. Basis pursuit is a
popular and by now well-understood approach to recover sparse signals from an underdetermined linear system
and given by:17

min ‖x‖1 subject to Ax = b. (P1)

As this problem is convex, it can be solved elementary with the help of convex optimization methods. A necessary
and sufficient condition under which x0 is uniquely recovered by basis pursuit is given as follows: The set of
all feasible solutions, x0 + kerA, intersects with the set {x : ‖x‖1 ≤ ‖x0‖1} exactly at x0 (cf. Figure ??). This
condition provides a useful geometric intuition about properties of measurement matrices to ensure uniqueness
of the solution. One of those properties is the so-called null space property (NSP) given by

kerA ∩ {w ∈ RN : ‖wK‖1 ≥ ‖wKC‖1} = {0}, (NSP)

where K = supp(x0) and KC = [N ] \K, where [N ] = {1, . . . , N}. Notice, that for a set B ⊂ [N ] and a vector
x ∈ RN , we denote by xB the vector in RN which coincides with x on the indices in B and is zero outside of B.

It is well-known that, if A fulfills the NSP with respect to some subset K ⊂ [N ], every signal x0 supported
on K is the unique minimizer of (P1) with b = Ax0.7,18–21

By using random matrices A such as a matrix with i.i.d. Gaussian entries it is possible to achieve a very
high probability of A having the NSP and therefore of (P1) to succeed, given that the number of measurements
satisfies m ≥ Ck log(N), where k is the sparsity of the signal x0 and C some positive constant not depending
on k and N .22 In the following, we aim to decrease the number of measurements m further using additional
structural assumptions.

Note that Flinth & Kutyniok16 showed that running basis pursuit followed by post-projection to the alphabet
does not help to recover the exact solution; one intuition behind this result being that the finite nature of the
signal is not incorporated in the reconstruction algorithm.

This implies that a better performance for finite-valued signals can only be achieved, if the finite nature of
the signals is incorporated into basis pursuit. One first idea could be to solve the problem given by

min ‖x‖1 subject to Ax = b and x ∈ AN .

Unfortunately, this is a very hard problem due to the nonconvexity of A. To resolve the problem of nonconvexity
of the set AN , one can instead consider the following minimization problem

min ‖x‖1 subject to Ax = b and x ∈ convAN ,



to which we usually refer to as basis pursuit with box constraints, which was already considered by Stojnic23 for
A = {0, 1}.

In this talk we give an overview of the results in [Keiper, Kutyniok, Lee, Pfander].24 In particular we will
present analytical results for the recovery of finite-valued k-sparse signals using basis pursuit with box constraints
in full generality. The related alphabets belong to either the unipolar (A = {0, . . . , L}, L ∈ Z) or the bipolar
(A = {−L1, . . . , L2}, L1, L2 ∈ N) situation.

We will introduce null space properties for the recovery of finite-valued k-sparse signals, which allow equivalent
conditions for unique recoverability of such signals (cf. Theorems 2.2, 3.2). We will then state that all versions
of basis pursuit with box constraints – adapted to the specific alphabet considered – are stable under noisy
measurements with precise error bounds. Finally, one can analytically compute the phase transitions of all
versions of basis pursuit with box constraints (see Theorems 2.3, 3.3) in the case of a Gaussian measurement
matrix A, i.e.,

A = m−1/2 [ai,j ]
m,N
i,j=1, with i.i.d. ai,j ∼ N (0, 1). (1)

The Results24 will surprisingly show that the unipolar situation is very different from the bipolar one. One
of the important findings is that the positioning of the zero – i.e., whether it is a boundary element or not – is
crucial. A second key observation is the fact that mainly the boundary elements play a role in the sense of −L1

and L2 in the case of bipolar finite-valued signals.

2. BIPOLAR FINITE-VALUED SIGNALS

We first consider the most general type of finite-valued sparse signals, namely signals x0 ∈ AN , where A =
{−L1, . . . , L2}. In the sequel it will turn out that performance guarantees can be significantly improved in the
case of an alphabets A = {0, . . . , L}. We, thus, will call a signal bipolar finite-valued signal, if we allow for both,
nonnegative and nonpositive entries to emphasize this case.

In the subsequent we will frequently use the following notation for a finite-valued signal x ∈ [−L1, L2]N :

K := K(x) := {j : xj 6= 0}, K− := K−(x) = {j : xj < 0} and K+ := K+(x) = {j : xj > 0}. (2)

We further introduce a notation for the sets of indices, where x either takes the value −L1 or L2, i.e., the values
with largest amplitude:

K−L1
:=K−L1

(x):={j : xj = −L1} and KL2
:=KL2

(x):={j : xj = L2}. (3)

The key objective now is to solve the underdetermined system of linear equations

Ax0 = b,

with A ∈ Rm×N and b ∈ Rm, m < N , under the additional assumption x0 ∈ AN , A = {−L1, . . . , L2},
L1, L2 ∈ N, and ‖x0‖0 ≤ k. A natural approach would be to exploit basis pursuit under the additional constraint
that x0 ∈ AN . However, this problem would be very hard to solve, wherefore we ’convexify’ the additional
constraint. This yields basis pursuit with box constraints

min ‖x‖1 subject to Ax = b and x ∈ [−L1, L2]N . (PF )

2.1 Finite NSP

One can now introduce the following weakend NSP as a necessary and sufficient condition on the measurement
matrix A, such that (PF ) uniquely recovers a given finite-valued sparse signal.

Definition 2.1. Let B1 ⊂ B−, B2 ⊂ B+ ⊂ [N ] with B− ∩ B+ = ∅. A matrix A ∈ Rm×N is said to satisfy the
finite NSP with respect to B1, B2, B− and B+, if

kerA ∩NB−,B+
∩HB1,B2

= {0}, (F-NSP)



where

NB−,B+ :=

w ∈ RN :
∑
i∈B−

wi −
∑
i∈B+

wi ≥
∑
i∈BC

‖wi‖

 ,

with B = B+ ∪B− and

HB1,B2
=
{
w ∈ RN : wi ≥ 0 for i ∈ B1 and wi ≤ 0 for i ∈ B2

}
.

Observe that the (classical) NSP can be written as kerA ∩NB = {0}, with NB = {w ∈ RN :
∑
i∈B−

‖wi‖+∑
i∈B+

‖wi‖ ≥
∑
i∈BC ‖wi‖}. Because of NB−,B+

⊂ NB , the F-NSP is indeed weaker than the NSP.

One can indeed verify that the F-NSP is necessary and sufficient to recover a bipolar finite-valued signal via
(PF ). This fact is stated by the following theorem.

Theorem 2.2. Let x0 ∈ AN be a bipolar finite-valued signal and let K−L1
⊂ K−,KL2

⊂ K+ be defined as in
(2) and (3) for x0, and let A ∈ Rm×N . Then the following conditions are equivalent:

(i) The vector x0 is the unique solution of (PF ) with b = Ax0.

(ii) The matrix A fulfills the F-NSP with respect to the sets K−L1 ,KL2 ,K−, and K+.

2.2 Phase Transition in Basis Pursuit with Box Constraints

The next aim is to show that for m large, a Gaussian matrix fulfills the F-NSP with respect to some fixed but
unknown support sets K−L1

,KL2
,K−, and K+ with high probability, i.e., that the kernel of a Gaussian matrix

trivially intersects the convex cone NK−,K+
∩HK−L1

,KL2
with high probability.

Amelunxen, Lotz, McCoy & Tropp25 have shown that the probability of ker(A) ∩B = {0}, for some convex
set B ⊂ RN , can be estimated in terms of the statistical dimension of B. This becomes particularly computable,
if B is a descent cone. We, therefore rely on the fact that NK−,K+ ∩HK−L1

,KL2
can be recast into the form of a

descent cone of the function f : RN → R+ defined by

f(x) =

{∑
i∈KC ‖xi‖ −

∑
i∈K−

xi +
∑
i∈K+

xi, if x ∈ [−L1, L2]N ,

∞, otherwise.

Consequently, one obtains the number of measurements necessary to recover finite-valued signals with high
probability.

Theorem 2.3. Fix a tolerance ε > 0. Let x0 be a bipolar finite-valued signal and let K−L1
⊂ K−,KL2

⊂ K+ ⊂
[N ] be defined as in (2) and (3) for x0. Further, let A ∈ Rm×N be a Gaussian matrix according to (1) as well as
b = Ax0. Set kbnd = |K−L1 ∪KL2 | and k0 = |[N ] \ (K− ∪K+)|. Define

∆F (k0, kbnd) := inf
τ≥0

{
2k0

∫ ∞
τ

(u− τ)2φ(u)du+ (N − k0 − kbnd)(1 + τ2) + kbnd

∫ τ

−∞
(u− τ)2φ(u)du

}
,

where φ(u)=(2π)−1/2e−u
2/2 is the probability density of the standard Gaussian distribution. If

m ≥∆F (k0, kbnd) +
√

8 log(4/ε)N,

then (PF ) will succeed to recover x0 uniquely with probability larger than 1− ε.
The behavior of the function ∆F is sketched in Figure 1 for different pairs of k0 and kbnd. One can observe,

that ∆F does not only depend on the number of nonzero entries, but it also depends on the number of entries
which do not have largest amplitude. We observe, that in the worst case, we cannot improve performance
guarantees compared to classical basis pursuit. However, if the ratio of kbnd and |K| = |K−∪K+| is close to one,
performance guarantees improve significantly (see Figure 1). This phenomenon in particular influences recovery
results for the alphabets A = {−1, 0, 1} and A = {0, 1}, where we specifically have |K| = kbnd and thus receive
the lowest of the curves in Figure 1 as phase transition.
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Figure 1. Phase transition of the convex program (PF ) according to the ratio of k̃ = k − kbnd to k, where k is the size
of the whole support of a bipolar finite-valued signal and kbnd the number of entries having largest amplitude. For the
convenience of the reader, the following two illustrations are provided: Successful recovery related to the area above the
curves in (a), and below the curves in (b).

2.3 Robust Finite NSP

In most applications we cannot measure signals with infinite precision. We therefore need to answer the question
of the stability of a recovery algorithm with respect to noisy measurements, i.e., in case the measurement vector
b is only an approximation of the vector Ax0 with ‖Ax0 − b‖2 ≤ η for some η ≥ 0. One way to tackle this
problem numerically is to replace the constraint Ax = b in (PF ) by ‖Ax− b‖ ≤ η.7 In our situation, this yields
the following algorithm, which we refer to as basis pursuit denoising with box constraints:

min ‖z‖1 subject to ‖Az − b‖2 ≤ η and z ∈ [−L1, L2]N . (PηF )

After introducing a sufficient null space property of the measurement matrix A, Theorem 2.5 will state that
(PηF ) is indeed robust to noise under this condition.

Definition 2.4. A matrix A ∈ Rm×N is said to satisfy the robust finite null space property with constants
0 < ρ < 1 and τ > 0 relative to the disjoint sets B1, B2, B̂ ⊂ [N ], if∑

i∈B1

vi −
∑
i∈B2

vi +
∑
i∈B̂

‖vi‖ ≤ ρ
∑
i∈BC

‖vi‖+ τ‖Av‖2 for any v ∈ HB1,B2
, (RF-NSP)

where B = B1 ∪B2 ∪ B̂.

Theorem 2.5. Let x0 be a bipolar finite-valued signal and K−,K+,K−L1
,KL2

be defined as in (2), (3). Further
let A ∈ Rm×N satisfy the RF-NSP with constants 0 < ρ < 1 and τ > 0 relative to the sets K−L1 ,KL2 , K̂ =
(K− ∪K+) \ (K−L1 ∪KL2). Further, assume that the measurements satisfy b = Ax0 + e, where the noise e ∈ RN
satisfies ‖e‖2 ≤ η, for some η > 0. Then a solution ẑ of (PηF ) approximates x0 with `1-error

‖ẑ − x0‖1 ≤
4τ

1− ρ
η.



2.4 Phase Transition under Noisy Measurements

We have seen that (PηF ) is robust provided that the sensing matrix A satisfies the RF-NSP. However, it is hard to
verify in general, if a measurement matrix fulfills this property. However, one can show that Gaussian matrices
are in terms of the NSP well-suited for robust recovery of unipolar binary signals provided that m is sufficiently
large.

Since the outcome of the adapted basis pursuit (PηF ) is not necessarily integral, we utilize the finite nature
of the signal and post-project the outcome to the integers in the spirit of.16 Hence, we consider the following
algorithm:

z̃ = round(ẑ) with ẑ = argmin ‖x‖1 subject to ‖Ax− b‖2 ≤ η and x ∈ [−L1, L2]N . (P η,rF )

Note, that even though post-projection will not help to improve performance guarantees in the noiseless case,16

we can use it to round an approximate solution of the noisy case to the exact and unique solution. This fact is
included in the next theorem.

Theorem 2.6. Let Let x0 be a bipolar finite-valued signal and K−,K+,K−L1 ,KL2 be defined as in (2), (3).
Further let A ∈ Rm×N be a Gaussian measurement matrix as in (1). Further, assume that the measurements
satisfy b = Ax̂+ e with ‖e‖2 ≤ η for some η > 0, and let 0 < ε < 1, τ > 0. If m fulfills

m− 1 ≥
(√

ln(2ε−1) +
√

∆F (k0, kbnd) + τ
)2
,

where kbnd = |K−L1 ∪KL2 | and k0 = |[N ] \ (K− ∪K+)|, then, with probability at least 1 − ε, x0 is the unique
solution of (P η,rF ).

3. UNIPOLAR FINITE-VALUED SIGNALS

We already mentioned that the positioning of the zero within the alphabet plays a crucial role in the performance
of basis pursuit with box constraints. This phenomenon already appeared in the classical basis pursuit approach,
as Stojnic showed that basis pursuit restricted to the nonnegative orthant provides an improved performance in
recovering nonnegative-valued sparse signals.26 The same effect appears for basis pursuit with box constraints.

In the sequel we will call a signal x0 ∈ {0, . . . , L} unipolar finite-valued and use the following notation for
specific support sets of x0:

K := K(x) := {j : xj > 0}, KL := KL(x) := {j : xj = L}. (4)

To recover a unipolar finite-valued signal, we solve the underdetermined system of linear equations

Ax0 = b,

with A ∈ Rm×N and b ∈ Rm, m < N , under the additional assumption that x0 ∈ ANU with AU = {0, . . . , L}, and
‖x0‖0 ≤ k. We will again use basis pursuit with box constraint, which yields for unipolar finite-valued signals
the program given by

min ‖x‖1 subject to Ax = b and x ∈ [0, L]N . (PUF )

The following null space property can be shown to be necessary and sufficient for (PUF ) to succeed in
recovering a unipolar finite-valued signal.

Definition 3.1. Let B1 ⊂ B ⊂ [N ]. A matrix A ∈ Rm×N is said to satisfy the unipolar finite NSP with respect
to B1 and B, if

kerA ∩N+ ∩HBC ,B1
= {0}, (UF-NSP)

where HBC ,B1
= {w ∈ RN : wi ≤ 0 for i ∈ B1 and wi ≥ 0 for i ∈ BC} and N+ = {w ∈ RN :

∑N
i=1 wi ≤ 0}.

Theorem 3.2. Let x0 ∈ ANU be a unipolar finite-valued signal and KL,K be defined as in (4) for x0. Further,
let A ∈ Rm×N . Then the following conditions are equivalent:
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Figure 2. Phase transition of the convex program (PUF ) according to the ratio of k̂ to k, where k is the size of the entire
support of a unipolar finite-valued signal and k̂ = K \ KL the number of entries in the signal not equal to zero or to
the largest value of the given alphabet. For the convenience of the reader, the following two illustrations are provided:
Successful recovery related to the area above the curves in (a), and below the curves in (b).

(i) The measurement matrix A satisfies the UF-NSP with respect to sets KL and K.

(ii) The vector x0 is the unique solution of (PUF ) with b = Ax0.

Using this result, one can again compute the number of sufficient measurements for (PUF ) to succeed, given
that A ∈ Rm×N is a Gaussian matrix. The following theorem gives a sharp bound.

Theorem 3.3. Fix a tolerance ε > 0. Let x0 be a unipolar finite-valued signal and KL ⊂ K ⊂ [N ] defined as in

(4). Further, let A ∈ Rm×N be a Gaussian matrix as defined in (1), b = Ax0, and let φ(u)=(2π)−1/2e−u
2/2 the

probability density of the Gaussian distribution. Setting kL := |KL|, and k0 := |[N ]−K|, provided that

m ≥ ∆UF (k0, kL) +
√

8 log(4/ε)N,

where

∆UF (k0, k̂) = inf
τ≥0

{
(N − k0 − kL)(1 + τ2) + k0

∫ ∞
τ

(u− τ)2φ(u)du+ (kL)

∫ τ

−∞
(u− τ)2φ(u)du

}
,

the program (PUF ) will succeed to recover x0 uniquely with probability larger than 1− ε.
Note, that Theorem 3.3 is true for all signals of the form x̂ = x̆K̂+L1KL

, where K̂ = K \KL and x̆ ∈ (0, L)N .
In fact, the phase transition highly depends on the size of KL relative to K. In the worst case, namely when
KL = ∅, the phase transition coincides with the one of nonnegative basis pursuit;26 in the best case, namely
when the ratio of kL to k = |k| is close to one, it appears much earlier. For an illustration we refer to Figure 2.

The question of robustness in the unipolar finite-valued case is of course also crucial. We will again use
the a priori knowledge that the original signal is discrete-valued. We therefore consider the following variant of
quadratically constrained basis pursuit:

z̃ = round(ẑ) with ẑ = argmin ‖x‖1 subject to ‖Ax− b‖2 ≤ η and x ∈ [0, L]N . (P η,rUF )



[Keiper, Kutyniok, Lee, Pfander]24 have shown that (P η,rUF ) is indeed robust provided that the sensing matrix
A ∈ Rm×N fulfills the an adapted UF-NSP condition. Using this sufficient condition one can prove the following
result for (P η,rUF ).

Theorem 3.4. Let x0 be a unipolar finite-valued signal and K,KL as in (4), and let A ∈ Rm×N be a Gaussian
measurement matrix. Further, assume that the measurements satisfy b = Ax0 + e, where ‖e‖2 ≤ η, for some
η > 0, and let 0 < ε < 1, and m fulfill

m− 1 ≥
(√

ln(2ε−1) +
√

∆UF (k0, kL) + 4η
)2
,

where k0 = |KC |, kL = |KL|. Then, with probability at least 1− ε, x0 is the unique solution of (P η,rUF ).

4. NONUNIFORM AND UNIFORM RECOVERY

In compressed sensing one usually distinguishes between uniform and nonuniform recovery guarantees. A nonuni-
form guarantee means that we can recover a fixed sparse signal using a random drawn measurement matrix with
high probability. A uniform recovery result on the other hand states that we can recover all sparse signals using
the same random matrix with high probability. Uniform guarantees are clearly stronger than nonuniform. The
authors24 have presented nonuniform recovery result for finite-valued signals. Thus the question remains whether
one can also show uniform recovery results. In fact, this is not the case, which is implied by the next theorem.

Theorem 4.1. For A ∈ Rm×N and K ⊂ [N ], the following statements are equivalent:

(i) Every unipolar binary vector x0 with suppx0 ⊂ K is the unique solution of (PUF ) with b = Ax0.

(ii) Every vector x0 ∈ [0, 1]N with suppx0 ⊂ K is the unique solution of (PUF ) with b = Ax0.

(iii) The measurement matrix A satisfies the NSP+ with respect to K, i.e., kerA ∩N+ ∩H+
K = {0}, where

H+
K = {w ∈ RN : wi ≥ 0 for i ∈ KC} and N+ = {w ∈ RN : 0 ≥

N∑
i=1

wi}.

Thus, even if we only wish to recover every unipolar binary signal x0 with suppx0 ⊂ K, the measurement
matrix A needs to fulfill a much stronger property. This property is actually sufficient to uniquely recover every
nonnegative signal supported on K via nonnegative basis pursuit. Thus, if we wish to show uniform recovery
results, additional assumptions on the signal to be unipolar binary are not beneficial.
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