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Perturbations of Fusion Frames and the
Effect on Their Canonical Dual

Gitta Kutynioka, Victoria Paternostrob, and Friedrich Philippa

a Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, MA 5-4,
Germany;

b Universidad de Buenos Aires and IMAS-CONICET, Consejo Nacional de Investigaciones
Cient́ıficas y Técnicas, 1428 Buenos Aires, Argentina

ABSTRACT

Measurements in real world applications are often corrupted by noise due to exterior influences. It is therefore
convenient to investigate perturbations of the utilized measurement systems. In the present paper, we consider
small perturbations of fusion frames in Hilbert spaces and study the effect on the canonical duals of orignal and
perturbed fusion frame. It turns out that the duals are stable under these perturbations.

Keywords: Fusion frame, perturbation, canonical dual

1. INTRODUCTION

Motivated by the task of piecing frames together which for example becomes necessary when dealing with a huge
amount of data, P.G. Casazza and G. Kutyniok introduced fusion frames as frames of subspaces in [2]. However,
it soon became evident (see [4]) that these objects are perfectly suited for the needs of novel applications requiring
distributed processing since they allow to effectively process data in the particular subspaces.

Fusion frames can be employed, similarly to standard frames, for sensing data but also for its reconstruction.
In the sensing process, the data is stored in the fusion frame coefficients. On the other hand, for the reconstruction
one typically uses so-called duals which synthesize the fusion frame coefficients. Although a widely accepted
theory of duality for fusion frames is still not available (for approaches in this direction, see [5, 7, 8]), in analogy
to the frame case there is always one special dual for performing the recovery task: the so-called canonical dual.

Since in real world application scenarios we often face corruption of sensored or processed data due to
interferences and noise etc., it is natural to assume that the fusion frame at hand – and thereby the coefficients
– might undergo small perturbations. However, for recovering the data, the dual of the original fusion frame
is applied instead of the perturbed dual which would provide exact recovery. Therefore, it seems desirable to
obtain results on how perturbation effects the canonical dual. This is our main objective in the present paper.
In fact, the analogue situation for frames has been investigated already in [6]. However, although proofs of frame
properties can often be carried over easily to the fusion frame setting, this is not the case here and new methods
have to be developed. Our main result is Theorem 3.7 below which states that the canonical dual is stable under
the kind of perturbations we consider. We also provide constants for measuring the degree of stability.

The paper is organized as follows. First, we provide some notation at the end of this introduction. In Section
2, we give a brief introduction on frames, fusion frames, and their canonical duals. The main theorem is stated
and proved in Section 3 with the help of two auxiliary lemmas.

We close this introduction by fixing the notation we will use. Let H and K be Hilbert spaces. The set of all
bounded and everywhere defined linear operators between H and K will be denoted by B(H,K). As ususal, we
set B(H) := B(H,H). The norm on B(H,K) will be the usual operator norm, i.e.

‖T‖ := sup {‖Tx‖ : x ∈ H, ‖x‖ = 1} .
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The restriction of an operator T ∈ B(H,K) to a subspace V ⊂ H will be denoted by T |V . If V is closed, by PV

we denote the orthogonal projection onto V in H. Recall that the space of H-valued `2-sequences over I, defined
by

`2(I,H) :=

{
(xi)i∈I : xi ∈ H ∀ i ∈ I,

∑
i∈I
‖xi‖2 <∞

}
,

is a Hilbert space with scalar product〈
(xi)i∈I , (yi)i∈I

〉
=
∑
i∈I
〈xi, yi〉, (xi)i∈I , (yi)i∈I ∈ `2(I,H).

We shall often denote
H := `2(I,H).

2. FUSION FRAMES AND THEIR CANONICAL DUALS

For the rest of this paper, H is a fixed Hilbert space and I ⊂ N stands for a finite or countable index set. Recall
that (see [1]) a frame for H is a sequence Φ = (ϕi)i∈I of vectors in H for which there exist numbers A,B > 0
such that

A‖x‖2 ≤
∑
i∈I
|〈x, ϕi〉|2 ≤ B‖x‖2 for all x ∈ H.

The numbers A and B are called frame bounds of Φ. It is immediately seen that the inequality above implies
that the analysis operator TΦ : H → `2(I) of Φ, defined by

TΦx := (〈x, ϕi〉)i∈I , x ∈ H,

is bounded. It is well known that its adjoint – the synthesis operator of Φ – is given by

T ∗Φ(ci)i∈I =
∑
i∈I

ciϕi, (ci)i∈I ∈ `2(I).

The frame operator of Φ is then defined by SΦ := T ∗ΦTΦ and has the form

SΦx =
∑
i∈I
〈x, ϕi〉ϕi, x ∈ H.

It is a positive selfadjoint operator in H which is bounded and boundedly invertible. The canonical dual of the
frame Φ is defined by Φ̃ = (S−1

Φ ϕi)i∈I .

The concept of fusion frames is a generalization of frames. Let us recall that a fusion frame (see, e.g., [3]) for
H is a sequence W = ((Wi, ci))i∈I of closed subspaces Wi of H and weights ci > 0 for which there exist numbers
A,B > 0 such that

A‖x‖2 ≤
∑
i∈I

c2i ‖PWix‖2 ≤ B‖x‖2 for all x ∈ H.

The numbers A and B are called the fusion frame bounds of W. If only the right hand side inequality holds, W
is called a Bessel fusion sequence and B its Bessel bound. The analysis operator TW : H → H = `2(I,H) of a
Bessel fusion sequence W is defined by

TWx := (ciPWix)i∈I , x ∈ H.

Again, it is clear that TW is bounded. The synthesis operator of W is given by

T ∗W(xi)i∈I =
∑
i∈I

ciPWi
xi, (xi)i∈I ∈ H,

Proc. of SPIE Vol. 9597  95970S-2
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and the fusion frame operator of W, defined by SW := T ∗WTW , reads as

SWx =
∑
i∈I

c2iPWix, x ∈ H.

It is a bounded non-negative selfadjoint operator. It is boundedly invertible if and only if W is a fusion frame.

Remark 2.1. In previous works on fusion frames (see, e.g., [2, 3, 4]), the analysis operator was not defined to
map into H = `2(I,H), but into

⊕
i∈I Wi (which can be regarded as a closed subspace of H). We have thus

slightly modified the definition. The reason is that in this paper we compare fusion frames with each other by
considering the difference of their analysis operators.

Let W = ((Wi, ci))i∈I be a fusion frame for H. We now define the canonical dual of W by

W̃ :=
((
S−1
W Wi, ‖S−1

W |Wi‖ci
))

i∈I .

We remark that other authors (see, e.g., [5]) choose ci as the weights instead of ‖S−1
W |Wi‖ci, i ∈ I. Therefore,

we justify our choice: Consider the canonical dual Φ̃ = (S−1
Φ ϕi)i∈I of a frame Φ = (ϕi)i∈I for H. Translated to

the fusion frame setting, we have

Wi = span{ϕi} and ci = ‖ϕi‖ as well as W̃i = S−1
Φ Wi and c̃i = ‖S−1

Φ ϕi‖.

Thus, if ci 6= 0 (i.e., ϕi 6= 0), the weights of the canonical dual are c̃i = ci‖S−1
Φ (ϕi/‖ϕi‖)‖ = ci‖S−1

Φ |Wi‖. The
same trivially holds for ci = 0.

Lemma 2.2. Let W = ((Wi, ci))i∈I be a fusion frame for H. Then also the canonical dual W̃ of W is a fusion
frame for H.

Proof. In [5] it was proved that Ŵ := ((S−1
W Wi, ci))i∈I is a fusion frame for H (see also Corollary 3.6 below).

Let A ≤ B be fusion frame bounds of W and Â ≤ B̂ fusion frame bounds of Ŵ. Since B−1 ≤ ‖S−1
W |Wi‖ ≤ A−1

if Wi 6= {0}, we have for x ∈ H

ÂB−2‖x‖2 ≤
∑
i∈I′

c2i ‖S−1
W |Wi‖2‖PS−1

W Wi
x‖2 ≤ B̂A−2‖x‖2,

where I ′ := {i ∈ I : Wi 6= {0}}. But the above sum remains the same if I ′ is replaced by I.

3. PERTURBATIONS OF FUSION FRAMES

This section is devoted to studying the behavior of the canonical dual of a fusion frame under perturbations. We
consider perturbations of fusion frames in analogy to the perturbations in [6] for frames.

Definition 3.1. Let µ > 0, and let W = ((Wi, ci))i∈I and V = ((Vi, di))i∈I be two Bessel fusion sequencces in
H. We say that V is a µ-perturbation of W (and vice versa) if ‖TW − TV‖ ≤ µ.

Remark 3.2. If V = ((Vi, di))i∈I is a µ-perturbation of W = ((Wi, ci))i∈I , then for each i ∈ I and each x ∈ H
we have

‖ciPWi
x− diPVi

x‖ = ‖(T ∗W − T ∗V)(δijx)j∈I‖ ≤ ‖T ∗W − T ∗V‖‖x‖ ≤ µ‖x‖,

and therefore
‖ciPWi

− diPVi
‖ ≤ µ. (1)

Since ci = ‖ciPWi‖ ≤ ‖ciPWi − diPVi‖+ di and di ≤ ‖ciPWi − diPVi‖+ ci, relation (1) implies

|ci − di| ≤ ‖ciPWi
− diPVi

‖ ≤ µ.

Lemma 3.3. LetW = ((Wi, ci))i∈I be a fusion frame for H with fusion frame bounds A ≤ B and V = ((Vi, di))i∈I
a Bessel fusion sequence in H which is a µ-perturbation of W, µ > 0. If µ <

√
A then V is a fusion frame for

H with fusion frame bounds (
√
A− µ)2 and (

√
B + µ)2.
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Proof. The claim directly follows from

(
√
A− µ)‖x‖ ≤ ‖TWx‖ − ‖(TW − TV)x‖ ≤ ‖TVx‖ ≤ ‖(TV − TW)x‖+ ‖TWx‖ ≤ (µ+

√
B)‖x‖,

where x ∈ H.

In the following, we shall show that the canonical dual of a µ-perturbation of a fusion frame W will be a
Cµ-perturbation of the canonical dual of W, where C > 0 depends on µ and W. In the proof, we will have to
estimate expressions of the type ∥∥∥cPS−1

1 W − dPS−1
2 V

∥∥∥ ,
where c, d > 0, S1, S2 are positive definite operators and V and W closed subspaces. The next two lemmas will
be helpful for tackling this problem.

Lemma 3.4. Let P and Q be orthogonal projections in H and c, d > 0. Then

‖P −Q‖ ≤
√

1

c2
+

1

d2
‖cP − dQ‖.

Proof. Let x ∈ H, ‖x‖ = 1. Then we have

‖cPx− dQx‖2 = ‖cQPx+ c(I −Q)Px− dQx‖2 = ‖Q(cPx− dx)‖2 + c2‖(I −Q)Px‖2 ≥ c2‖(I −Q)Px‖2.

Analogously, one obtains ‖cPx− dQx‖2 ≥ d2‖(I − P )Qx‖2. Thus,

‖(I −Q)P‖ ≤ 1

c
‖cP − dQ‖ and ‖(I − P )Q‖ ≤ 1

d
‖cP − dQ‖.

Hence, also ‖Q(I − P )‖ = ‖((I − P )Q)∗‖ = ‖(I − P )Q‖ ≤ 1
d‖cP − dQ‖. Since, for x ∈ H,

‖(P −Q)x‖2 = ‖QPx+ (I −Q)Px−Qx‖2 = ‖Q(I − P )x‖2 + ‖(I −Q)Px‖2,

the claim follows from the above inequalities.

Lemma 3.5. Let W ⊂ H be a closed subspace and A ∈ B(H) boundedly invertible. Then, for every λ > 0, the
operator

R(λ) := APW + λA−∗PW⊥ ,

where A−∗ = (A∗)−1, is boundedly invertible and we have

PAW = R(λ)−∗PWA∗. (2)

Moreover, if c, d > 0 are such that c‖x‖ ≤ ‖Ax‖ ≤ d‖x‖ for x ∈ H then

d−1 min{1, λ−1cd}‖x‖ ≤ ‖R(λ)−1x‖ ≤ c−1 max{1, λ−1cd}‖x‖. (3)

As a consequence, we obtain
d−1‖PWA∗x‖ ≤ ‖PAWx‖ ≤ c−1‖PWA∗x‖. (4)

Proof. First of all, we note that (AW )⊥ = A−∗W⊥. From this, it immediately follows that R(λ) is boundedly
invertible and that PAWR(λ) = APW . The latter implies PAW = APWR(λ)−1. Adjoining this gives (2). For
the proof of (3) let x ∈ H. Then we obtain

‖R(λ)x‖2 = ‖APWx‖2 + λ2‖A−∗PW⊥x‖2 ≥ c2‖PWx‖2 + λ2d−2‖PW⊥x‖2

≥ min{c2, λ2d−2}‖x‖2,
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as well as

‖R(λ)x‖2 = ‖APWx‖2 + λ2‖A−∗PW⊥x‖2 ≤ d2‖PWx‖2 + λ2c−2‖PW⊥x‖2

≤ max{d2, λ2c−2}‖x‖2.

This implies (3). Setting λ = cd and using (2) yields (4).

We briefly remark that Lemma 3.5 immediately implies the following corollary which was already proved by
P. Găvruta in [5, Theorem 2.4].

Corollary 3.6. Let ((Wi, ci))i∈I be a fusion frame for H with bounds A ≤ B and let T ∈ B(H) be boundedly
invertible. Then also ((TWi, ci))i∈I is a fusion frame for H with bounds Aγ−2 ≤ Bγ2, where γ = ‖T‖‖T−1‖.

We are now ready to formulate and prove our main theorem. Recall that the canonical dual of a fusion frame
W is denoted by W̃.

Theorem 3.7. Let W = ((Wi, ci))i∈I be a fusion frame for H with fusion frame bounds A ≤ B and let
V = ((Vi, di))i∈I be a µ-perturbation of W, where 0 < µ <

√
A. If the sequences (ci)i∈I and (di)i∈I are bounded

from below by some τ > 0 and σ > 0, respectively, then Ṽ is a Cµ-perturbation of W̃, where

C =
c2 + d2

A

[
1 + (A−1 +B)2

√
A

(√
1

τ2
+

1

σ2
+ cd2

)
+ d2

(
1 + c2d2

)]

with c := 2
√
B + µ and d := (

√
A− µ)−1.

Proof. For i ∈ I we define the operators

RWi
:= S−1

W PWi
+ SWPW⊥i

and RVi
:= S−1

V PVi
+ SVPV ⊥i

.

By Lemma 3.5, these are boundedly invertible and

PS−1
W Wi

= R−∗Wi
PWiS

−1
W and PS−1

V Vi
= R−∗Vi

PViS
−1
V .

Put ĉi := ‖S−1
W |Wi‖ci and d̂i := ‖S−1

V |Vi‖di. Then ĉi ≤ A−1ci and d̂i ≤ (
√
A− µ)−2di = d2di. For x ∈ H define

∆i(x) :=
∥∥∥ĉiPS−1

W Wi
x− d̂iPS−1

V Vi
x
∥∥∥ =

∥∥∥ĉiR−∗Wi
PWi

S−1
W x− d̂iR−∗Vi

PVi
S−1
V x

∥∥∥ .
Since ‖TW̃x− TṼx‖

2 =
∑

i∈I ∆2
i (x), it is our aim to estimate ∆i(x). We have

∆i(x) ≤
∥∥ĉi(R−∗Wi

−R−∗Vi
)PWi

S−1
W x

∥∥+
∥∥∥R−∗Vi

(
ĉiPWi

S−1
W x− d̂iPVi

S−1
V x

)∥∥∥
≤
∥∥R−1

Wi
−R−1

Vi

∥∥A−1ci‖PWi
S−1
W x‖+

∥∥R−1
Vi

∥∥ ∥∥∥ĉiPWi
S−1
W x− d̂iPVi

S−1
W x

∥∥∥
+
∥∥R−1

Vi

∥∥ d2di
∥∥PVi

(
S−1
W − S

−1
V
)
x
∥∥ .

Since R−1
Wi
−R−1

Vi
= R−1

Wi
(RVi

−RWi
)R−1

Vi
and ‖R−1

Vi
‖ ≤ (

√
A− µ)−2 + (

√
B + µ)2 ≤ c2 + d2 by Lemma 3.5, with

∆
(1)
i := A−1

∥∥R−1
Wi

∥∥ ‖RWi −RVi‖ and ∆
(2)
i :=

∣∣∥∥S−1
W |Wi

∥∥− ∥∥S−1
V |Vi

∥∥∣∣
we obtain

∆i(x)

c2 + d2
≤ ∆

(1)
i ci

∥∥PWi
S−1
W x

∥∥+ d2di
∥∥PVi

(
S−1
W − S

−1
V
)
x
∥∥+ ∆

(2)
i ci

∥∥PWi
S−1
W x

∥∥
+
∥∥S−1
V |Vi

∥∥∥∥(ciPWi
− diPVi

)S−1
W x

∥∥
≤
(

∆
(1)
i + ∆

(2)
i

)
ci
∥∥PWi

S−1
W x

∥∥+ d2di
∥∥PVi

(
S−1
W − S

−1
V
)
x
∥∥+ d2

∥∥(ciPWi
− diPVi

)S−1
W x

∥∥ .
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Let us start with estimating ∆
(2)
i . First of all, we note that

‖SW − SV‖ ≤ ‖T ∗W(TW − TV)‖+ ‖(T ∗W − T ∗V)TV‖ ≤ (‖TW‖+ ‖TV‖)µ ≤ (2
√
B + µ)µ. (5)

Now, from ‖S−1
W |Wi‖ = ‖S−1

W PWi‖, Lemma 3.4, and Remark 3.2 it follows that

∆
(2)
i =

∣∣∥∥S−1
W PWi

∥∥− ∥∥S−1
V PVi

∥∥∣∣ ≤ ∥∥S−1
W PWi

− S−1
V PVi

∥∥ ≤ ∥∥S−1
W (PWi

− PVi
)
∥∥+

∥∥S−1
W − S

−1
V
∥∥

≤ A−1

√
1

c2i
+

1

d2
i

‖ciPWi
− diPVi

‖+ ‖S−1
W (SV − SW)S−1

V ‖

≤ µ

A

√
1

τ2
+

1

σ2
+

(2
√
B + µ)µ

A(
√
A− µ)2

= Mµ,

where

M =
1

A

(√
1

τ2
+

1

σ2
+

2
√
B + µ

(
√
A− µ)2

)
=

1

A

(√
1

τ2
+

1

σ2
+ cd2

)
.

In order to estimate ∆
(1)
i , we observe that (see (5))

‖RWi −RVi‖ =
∥∥∥S−1
W PWi + SWPW⊥i

− S−1
V PVi − SVPV ⊥i

∥∥∥ ≤Mµ+
∥∥∥SWPW⊥i

− SVPV ⊥i

∥∥∥
≤Mµ+

∥∥∥SW (PW⊥i
− PV ⊥i

)∥∥∥+
∥∥∥(SW − SV)PV ⊥i

∥∥∥
≤

(
1

A

(√
1

τ2
+

1

σ2
+ cd2

)
+

√
1

τ2
+

1

σ2
B + c

)
µ

=
(
A−1 +B

)(√ 1

τ2
+

1

σ2
+ cd2 · 1 +Ad−2

1 +AB

)
µ

≤
(
A−1 +B

)(√ 1

τ2
+

1

σ2
+ cd2

)
µ = A

(
A−1 +B

)
Mµ,

where in the last inequality we have used that d−2 ≤ B. Thus, we have

∆
(1)
i + ∆

(2)
i ≤

(
A−1 +B

)2
Mµ+Mµ =

(
1 +

(
A−1 +B

)2)
Mµ.

Now, define the functionals

ri(x) :=
(

1 +
(
A−1 +B

)2)
Mµci

∥∥PWi
S−1
W x

∥∥ ,
si(x) := d2di

∥∥PVi

(
S−1
W − S

−1
V
)
x
∥∥ ,

ti(x) := d2
∥∥(ciPWi

− diPVi
)S−1
W x

∥∥ .
as well as

R(x) :=

√∑
i∈I

r2
i (x), S(x) :=

√∑
i∈I

s2
i (x), and T (x) :=

√∑
i∈I

t2i (x).

Then (c2 + d2)−1∆i(x) ≤ ri(x) + si(x) + ti(x) and, by applying the Cauchy-Schwarz inequality, one obtains

1

(c2 + d2)2

∑
i∈I

∆2
i (x) ≤

∑
i∈I

(ri(x) + si(x) + ti(x))
2 ≤ (R(x) + S(x) + T (x))

2
.
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Since ‖TWS−1
W ‖2 = ‖(TWS−1

W )∗TWS
−1
W ‖ = ‖S−1

W ‖ ≤ A−1, we have

R2(x) =
(

1 +
(
A−1 +B

)2)2

M2µ2
∥∥TWS−1

W x
∥∥2 ≤

(
1 +

(
A−1 +B

)2
√
A

)2

M2µ2‖x‖2,

S2(x) = d4
∥∥TV (S−1

W − S
−1
V
)
x
∥∥2 ≤ A−2c4d8µ2‖x‖2,

T 2(x) = d4
∥∥(TW − TV)S−1

W x
∥∥2 ≤ A−2d4µ2‖x‖2.

That is,

1

c2 + d2

√∑
i∈I

∆2
i (x) ≤

[
1 +

(
A−1 +B

)2
√
A

M +A−1c2d4 +A−1d2

]
µ‖x‖.

This shows that ‖TW̃ − TṼ‖ ≤ Cµ.

The following corollary is an immediate consequence of Remark 3.2 and Theorem 3.7.

Corollary 3.8. Let W = ((Wi, ci))i∈I be a fusion frame for H with fusion frame bounds A ≤ B such that

τ := inf ci > 0 and let V = ((Vi, di))i∈I be a µ-perturbation of W, where 0 < µ < min{
√
A, τ}. Then Ṽ is a

Cµ-perturbation of W̃, where

C =
c2 + d2

A

[
1 + (A−1 +B)2

√
A

(√
1

τ
+

1

τ − µ
+ cd2

)
+ d2

(
1 + c2d2

)]
with c := 2

√
B + µ and d := (

√
A− µ)−1.
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