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We are currently witnessing an unprecedented success of 
artificial neural networks in both public life and various areas 
of sciences. Within a very few years, neural-network-based 
algorithms have mastered practical tasks which until recent-
ly were considered to be very difficult for machines, thereby 
fundamentally changing our way of thinking about artificial 
intelligence: Nowadays, self-driving cars are controlled by 
algorithms based on neural networks [1]. At the same time, 
similar methods can beat the world top players not only at 
chess, but also at the much more complex game of Go [2]; 
and even more impressive, the recent AlphaZero computer 
program is able to train itself from scratch, reaching a su-
perhuman level of play just within 24 hours [3]. In the public 
sector, neural network methodologies are just starting to re-
volutionize the healthcare industry: for instance, they show 
a great potential to classify types of skin cancer [4]; and 
meanwhile, the U.S. Food and Drug Administration (FDA) 
has already approved the marketing of the first medical de-
vice for detecting diabetic retinopathy which is based on 
artificial intelligence [5]. But also beyond medical sciences, 
these technologies are affecting every single one of us, for 
example, when using a voice assistant on our smartphone 
or an online translator. These are only very few applications 
from a long list, and without doubt, it is still growing at a 
stunning speed. Finally, even when it comes to (classical) 
mathematical problems, many ideas from neural network 
theory proved very useful, such as in solving partial diffe-
rential equations or ill-posed inverse problems, oftentimes 
forming the current state-of-the-art methods. 
With regard to these very recent success stories, it may 
come as a surprise that artificial neural networks are by far 
not a new invention. In fact, they have undergone many fluc-
tuations in popularity during the last decades, dating back 
to original work by McCulloch and Pitts in 1943 [6]. At that 
time, a key goal was to develop learning algorithms by mi-
micking the human brain – which can be seen a real neural 
network – ultimately aiming at a foundation of (artificial) in-
telligence. The “failure” of this approach can be particularly 
attributed to a lack of computational power in those days as 
well as a very limited amount of data sets available for trai-
ning. Today, however, the data deluge and tremendously in-
creased hardware power have largely eliminated these limi-
tations, which has led to an impressive comeback of neural 
networks in the 2010’s. With modern hardware technology, 
it is now possible to train deep neural networks of more than 
hundreds of layers and millions of neurons.
Nevertheless, most of the related research is still empirically 
driven and a sound theoretical foundation is almost com-
pletely missing. This was most prominently noted by Ali Ra-
himi, a researcher in artificial intelligence at Google, who 
claimed that machine learning algorithms which are based 

on trial-and-error engineering have become a form of “al-
chemy” [7]. In fact, the theoretical understanding of this 
field is still years behind empirical progress, and especial-
ly in view of many critical applications (some of which are 
mentioned above), a lot of fundamental research needs to 
be done in this direction. Not least because of this, a rapidly 
growing number of researchers from various areas of ma-
thematics, such as approximation theory, optimization, and 
statistics, devote themselves to contribute to the develop-
ment of a theory for artificial neural networks. 
The purpose of this article is to provide an introduction 
to artificial neural networks and how they can be used to 
solve real-world (learning) problems. Beyond that, we will 
outline several aspects of a theoretical foundation – rather 
leading to open questions than answers – as well as recent 
applications to inverse problems and partial differential 
equations. 

What Are Neural Networks?	  
To stand on more solid ground, let us begin with a formal 
definition of artificial neural networks. In its vanilla form, 
a neural network can be regarded as a highly structured 
function Φ: ℝd→ℝNL  that arises from a cascade of simpler 
functions, taking the form

              Φ(x)=TL ∘ ρ ∘ TL-1 ∘ ρ ∘ TL-2∘ … ∘ ρ ∘ T1 (x). 

Here, each function Tl :ℝNl-1→ ℝNl, l=1,…,L  (with N0≔d) is 
assumed to be affine linear, i.e., Tl (x)=Alx+bl for some 
weight matrix Al∈ ℝNl×Nl-1  and bias vector bl ∈ ℝNl , while 
ρ:ℝ→ℝ is a non-linear activation function, which is applied 
entry-wise. In order to indicate that this definition strongly 
depends the parameter set θ= (Al ,bl)L

l=1 , we may also write 
Φθ instead of Φ. Let us also point out that the total number 
L of composition steps corresponds to the number of layers 
of the network. More specifically, the last layer is called 
the output layer, while all preceding layers are referred to 
as hidden layers, which are L-1 many in our case; note that 
the very first layer is sometimes also called the input layer. 
The specific architecture of a neural network can be easily 
depicted as a graph, where the nodes – usually called 
neurons – visualize the individual variables in each layer 
and the edges indicate which variables of the current layer 
contribute to those in the next layer (the non-zero entries 
of the weight matrices Al ); see Figure 1 for a visualization. 
Finally, let us note that there exist many more variants of 
neural networks used in practice, refining and extending 
the standard definition presented here; popular examples 
are convolutional neural networks (CNNs), long short-term 
memory (LSTM), or generative adversarial networks (GANs); 
see [8] for further reading.
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How Are Neural Networks Trained?	  
Let us now turn to the question of how neural networks 
may be used to solve practical learning tasks. Broadly 
speaking (and not exclusively restricting to neural net-
works), the formal basis of a supervised learning problem 
is a sampling process that arises from a random pair (X,Y) 
in ℝd×ℝ; here, the random vector X represents the input 
data, while Y is an output variable which one would like to 
predict from X. In other words, we are interested in a reli-
able prediction of Y based on knowledge of X. Mathema-
tically, this simply corresponds to finding the conditional 
expectation 𝔼(Y|X) or at least a (deterministic) prediction 
function f:ℝd→ℝ that approximates 𝔼(Y|X) sufficiently 
well. A prototypical scenario would be an image classifi-
cation task, where X models real-world image data and Y 
corresponds to a (discrete) label {1,…,K} ⊂ ℝ, providing 
semantic information about the image, e.g., if it contains a 
cat or a dog. In practice, however, the joint probability dis-
tribution of (X,Y) is unknown, and neither 𝔼(Y|X) nor f are 
directly accessible. Instead, one is only given a finite set of 
(independent) samples D=(xi , yi )m

i=1 from (X,Y), usually 
referred to as the training data. This restriction gives rise 
to a central question in learning theory: How to estimate 
the underlying prediction function f only on the basis of a 
training data set? 

Perhaps the most common approach to tackle this funda-
mental challenge is based on empirical risk minimization. 
In the special case of neural networks, an empirical risk 
minimization problem typically looks as follows:

〖

where the optimization variables θ = (Al ,bl )L
l=1 are the 

parameters of the neural network Φθ: ℝd→ℝ (using the 
notation introduced above). Thus, the optimization in (1) 
takes place over all possible parameter configurations 
of the neural network Φθ ; in learning theory, this set of 
all candidate solution functions is called the hypothesis 
space. Apart from that, R plays the role of a scalar regu-
larization function, imposing a certain penalty on (undesi-
rable) parameter configurations. Intuitively speaking, a 
minimizer θ ̂ of (1) yields a neural network Φθ

 ̂
  which fits 

the training data as well as possible, in the sense that 
the mean-squared error between (Φθ

 ̂
 (xi))m

i=1 and (yi)m
i=1  

is minimized. However, the actual hope is that Φθ
 ̂
  gene-

ralizes well, i.e., Φθ
 ̂
 (x) does also accurately predict the 

output y of an unseen test sample (x,y), or more formally, 
the expected risk 𝔼(Y-Φθ

 ̂
 (X))2 gets sufficiently small. In 

this case, Φθ
 ̂
 would serve indeed as a good surrogate of 

the unknown prediction function f, allowing us to perform 
reliable statistical inference.
Although the concept of empirical risk minimization may 
appear surprisingly simple, it in fact requires solving a 
highly challenging optimization problem in general. Let us 
point out some of the key difficulties that typically arise 
during the training process of a neural network:
The architecture. A crucial step before optimization 
is to specify the size of the parameter space: How many 
layers L should be permitted and how large to choose the 
widths N1 ,…,NL of the individual layers? Should one make 
use of weight sharing, i.e., putting further restrictions on 
the weight matrices, such as convolutional filters? Although 
there are no ultimate answers to these questions, a striking 
phenomenon is that networks are often successfully trained 
in a highly over-parameterized regime, i.e., there are much 
more free parameters than samples. Finally, an appropriate 
activation function ρ needs to be selected as well. Perhaps 
the most popular choice in modern network architectures 
is the ReLU (rectified linear unit), ρ(t)≔max(0,t) for t ∈ ℝ;  
and although non-differentiable, this activation function 
proved surprisingly efficient for the training process.
Non-convexity. The hypothesis space generated by neural 
networks is a highly non-convex set in general, which turns 
(1) into a difficult non-convex optimization problem, mostly 
with a non-differentiable objective function. The most 
common solver in practice is stochastic gradient descent. A 
key characteristic of this algorithmic method is that, in each 
update for θ, a small subset of samples – called a mini-
batch – is randomly selected and the gradient computation 
is only performed on this mini-batch instead of the entire 
sample set. This strategy is much more memory-efficient 
than standard gradient descent methods, which are mostly 
intractable for huge training sets. Noteworthy, the gradient 
can be very efficiently computed by backpropagation for 
neural networks, which relies on a layer-wise application 
of the ordinary chain rule.
Initialization & Regularization. Committing on stochastic 
gradient descent comes along with a series of algorithmic 
issues: How to initialize correctly? How to select the step 
size (the learning rate) and what is a good choice of the 
batch size? Should one use additional regularization? All 
these questions are delicate, and similar to the choice of 
architecture, there are no universal strategies yet. Common 
wisdom at least suggests that random initializations may 
lead to a desirable convergence behavior. Moreover, 
several types of (explicit or implicit) regularization are 
popular, such as drop-out, early stopping, or weight decay 
(i.e., R corresponds to an 𝓁2-penalty in (1)). Nevertheless, 
successful training of neural networks often requires a 
particular expertise and involves a significant amount of 
hyperparameter tuning.
In view of all these difficulties, it is an even more astonishing 
fact that statistical learning with neural networks still 
works so well in practice. At the latest, since the triumph 
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Fig. 1: Visualization of an artificial neural network as a graph. The 
nodes correspond to the neurons (Nl-many in the l-th layer), while the 
edges indicate which neurons are connected between the different 
layers (specified by the weight matrices Al ).

minθ  
1
m ∑

i=1

m

 (yi-Φθ (xi ))2 +λ⋅R(θ),                  (1)
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of AlexNet in 2012 [9] – winning the popular ImageNet 
contest with a CNN-based approach –, people began to 
realize that especially the ability to train deep networks is 
a “game-changer” to many problems in machine learning, 
and far beyond. This fundamental insight can be seen as 
the birth of deep learning, which nowadays influences so 
many areas in computer science, statistics, and applied 
mathematics. For further reading, a concise overview on 
the successes of deep learning can be found in [10] and a 
comprehensive introduction to this field in [8].

 
The Many Mysteries of Deep Learning
Regardless of the outstanding empirical achievements of 
deep learning, its theoretical foundation remains widely 
open. In fact, many phenomena observed in practice are 
by far not explainable by traditional learning theory, so 
that trained neural networks often operate as black boxes. 
It is fair to say that a rigorous understanding of neural 
network theory is still in its infancy, while most available 
theoretical results do only address very specific aspects 
of the learning process or rely on unrealistic assumptions. 
But perhaps it is precisely this lack of theory which has 
made deep learning so attractive to many scientists and 
which has led to a whole new field of research, commonly 
known as the mathematics of deep learning. The literature 
devoted to the theoretical analysis of deep learning has 
become extensive by now, going far beyond what can be 
surveyed here. In the context of this article, we wish to 
point out some of the most important research questions 
towards a more profound understanding of artificial neural 
networks and deep learning. Let us emphasize that it is 
not necessarily fruitful to consider the following three 
subjects as independent disciplines; the key difficulty is 
rather to investigate them within a common mathematical 
framework and thereby to examine their mutual interplay.
 

Expressivity & Approximation. One of the fundamental 
pillars of a learning problem is the expressive power of 
the hypothesis space. Focusing on the setup of neural 
networks from the previous section, this may be reduced 
to the following question: How well can one approximate 
the unknown prediction function f by a neural network 
Φθ of fixed architecture, e.g., when the depth L and width 
parameters N1,…,NL are fixed? This research branch is in 
fact one of the oldest in neural network theory and probably 
the furthest developed one. Classical results dating back 
to the 1980’s [11] [12] [13] promote so-called universal 
approximation theorems, which essentially state that 
every continuous function on a compact domain can be 
arbitrarily well-approximated by a neural network with one 
hidden layer. Driven by the success of deeper networks, 
more recent approaches concern the benefit of depth 

Fig. 2: This figure shows relevance scores for a handwritten digit from the MNIST dataset generated by several explanation methods, visualized as 
so-called heat maps. Some of these methods focus entirely on “positively” relevant features that speak for the classifier decision (shown in red): 
Sensitivity Analysis [19], Deep Taylor Decompositions [20], SmoothGrad [21], and Rate Distortion Explanations [22]. The other methods also highlight 
“negatively” relevant features speaking against the decision (shown in blue): Layer-wise Relevance Propagation [23], Guided Backprop [24], LIME 
[25], and SHAP [26].

Fig. 3: A quantitative assessment of the approaches visualized in  
Fig. 2 can be done by a relevance-ordering-based test: going from 
right to left on the horizontal axis, more and more pixels of the ground 
truth image are randomized in an order specified by the respective 
relevance score (from less to more relevant pixels). The vertical axis 
corresponds to the mean squared error between the classifier output 
of the ground truth and randomized image. A steep descent of the 
resulting curve indicates that particularly relevant pixels were identified 
correctly.
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when approximating complicated functions, e.g., see [14] 
[15] and the references therein. However, most available 
results do only provide uniform approximation guarantees 
for “generic” function classes which contain “worst-case” 
functions with much worse approximation properties 
than the “true” predictor f. Hence, we believe that there 
is still no satisfactory answer to the following fundamental 
issues in approximation theory: How to model a “realistic” 
prediction function f tailored to a specific learning task, 
and how well can it be approximated by a neural network? 
Furthermore, what role is played by the domain of f, which 
may not be the full ℝd but rather samples from the input 
vector X?
Optimization & Generalization. As already indicated in 
the course of the empirical risk minimization problem in 
(1), the “holy grail” of deep learning is the generalization 
performance of trained neural networks, i.e., their ability 
to correctly predict the output of unseen (test) samples. 
This fundamental feature is inevitably connected to 
the underlying optimization task, which is highly non-
convex in our case. Indeed, in stark contrast to convex 
optimization, (1) does not have a unique global minimizer 
in general, and instead there might be (infinitely) many 
solutions and spurious local minima. Hence, a key issue 
is not only whether stochastic gradient descent converges 
to any global minimizer, but much more importantly, why 
it yields a minimizer that generalizes well; in other words: 
what is so special about the method of stochastic gradient 
descent and why can it learn effective representations of 
the underlying prediction problem? Another remarkable 
fact is that this approach often works particularly well in 
an over-parameterized regime, meaning that there are 
(much) fewer training samples than free parameters. 
While this typically leads to a very small training error, it is 
not clear why stochastic gradient descent often does not 
suffer from overfitting and the generalization error remains 
moderate. Does a certain type of implicit regularization 
happen? And to what extent does the initialization help 
us to operate on a well-behaved part of the optimization 

landscape? There already exist various attempts to 
demystify these phenomena, but a complete theory still 
seems out of reach with currently available tools. We refer 
the interested reader to the overview paper [16], which may 
serve as a good starting point for a more comprehensive 
study of recent advances in this direction. 
Interpretability & Safety. While the previously mentioned 
topics are central parts of traditional statistical learning 
theory, we now take a different and somewhat more ap-
plied perspective: Although practitioners may appreciate 
theoretical guarantees clarifying the training process, they 
are usually more interested in assessing the quality and 
reliability of a ready-to-use neural network. Indeed, com-
pared to simple learning architectures such as linear mo-
dels or decision trees, the “semantic” reasoning of highly 
non-linear and parameter-rich neural network models is 
often inaccessible. For example, imagine that a neural net-
work is supposed to assist a brain surgery, recommending 
which parts of the brain to intervene. Clearly, a surgeon 
would like to understand the reasoning of the network 
and how certain it is about its decision. Ideally, such an 
explanation should be indistinguishable from a human ex-
planation. A first step towards understanding the internal 
operation of networks would be to specify those variables 
of the input domain – often called input features – that 
contribute the most to a (classification) decision. In the 
last years, various methods have been developed that aim 
to assign relevance scores to input features. Most of them 
are based on the idea of propagating decisions backwards 
through the network, similarly to the gradient computati-
on via backpropagation; see Figure 2 and Figure 3 for an 
illustration of some recent findings. Besides the wish for 
interpretability, it is also of great importance to investigate 
the robustness of a network against noisy and corrupted 
inputs. This topic is closely related to so-called adversarial 
examples [17], which have gained increasing attention in 
the literature; see Figure 4. However, let us emphasize that 
most of these observations are of purely empirical nature, 
whereas a theoretic foundation still amounts to very few 

Artificial Neural Networks

Fig. 4: A typical adversarial example. Trained neural network can be often fooled in such a way that very small corruptions of the input data 
(adversarial noise) lead to dramatically different outputs; figure taken from [27].
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attempts, e.g., see [18] for recent results on the computa-
tional complexity of finding relevance scores.

Neural Networks for Mathematical Problems
The impressive gains of neural networks in machine lear-
ning have inspired researchers to seek for applications 
beyond tasks in computer science. In this course, the be-
nefits of deep learning have recently also led to exciting 
progress in many areas of applied mathematics. Generally 
speaking, it has turned out that the performance of tra-
ditional methods often can increase substantially when 
combined with data-driven components that were learned 
from training samples. In a certain sense, this approach 
takes the “best out of both worlds”, as it allows us to face 
those parts of mathematical problems in which model-
based methods would only yield poor outcomes or are not 
available at all. However, it is worth pointing out that the 
usage of (deep-)learning-based methods does not simply 
come for free: As stressed earlier in this article, the trai-
ning process requires utmost care and its success usually 
demands huge training data sets, which are not always 
available in practice. On the other hand, mastering these 
difficulties promises outstanding results, oftentimes achie-
ving the current state-of-the-art. Let us now showcase the 
benefits of neural networks in the context of two classical 
problem settings in mathematics.
Neural Networks for Inverse Problems. The field of in-
verse problems, in particular, the subdomain of imaging 
sciences is generally enthusiastic about leveraging the 
advances of machine learning technologies, in particu-
lar, deep learning. Given an inverse problem f=Kg with 
forward operator K, a very straightforward application of 
neural networks is to generate training data of the form  
(Kgi , gi )m

i=1  and then to let a neural network learn an 
inversion process for K, e.g., see [28]. However, it tur-
ned out that, in order to obtain superior results, a crucial 
step is to pair the learning procedure with model-based 
knowledge. In [29] and [30], for instance, a neural net-
work is trained on training data of the form (FKgi , gi )m

i=1  
where F corresponds to a model-based inversion opera-
tor, such as filtered back projection. A more sophisticated 
approach to ill-posed inverse problems builds upon the 

fundamental insight that regularization can be achieved 
by denoising; this conception is commonly known as 
plug-and-play priors [31], which are also very amenable 
to neural networks as denoiser [32]. Yet another popular 
direction is learning iterative schemes, which aim to com-
bine the mathematical structure of variational methods 
with neural network architectures, e.g., see [33].
Let us now take a closer look at the problem of limited-
angle computed tomography, which gives a more precise 
idea of how model- and data-driven methods may be 
combined in a controllable manner. In simple words, the 
inverse problem of computed tomography requires an 
inversion of the Radon transform, which computes line 
integrals of an image signal; see Figure 5: (a) + (b). This 
measurement process becomes heavily ill-posed if, for 
instance, only a limited range of angular line orientations 
is accessible, such as it is the case in electron tomogra-
phy. In this situation, traditional inversion methods typi-
cally suffer from substantial artifacts; see Figure 5: (c). 
Fortunately, it is theoretically well understood which sin-
gularities (in the sense of wavefront sets) can be stably 
reconstructed and which cannot, allowing us to speak of 
visible and invisible singularities, respectively. The recent 
work [34] leverages this insightful observation: in a first 
model-based step, a sophisticated sparse regularization 
is employed, which is based on a (directionally sensitive) 
shearlet system [35] and thereby enables a separation 
into the “visible” and unknown “invisible” components; 
in a second data-driven step, a deep neural network is 
trained to fill in the missing part of the data, without af-
fecting the already reconstructed visible part. This proce-
dure, referred to as “Learning the Invisible”, offers a clear 
interpretation of the neural network’s task in limited-an-
gle computed tomography and shows unprecedented re-
construction quality compared to classical methods; see 
Figure 5: (d).
Neural Networks for Partial Differential Equations. In-
terestingly, a first and very common approach for solving 
partial differential equations (PDEs) with neural networks 
actually dates back to 1998 [36], suggesting a numerical 
approximation of the solution function u of a PDE 𝓛(u)=f 
by a neural network; more precisely, one aims at finding 

Fig. 5: The inverse problem of limited-angle computed tomography. (a) Ground truth image signal. (b) Noisy Radon transform (sinogram) of the 
image signal with missing angular measurements. (c) Traditional inversion by filtered back projection. (d) Inversion by “Learning the Invisible” [34].
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a neural network Φ such that 𝓛(Φ)≈f, rather than working 
within a classical function space. A much more recent and 
important observation was that such a strategy can be 
even implemented with neural networks whose size does 
not scale exponentially with the underlying dimension, e.g., 
see [37].
Another very promising research direction concerns para-
metric PDEs, which are encountered in many different are-
as of science and engineering, such as in complex design 
problems, optimization tasks, or uncertainty quantification. 
The key assumption here is that there exists a certain pa-
rametric map y↦uy , assigning a parameter vector y∈𝒴⊂ℝp 
to the solution function uy of a parametric PDE of the form 
𝓛(uy ,y)=fy. In practice, this typically involves multiple eva-
luations of the parametric map, which can be a tremend-
ous computational burden, especially when the dimension 
of the parameter space 𝒴⊂ℝp  is high. Most classical ap-
proaches rely on model order reduction methods such as 
the reduced basis method. With the advent of deep lear-
ning, a new exciting line of research has emerged, attemp-
ting to mimic the parametric map by a neural network and 
thereby allowing for a significantly faster computation of 
the solution for a given parameter vector y; see [38] [39] 
[40] [41] [42] [43]. Besides very promising numerical re-
sults, first theoretical guarantees have been established as 
well, verifying that the replacement of the parametric map 
by a neural network can indeed overcome the curse of di-
mensionality [44] [45].

The Future of Neural Networks in the  
Sciences
Only on the basis of the aforementioned successes in in-
verse problems and PDEs, it is conceivable that machi-
ne learning techniques, and especially deep learning, will 
lead to a paradigm shift in the mathematical sciences. Al-
ready today, about 80% of the talks at imaging science 
conferences discuss novel approaches involving neural 
networks in one or the other way. As pointed out before, 
particularly good outcomes can be expected from a care-
ful combination of model- and learning-based methods, 
oftentimes establishing the state-of-the-art within their 
domain. Nevertheless, several major challenges need to 
be addressed before such a methodology will enjoy a si-
milar reliance as conventional mathematical approaches, 
based on modeling, simulation, and optimization. First and 
foremost, the development of a comprehensive theoretical 
foundation needs to be accelerated, which is an inevita-
ble step towards “whitening” the black box of deep lear-
ning. Not less important and of great practical relevance 
is a more profound quality assessment of training data, 
as these form the basis of a resultant neural network and 
its functionality. In this context, it is also crucial to bear 
in mind that, in most cases, the training data is strongly 
tailored to a specific application, and therefore requires 
a certain expertise and sensible treatment. This fact turns 
the mathematics of deep learning into a highly interdisci-
plinary field, inviting many other scientific areas and re-
searchers to contribute as well.
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