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Many important problem classes are governed by anisotifepittires such as singularities
concentrated on lower dimensional embedded manifoldsin&iance, edges in images or
shock fronts in solutions of transport dominated equati®kile the ability to reliably cap-
ture and sparsely represent anisotropic structures i®osli the more important the higher
the number of spatial variables is, the principal difficdtarise already in two spatial dimen-
sions. Since it was shown that the well-known wavelets ateaymable of efficiently encoding
such anisotropic features, various directional repregiemt systems were suggested during
the last years. Of those, shearlets are the most widely oskeg due to their optimal sparse
approximation properties in combination with their unifigeatment of the continuum and
digital realm, leading to faithful implementations. Thigiele shall serve as an introduction
to and a survey about shearlets.
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1 Introduction

Recent advances in modern technology have created a new wfoenormous and multi-

dimensional data structures. In medical imaging, seismiaging, astronomical imaging,
computer vision, and video processing among others, thabdies of modern computers
and high-precision measuring devices have generated 2Par@iDeven higher dimensional
data sets of sizes that were infeasible just a few years ape.n€ed to efficiently handle
such diverse types and huge amounts of data initiated ams@tgudy in developing efficient
multivariate encoding methodologies in the applied harimanalysis research community.

1.1 The Applied Harmonic Analysis Approach to Data Processig

The area of applied harmonic analysis approaches problédataprocessing in the follow-
ing way. Given a class of datain a Hilbert spacé{, and a carefully constructed associated
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2 G. Kutyniok, W.-Q Lim, and G. Steidl: Shearlets: Theory &mplications

collection of functiongy)aca C H with A being a countable indexing set. On the one hand
the data islecomposeldy

C> fr=((f,¥a))rea 1)

with the coefficient sequence enabling an analysis of thee flatich as detection of important
features, e.g., singularities. On the other hand the da&epandeds

F=Y"clfn  forall fec )

AEA

with the coefficient sequence preferably being sparse irsémse of rapid decay to allow
efficient encoding of the datA It is well-known thate(f), = (f,¢,) forall A € A in the
situation of an orthonormal basis. However, often redungandesirable which leads to the
notion of a frame.

1.2 Redundancy comes into Play

Frame theory provides a general framework for represemtatistems, ) xca to enable re-
dundancy — in the sense of non-unique expansions — yetirggatability. A systen{,)ea
is called aframefor H, if there exist constants < A < B < oo such that

AlFIE < DKL en P < BIIfIE - forall fe .

AEA

In caseA = B = 1, itis referred to as ®arsevsal framgand in fact, such Parseval frames
are the most general systems which alldyi), = (f, 1) forall A € A.
Letting theframe operatobbe defined by

S:H—=H, [y ([,

AEA

and settinq%)m/\ := (8714 )ren to be thecanonical dual framewe obtain the following
formulas for the reconstruction of sonfie= # from the decomposition (1) and for a particular
coefficient sequence in the expansion (2):

F=Y (fo)da and f= (fdx)yn forall f e,

AEA AEA

respectively. For further information on frame theory, wéer to [10].

1.3 Wavelets

One of the most well known examples of frames f3(R?) are wavelet frames [18].
Definition 1.1 Fory!, ... ¢" € L?(R?), the associatedavelet systeris defined by

(W =272 —m):jeZmez’ t=1,... L}
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In fact, finitely many generating functions, . .., 4 can be constructed so that the asso-
ciated wavelet system forms an orthonormal basis (morergtiyyea frame) forL?(R<). In
this case, the functiong!, ..., 4" are referred to awavelets The parametey is typically
referred to ascaleand the parameten asposition

On the more theoretical side, wavelet systems are proveigidytefficiently approximate
L2-functions which are smooth except for finitely many poimgsilarities. On the more
application oriented side, wavelets are, for instanceg usehe new compression standard
JPEG2000 [61].

1.4 From Wavelets to Shearlets

While wavelets can be shown to derive optimal decay ratdssoétror of besivV-term approx-
imation for functions governed by point singularities,stavident that starting from dimen-
sion 2 anisotropic singularities appear such as curvesiikgularities. In fact, for instance,
in imaging science the discontinuity curves of an image ae af the most important fea-
tures, in particular, since the human visual system is desigo react strongly to directional
features. But also solutions of, for instance, transpontidated equations are governed by
shock fronts. In general, one can argue that many importasses of multivariate problems
are governed by anisotropic features. Moreover, in highetisional data most information is
typically contained in lower-dimensional embedded mddgpthereby also presenting itself
as anisotropic features.

Although wavelets are highly efficient in capturing poimigilarities, they are isotropic
basis (more generally, frame) elements due to the isotsmgiing matrix with a dyadic scal-
ing factor2/. Therefore, they are only able to deliver a suboptimal axpration rate of
such data. The anisotropic structures can also only bendigshed by location and orien-
tation/direction. This indicates that our way of analyzamy representing the data should
capture not only location, but also directional informatierequiring anisotropically shaped
elements — to overcome the drawback of wavelet systems eTivesdifferent approximation
schemes with isotropic and anisotropic basis elementdlastrated in Figure 1.

(a) (b)

Fig. 1 (a) Approximation of a curve by isotropic basis elements) Approximation of a curve by
anisotropic basis elements.

Inspired by this observation, numerous approaches foiieftiy representing directional
features of multivariate data have been proposed in theafrapplied harmonic analysis.
A perfunctory list includes:steerable pyramidy Simoncelli et al. [60]directional filter
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4 G. Kutyniok, W.-Q Lim, and G. Steidl: Shearlets: Theory &mplications

banksby Bamberger and Smith [62D directional waveletdy Antoine et al. [2],curvelets
by Candés and Donoho [&pntourletsby Do and Vetterli [19]bandeletdy LePennec and
Mallat [58], andshearletd35, 52]. Shearlet systems are among the most versatilewand s
cessful systems, since they, in particular, satisfy thiofohg list of properties commonly
desired for directional representation systems:

() Underlying group structure for availability of deep rhamatical tools.
(I Provably optimal sparse approximations of anisotedpatures.
(I) Compactly supported analyzing elements for high spédicalization.
(IV) The continuum and digital realm should be treated umifly.
(V) The associated decomposition should admit a fast imeteation.

This article shall serve as an introduction to and a surveyabhearlets. For additional
information, we refer to the book chapter [45].

1.5 Outline

This survey paper is organized as follows. The continuodstiscrete shearlet systems and
their associated transforms are introduced and discuss8edtions 2 and 3, respectively.
Section 4 is devoted to the optimal sparse approximatiopgpti@s of shearlets for anisotropic
features. A faithful digitalization is presented in Senti®. Finally, in Section 6 several
imaging applications and numerical results are discussed.

2 Continuous Shearlet Systems

In the setting of continuous parameter sets, it is well-kméfat the short time Fourier trans-
form and the wavelet transform are associated with squegriable representations of the
Weyl-Heisenberg group [33] and the affine group [30, 31peesively. Among all directional
transforms mentioned in the introduction, the continudwesaslet transforrhis outstanding,
because it stems also from a square-integrable group ssgeg®n, namely from the so-called
shearlet group Therefore, powerful tools of group representation thexany be exploited to
study, for instance, reconstruction properties or thelutism of wavefront sets. In the follow-
ing, we briefly introduce continuous shearlet systems aad#sociated continuous shearlet
transform using this general group theoretical framework.

The main idea in the construction of (continuous) sheaykstesns is to select very few gen-
erating functions to which scaling operators for differesgolution levels, shearing operators
as a means to change the orientation, and translation opetatselect different positions are
applied. The first two operators are based ordikation operator which for somel/ € R2*x?2
is defined by

Dy : L2(R?) — L2(R?), (Darf)(x) — | det(M)| 72 (M a).

SelectingM to be aparabolic scaling matrix4,, a € R* := R\ {0}, or ashearing matrix
Ss, s € R, given by

a 0 1 s
) )

LContinuous’ in the sense of continuous parameter sets.
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yield the set of scaling and shearing operators, respégctivde remark that the choice of
changing the orientation by shearing is superior to rotedioe to the fact that in the discrete
version the matrice§y,, k € Z, leave the digital gridZz? invariant. Finally, fort € R?, the
translation operatois defined by

T, : L*(R?) — L3(R?), (Tif)(z) — f(xz —1t).

This leads to the definition of continuous shearlet systems.
Definition 2.1 Fory € L?(R?), thecontinuous shearlet syste$if/ (v) is defined by

SH(t)) = {ta,st = T;Ds,Da,tb = a” $(A;1S71(- —t)) :a € R*, s € R, t € R?}.

2.1 The Shearlet Group and the Continuous Shearlet Transfan

The just defined continuous shearlet system arises frortfulieshearlet grougS := R* x
R x R? endowed with the group operation

(a,s,t)o(a,st") = (ad’,s + /]a|s',t + SsAut’).

This is a locally compact group with left Haar measidgéa, s, t) = da/|a|*dsdt. The proofs
are given in [11] and in [13] for higher dimensions. For th&etanotice that the previous
definitions can be naturally extendeditd(R?) by settingA,, -, = diag(a, sgn(a)|a|” I) with

~ > 0 and appropriate generalizations of the shearing and &éasloperator as well as of the
group operation. Instead of shearing matrices, triandgdeaplitz matrices were considered in
[14]. Recently, it was shown that the shearlet group is isgic to the extended Heisenberg
group and to a subgroup of the symplectic group [17] whickdeta interesting new insights
into the structure of the shearlet transform and relatedtfan spaces.

Letting the unitary representation: S — /(L?(R?)) from S into the group of unitary
operators onL?(R?) be defined byr(a,s,t)i) = 1,5+, the continuous shearlet system
SH () can be written as' H(v)) = {m(a,s,t)¥ : (a,s,t) € S}t. This mapping is also
square-integrablei.e., it is irreducible and there exists a nontrivaamissiblefunctiony €
L?(R?) fulfilling, for all f € L?(R?), theadmissibility condition

/S (a5, 8)0)2 dia(a, 5, 1) < oo.

It can be proven that € L?(IR?) is admissible if and only if

(&)
/R2 €112 & < o0, )

wherey denotes the Fourier transformof For a more general approach we refer to [27].

Definition 2.2 A functionwy € L?(R?) satisfying (4) is called ahearletand the operator
Sy : L*(R?) — L%(S) given by

Sl/ff(avsvt) = <f,7r(a, Sat)d’)

is referred to asontinuous shearlet transform
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6 G. Kutyniok, W.-Q Lim, and G. Steidl: Shearlets: Theory &mplications

Intuitively, S, mapsf to its coefficientsS, f(a, s,t) associated with thecalevariable
a € R*, theorientationvariables € R, and theocationvariablet € R2. In the general group
context, this transform is known asice transform

Shearlets of both band-limited and compactly supported gpist and are well-studied,
see [11,15,42,50]. One prominent example of a shearle¢ iddissical shearlet) € L?(R?),
which is a band-limited function introduced in [52] and wae fiirst shearlet extensively
studied.

Example 2.3 A classical shearlet) € L?(R?) is defined by

D(E) = (&, &) = 1&1(51)1&2(%),

wherey; € L(R) is a wavelet, i.e., it satisfies the discrete Calderon dardgiven by

> (2779 =1 foraegeR,

JEL

with ¢, € C*°(R) and supp)y C [-2, -
namely

1] U [3. 2], andy, € L*(R) is a ‘bump function’,

1
Dol + k)P =1 foraege[-1,1],

k=-1

satisfyingy, € C°(R) and supp), C [—1,1]. Figure 2(a) illustrates the support of the
associated Fourier transform

Group theoretic considerations lead to the following reahbbut invertibility of the con-
tinuous shearlet transform.

Theorem 2.4([11]) Lety € L*(R?) be admissible. The§,, is an isometry.

2.2 Shearlet Coorbit Spaces

With a square-integrable group representation at hands #wdsts a very natural link to an-
other useful concept, namely the coorbit space theorydntred by Feichtinger and Grochenig
in a series of papers [24-26, 32]. By means of coorbit spa@eryhit is possible to derive
in a canonical way associated scales of smoothness spactss framework, the smooth-
ness of functions is measured by the decay of the associatesl tvansform. Moreover, by a
careful discretization of the representation, it is pdssib obtain (Banach) frames for these
smoothness spaces.

The continuous shearlet transform does fulfill all necassanditions for the application of
coorbit space theory, which leads to novel canonical snrsth spaces, ttshearlet coorbit
spaceg12] together with their atomic decompositions and (Bandicdmes for these spaces.
In fact, shearlet coorbit spaces are related to Besov sjiaties sense that certain subspaces
of shearlet coorbit spaces can be embedded into homogeBesos spaces and traces of
shearlet coorbit spaces onto certain hyperplanes areinedtan Besov spaces or again in
shearlet coorbit spaces, see [15,16]. These subspacashieshe concept of shearlets on the
cone which is considered in the sequel.
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2.3 Cone-Adapted Continuous Shearlet Systems and Resolori of the Wave-
front Set

Despite the advantages of the pure group theory-basedagprane drawback is the fact that
the associated continuous shearlet systems do exhibietidinal bias. For an illustration of
the problem, we refer to Figure 2(b).

(@) (b) (c)

Fig. 2 (a) Support of the Fourier transform of a classical sheaftgt-ourier domain support of several
elements of the shearlet system, for different values afds. (c) The coneg; —C4 and the centered
rectangleR in the frequency domain.

This problem can be resolved by partitioning the Fourier dioninto four conic regions
and considering the low frequency part separately; seer€&igfc). This leads to the follow-
ing variant of continuous shearlet systems with the fumctideing responsible for the low

frequency part as well ag and+) for the horizontal ¢; U Cs) and vertical ¢ U C4) conic
regions, respectively.

Definition 2.5 For ¢, 1,1 € L?(R?), the cone-adapted continuous shearlet sysiem
defined bySH (¢, v, ) = ®(¢) U U () U W (1)), where
P(¢) ={g:=9(—t):t€ RQ}
() = {Yhass = a (A7 ST (- — 1)) ra € (0,1, |s| < 1+a'/? t € R?},
() = {Pa,s0 = a‘%J)(A; S; (- —1):ac (0,1, |s| <14+a'? t € R?},

andA, = diag(a'/?,a).

Similar as in the situation of continuous shearlet systeatss) for cone-adapted continu-
ous shearlet systems an associated transform can be defidésbanetry conditions can be
determined (cf. [45]). Moreover, by considering those 9éit¢), for which |[(f, 14 s,.)| OF
|(f,a.s+)| does not decay rapidly as — 0, the wavefront set of a distributiofi can be

precisely determined [46].
3 Discrete Shearlet Systems

We now turn to discrete shearlet systems, which can be redaslarising from their contin-
uous counterparts by discretizing the associated set ahpeters. Thus, in a similar way we
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8 G. Kutyniok, W.-Q Lim, and G. Steidl: Shearlets: Theory &mplications

can derive a discrete shearlet system as well as a coneeddagtant. Since in applications
only the later one is used, we focus in the sequel on this typhearlet systems.

3.1 2D Shearlets

Recalling the definitions of parabolic scaling and sheafiog (3), a common discrete ver-
sion of those operations ark; andSy with j, k € Z. Applying the discretizatiofa, s,t) —
(277, —k279/2, A5 S, em) (for ¢ € (R4.)? to add flexibility), which essentially arises from
the previously mentioned coorbit theory, to Definition 2iélgs the following definition.

Definition 3.1 Letc = (¢1,c2) € (Ry)2. Fore, v, € L*(R?) thecone-adapted discrete
shearlet syster§H (¢, 1, 1; ¢) = ®(¢; ¢1) U U (1h; ¢) U U(e; ¢) is defined by

®(g;c1) = {om =9¢(-—m):me 0122}7
U(h; ¢) = {Wjhm = 299(SgAgs - —m) : j >0, |k| < [27/2],m € M.Z?},
T (s c) = ‘wg‘,k,m = 2%11/](§k/12j c—m):j >0,k <[2//%],m e M,Z%},

whereM, = diag(c1, ¢2) andM,. = diag(cs, c1).

If SH(p,, ¥; c) is a frame forL?(IR?), we refer tog as ascaling functiorandz) and?
as(discrete) shearletsAlso notice that 2D shearlets are in the spatial domainze i/ x
2-7/2 which shows that they will become ‘needle-like’ (hence enand more anisotropic)
asj; — oo.

3.1.1 Band-Limited Shearlets

Band-limited shearlets have the advantage of allowing tiresttuction of Parseval frames
for L?(R?). Moreover, some applications such as seismology have aahdtand-limited
structure which makes the associated shearlet systenmes qinéd.

Constructions of band-limited shearlets were introdundd5] with refinements contained
in [37]. The so-callectlassical shearletswhich we already discussed in Example 2.3, are
perhaps the most widely used version. In this case, typith# generatot) is chosen as
1/3(1:1,1:2) = (x9,21). The tiling of Fourier domain which they induce is illusedtin
Figure 3.

\[/
ik

—
Lt

Fig. 3 Tiling of Fourier domain induced by the cone-adapted discsbearlet system associated with
classical shearlets.
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For this particular choice, it was proved in [35, Thm. 3] ttied associated cone-adapted
discrete shearlet syste§H (¢, 1, ¥, (1,1)) with a slight modification of the boundary ele-
ments and with an appropriate scaling functipfor the centered rectangle forms a Parseval
frame for L2 (R?).

3.1.2 Compactly Supported Shearlets

Despite the advantageous functional analytic propertiedassical, and in general band-
limited shearlets often applications seek high spatialiaation. This makes compactly sup-
ported shearlets desirable. However, it is still not clehetlier a cone-adapted discrete shear-
let system associated with compactly supported sheaietde introduced, which forms a
Parseval frame fol.?(R?). The best known construction forms a frame fot(IR?) with
numerically proven ratio of the frame bounds of approxiyade see [42].

3.1.3 Shearlet Frames

In [42], a general framework was introduced which providgficgent conditions for a cone-
adapted discrete shearlet system to form a frame with thiearestimates for the associated
frame bounds, which we will now describe.

For this, we first define

Qo ={¢ e R* :max{|&1], &} < 3}, Y ={{eR*: ] <& <1, [|&]/|G] <1},
and assume that
inf | ¢ 0 and inf |¢) 0. 5
essinf[¢(§)] >0 and essinf|y(£)] > (5)
The above conditions ensure that

essinf SO+ D ((STAas )P +1H(ST Aes§)) >0

320 |k|<[23/2]

wherezﬁ(xl,xg) = ¥(x2,21). In fact, this inequality can be used to derive a lower frame
bound forSH(gb,w,J), ¢). The following result shows that any functiogsy € L?(R?)
(and’l[](Il,IQ) = 1(x2, 1)), Wwhose Fourier transform decays fast enough with sufficien
vanishing moments and satisfies the lower bound conditibnsfleed generate a shearlet
frameSH (¢, 1, 1), c).

Theorem 3.2([42]) Lete,v € L?(R?) be functions such that

$(€1,6) < C1 -min{1,]&|77} -min{1,|&| ™7} and
(&1, 62)| < Cy - min{1, |&|*} - min {1,]&] 77} - min {1, ]&] 77}, (6)

for some positive constants;,C; < co anda > v > 3. Defineqﬂ(:cl,:cg) = Y(x9,21)

and assume thap, vy satisfy(5). Then, there exists some positive consténsuch that

SH(¢, 1,1, c) forms a frame foi.2(R?) for anyc = (¢1, ¢o) With max{ey, ¢} < ¢*.
Obviously, band-limited shearlets satisfy condition (6Jore interestingly, also a large

class of compactly supported functions satisfies this d¢mngiand we refer to the construc-
tions in [42].
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10 G. Kutyniok, W.-Q Lim, and G. Steidl: Shearlets: Theorg &pplications

3.2 3D Shearlets

Continuous shearlet systems in higher dimensions thanrdiime 2 were first considered

in [14] in the pure group theory-based approach. In the ¥ahlig, we now focus as before

on a ‘cone-adapted variant’ in the 3D situation. These $ledgyramid-adapted shearlet
systems again treat directions in a uniform way similar ag tone-adapted 2D counterparts.
The continuous (band-limited) version of such was firstadtrced in [36], and it was shown

that the location and the local orientation of the boundatyo$ certain three-dimensional

solid regions can be precisely identified by the associasetstorm.

We now turn to the discrete setting and the definition of pydaatapted discrete shearlet
systems. These systems will be generated by scaling aogotaitheparaboloidal scaling
matrlcesAgj, Ay, or Ay, j € Z, and directionality will be encoded by tishiear matrices
Sy Sk, OF Sy, k = (k1, ko) € Z2, defined by

Ay =diag2?,27/2,21/2), Ay = diag27/2,27,29/%), Ay, = diag(27/%,27/% 27)

and
1 k1 ke ~ 1 0 0 5 1 0 0
Se=(0 1 0}, Se=1k 1 ko, Se=(0 1 0],
0 0 1 0 0 1 ki ko 1

respectively. The translation lattices will be defined thgl the following matricesM..
diag(e, ¢, ¢2), M, = diag(cs, c1, ¢2), andM,. = diag(ce, ¢2, ¢1), Wherecy, co > 0. Slmllar
as for cone-adapted shearlet systems, we now partitionidfadwmain into a rectangular
region and six pyramids as shown in Figure 4.

&3 &3
) &

Fig. 4 The partition of Fourier domain by four of the six pyramids.

These considerations are now made precise in the follongfigition, where each part of
the system is responsible for covering one set of pyramids.

Definition 3.3 Forc = (c1,c2) € (Ry)?, thepyramid-adapted discrete shearlet system
SH (¢, 1,1, 1; ¢) generated by, ¥, 1), 1 € L*(R3) is defined by

v

H(p, 1,1, 5¢) = D¢ c1) U () U (s ¢) U (s c),
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where

)
(W;¢) = {0 km = 279(Sk Az - —m) : j >0, [[k]|eo < [27/2],m € M, Z%},
(5 ¢) = {Wj em = 299(SkAgs - —m) 1 j > 0, |[k[|lso < [27/2],m € M.Z%},
(5¢) = {0 pm = 270(SkAgs - —m) 1 § > 0, |[k]loe < [29/%],m € M.Z3}.

)

The construction of pyramid-adapted shearlet SySté‘mgﬁ,’l/),’lZ), ¥, ¢) runs along the
lines of the construction of the 2D cone-adapted shearkdtnrys described in the previous
subsection. Similar as in the 2D case, also compactly stegehearlet frames with con-
trolled frame bounds can be constructed [50]. We also wisheation that this construction
can be easily generalized to even higher dimensions.

Let us finally discuss whether this is the most natural ex¢eri® 3D. For this, notice that
3D shearlets are in the spatial domain of sizé x 277/2 x 2-7/2 which shows that they will
become ‘plate-like’ ag — oo. Figure 5 illustrates some examples of 2D and 3D shearlets
in the spatial domain. One could also exploit the scalingrimat,;, = diag (27,27,27/?)
with similar changes for,, and A,;. This would lead to ‘needle-like’ shearlet elements
instead of the ‘plate-like’ elements introduced in Defmiti3.3. In particular, those shearlets
seem well adapted for 1D singularities, while ‘plate-lisbearlets seem better suited for 2D
singularities. More generally, it is possible to even cdashon-paraboloidal scaling matrices
of the form A; = diag (27,2%7,2%7) for 0 < «, 8 < 1. One drawback of allowing such
general scaling matrices is the lack of fast algorithms far-dyadic multiscale systems, and
in case of the ‘needle-like’ shearlet construction the latkrame properties. On the other
hand, the parametersand( allow us to precisely shape the shearlet elements, ranging f
very ‘plate-like’ to very ‘needle-like’, according to th@plication at hand, i.e., choosing the
shape of the shearlet which is the bést for the geometric characteristics of the considered
data. We refer to [28, 50] for more details on these genettihgs.

/

(@) (b)

Fig. 5 Examples of (a) 2D shearlets and (b) 3D shearlets in theapltmain.

4 Quest for Optimal Sparse Approximations

As mentioned in the introduction, shearlets were introdweih the goal to provide optimally
sparse approximations of anisotropic features. We nowrfiedte the notion of ‘anisotropic
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12 G. Kutyniok, W.-Q Lim, and G. Steidl: Shearlets: Theorg &pplications

features’ mathematically precise by introducing a math@abmodel for such. Let us start
with the most basic definition of this class which was alsednisally first, stated in [20]. We
allow ourselves to phrase this definition in #e&imensional situation fo# = 2, 3, hence to
combine the 2D with the 3D setting from [50].

Definition 4.1 For fixedv > 0 andd = 2, 3, theclass&£2(R?) of cartoon-like functionss
the set of functiong : RY — C of the form

f=rfo+ fixs,

whereB c [0,1]? andf; € C2(R%) with suppf; c [0,1]* and||fil| o= < 1foreachi =0, 1.
For dimensioni = 2, we assume thalB is a closedC?-curve with curvature bounded by
and, ford = 3, the discontinuityp B shall be a closed’?-surface with principal curvatures
bounded by .

Donoho then proved the following benchmark result in [20] do= 2; its extension to
d = 3 was derived in [50]. We wish to mention that in fact the idiséatements are more
general than the one for frames we present here.

Theorem 4.2([20,50]) Letd = 2,3, and let( ) ca be a frame forL?(R9). Then the
optimal asymptotic approximation error gfc £2(R9) is given by

If = fnl3 < C-N"7T asN — oo, wherefy = Y cxthy
AEAN
is the (non-linear) besV-term approximation and’ > 0.

Thus a system satisfying this decay conditions can be jaishyficalled a system which pro-
videsoptimally sparse approximatiortsg cartoon-like functions. The following result shows
that shearlets indeed satisfy this benchmark result up teglifible)log-factor. We wish
to mention that this result is in fact part of a much more gehigamework, the framework
of parabolic molecule$34], which provides approximation results for very gemssestems
based on parabolic scaling.

Theorem 4.3(147]) Letc > 0, and letg, ¢, ¢ € L?(R?) be compactly supported. Suppose
that, in addition, for allé = (&1, &2) € R?, the shearlet) satisfies

() 15| < Cr - min{1, &} - min{1, |60} - min{1, &2 7} and
(i) 59| < Ine)l- (1+)

wherea > 5, > 4, h € L'(R), and(; is a constant, and suppose that the shearlet
satisfies (i) and (ii) with the roles @i and¢, reversed. Further, suppose th&t (¢, v, V; ¢)
forms a frame for.?(R?). Then, for any > 0, the shearlet framé‘%(gb,w,i); ¢) provides
(almost) optimally sparse approximations of functighss £2(R?) in the sense that there
exists somé€' > 0 such that

|f—fnl2<C-N"2.(logN)® asN — oo,

wheref is the nonlinear N-term approximation obtained by chooshegN largest shearlet
coefficients off.

Similar results were shown f@i?(R?) using pyramid-adapted discrete shearlets, see [50].
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5 Digital Shearlet Transforms

The first implementation for computing shearlet coefficidms been developed in [22]. This
numerical algorithm implements the discrete shearlesfam associated with band-limited
shearlets. For this, digital shearlet filter coefficients@ltained by approximating the inverse
Fourier transform of band-limited shearlets discretizedre 2D pseudo-polar grid where the
shear operata$;, is given as a translation.

We now discuss implementation strategies for computinguéétecoefficients associated
with the cone-adapted discrete shearlet system based opactlpnsupported shearlets, as
introduced in Section 3. One main focus will be on derivinggitization which is faithful
to the continuum setting. We refer to [55] and [56] for moré¢adle on this approach. For
this, we will only consider shearlets; ;. ,,, for the horizontal cone, i.e., belongingdq, c).
Notice that the same procedure can be applied to computehtralst coefficients for the
vertical cone, i.e., those beIonging\ic(zﬁ, ¢), except for switching the order of variables.

We first define a separable shearlet generater L?(R?) and an associated scaling func-
tion ¢ € L*(R?) as follows. Letp; € L?*(R) be a compactly supported 1D scaling function
satisfying

$1(x1) = Y h(n1)V2¢1(221 —n1)
ni1€Z

for some appropriately chosen filter An associated compactly supported 1D waveélet
L?(R) can then be defined by

Y1(z1) = Z g9(n1)V2¢1 (221 — 1),
ni1€EZ
where agairy is an appropriately chosen filter. Then, the separable tegnerator) is
defined to be
Y(z1,2) = Y1 (1)1 (22).

The filtersh and g are required to be chosen so thatsatisfies a certain decay condition
(cf. [42]) to guarantee a stable reconstruction from thedbecoefficients. With those filters
h andg, we define the scaling and wavelet filtérsandg; by the Fourier coefficients of the
trigonometric polynomialé?; andG,, j > 0, defined by

j—1
Hj(&) = [ 3 hlna)e2mizime

k=0n1€Z
and
Gj(&1) = Hj-1(&) ( > g(m)e*%m’]"l&),
niE€Z

respectively.
For the signalf € L?(R?) to be analyzed, we now assume that, for- 0 fixed, f is of
the form

flx) = Z fr(n)27 27z —ny,27 x5 — ny), 7
nez?
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whereg(z1,x2) = ¢1(x1)¢1(x2). Note that the scaling coefficientg(n)),cz2 in (7) can
be viewed as sample values pt- in fact f;(n) ~ f(2=/n) with appropriately chosen.
Now aiming towards a faithful digitization of the shearl@tetficients(f, v x..m) for j =
0,...,J — 1, we first observe that

(fs¥5km) = (f(Ska-02(-)); ¥j.0m () (8)

WLOG we will from now on assume that/2 is integer; otherwise eithdrj /2] or |j/2]
would need to be taken. Our observation (8) shows us in fadigely how to digitize the
shearlet coefficientsf, ¥ 1), namely by applying the discrete separable wavelet trans-
form associated with the anisotropic sampling mattix to the sheared version of the data
f(Sk.2-3/2(+)). This however requires — compare the assumed forgh@gfen in (7) — that
f(Sy.0-4/2(+)) is contained in the scaling space

V= {2J¢(2J - =Ny, 27 . —ng) : (nl,ng) S Z2}

It is easy to see that, for instance, if the shear paranieter—7/2 is non-integer, this is
unfortunately not the case. The true reason for this failsitbat the shear matri%;,.o ;-
doesnotpreserve the regular gritt /72 in V;, i.e.,

Spo—is2(Z%) # 72.

In order to resolve this issue, we consider the new scaliageﬂpjﬂm , defined by
Viiiag =127 gp (271972 - —ny, 27 - —ny) : (m1,ma) € 2%}

wheregy(-) = ¢(Sk-). We remark that the scaling spab’ﬁj/w is obtained by refining the

regular grid2—/Z? along ther, -axis by a factor o£7/2. With this modification, the new grid
2-7=3/27, x 277 is now invariant under the shear opera$gr,,,-. In fact, we have

27792 x 27 = Sy 12 (277722 x 277 7).

This allows us to rewritg (S}.o—i/2(+)) in (8) in the following way.

Lemma 5.1([55]) Lett 27/2 and; denote the 1D upsampling operator by a factor of
27/2 and the 1D convolution operator along the-axis, respectively. Then, we obtain

F(Sgmsran(@) = Y fr(Sen)2 /46y, (27022 —ny 2725 — o),
n€ez?
wheref;(n) = ((f1)19i/2 *1 hjj2)(n).

The second term to be digitized in (8) is the sheatigt ., itself with £ = 0, for which
the following result can be employed.

Lemma 5.2([55]) Retaining the notations and definitions from this sectiomplvtain

wj,(),m(z) = Z ngj (dl — 2’]7jm1)hJ_j/2(d2 — 2J7j/2m2)2J¢(2']x — d)
dez?
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As already indicated before, we will make use of the discsefgarable wavelet transform
associated with an anisotropic scaling matrix, which,jfori, > 0 as well as: € ¢(Z?), we
define by

Wi, g (©)(n1,m2) = Y g5, (mi=2""n)hy, (ma—2ns)c(ma, ma),  (n1,ms) € Z7.
meZ?2

Finally, Lemmata 5.1 and 5.2 yield the following digitilidéorm of the shearlet coefficients
(fs s k,m)-

Theorem 5.3([55]) Retaining the notations and definitions from this sectiorg ketting
| 27/2 be 1D downsampling by a factor f/2 along the horizontal axis, we obtain

(fr¥jem) =Wi_ji—i/ (((]EJ(Sk') * D) *1 Ej/z)um) (m),

where®;,(n) = (¢x (), (- — n)) forn € Z?, andh; /o (n1) = hjjo(—n1).

Theorem 5.3 shows that for anfy € L?(R?) of the form (7), the shearlet coefficients
(f,v;,km) can be faithfully computed in the digital domain, similantavelet theory. For
more details as well as a digitalization of the inverse deeansform, we refer to [51,55,56].

In fact, this framework can be extended to allow a nonsepasdtearlet), which signifi-
cantly improves the stability and directional selectiafythe shearlet transform [56]. Figure 6
shows the refined essential support of a nonseparable shiggfburier domain as compared
to a separable shearlet. The Matlab software package @tiledrLab provides code for the
shearlet transforms associated with those separable arséparable shearlets.

(a) (b)

Fig. 6 (a) Separable shearlet. (b) Nonseparable shearlet.

Finally, the 3D shearlet transform can also be implemenagtiftilly by following the
ideas outlined in this section. For details we refer to [B],&nd for an implementation to
ShearlLab.

6 Applications

Recently, sparse and redundant representation modelsgebaived much attention due to
its efficiency in imaging sciences, see, e.g., [1, 23]. Thsfthat shearlets provide (almost)

2http://www.shearlab.org
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optimally sparse approximations of anisotropic featumes that most imaging data and, in
particular, natural images are governed by such featurés -a¢urons in the human visual
cortex are most sensitive to such edge-like structures —atlow the utilization of shearlets
in this general methodological approach. In the sequel, vlediecuss some exemplary
applications. For other applications, we refer the intiexééseader to the book chapter [38].

For shearlet-based algorithms currently three toolboresw@ailable, which also contain
code for some of the presented applications: (i) Local S&e&nolbox was the first shearlet
transform implementation for band-limited shearlets,details see [22]. (ii) ShearL&bon-
sists of three different implementations: The band-lichgbearlet transform implemented on
both the pseudo-polar grid and the Cartesian grid, as well@smpactly supported shearlet
transform, for details see [51,55]. (iii) Fast Finite She&ifransform (FFSP)provides fully
finite and translation invariant shearlet implementatidhwand-limited shearlets, for details
see [41].

6.1 Image Separation

The task of separating imaggse L?(R?) into morphologically distinct components has
recently attracted a lot of attention, see, e.g., [3,4,62} particular instance of this problem
is the separation of curve-like and point-like objects, attharises in several applications. In
neurobiological imaging, it would, for instance, be deslieato separate spines (point-like
objects) from dendrites (curve-like objects) in order talgme them independently aiming
to detect characteristics of Alzheimer disease. In astroca imaging, astronomers would
often like to separate stars from filaments for further asialyOther applications appear in
material sciences.

The mathematically precise problem can be formulated d@wsl Given a point-like ob-
jectu{ € L?*(R?) and a curve-like objeat € L*(R?), recoveru? andud from knowledge
of f = uY + ud. This is obviously an ill-posed inverse problem.

The key idea now is to approach this problem by compressesimemethodologies, see,
e.g., [44]. This mainly consists in utilizing two sparsifgi systems each for one of the com-
ponents followed by solving ahh minimization problem, since the norm promotes sparsity.
In our situation, we choose wavelets and shearlets for tlmg-fike and curve-like objects,
respectively. The separation is then performed by solMiegidllowing convex optimization
problem:

argmin ||((u1, da))aeall1 +1|({(u2,¥4)) er|li  subjectto [ui+us—fll2 < o, (9)

Ui, u2

where(¢x ) ca and(, ) er are wavelets and shearlets, respectively,aigithe noise level.
Figure 7 shows the numerical results of the separation seli@ywith wavelets and shearlets
for an artificial image (cf. [48]). Note that curve-like objs are well separated by shearlets
even for regions where a curve has high curvature. A themledinalysis of this separation
scheme can be found in [21].

3http://www.math.uh.edu/ ~ dlabate/software.html
“http:/www.shearlab.org
Shttp://Awww.mathematik.uni-kl.de/imagepro/software/
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In [39] the separation approach was applied in materiahseiemore precisely to polymer
composites filled with glass fibers that are used in many in@dlsranches. Their character-
istics strongly depend on the orientation of the fibers f)nbence the orientation distribution
of the fibers is of great importance. On the other hand alspoies—they represent defects
in the material—have a strong influence on the performandbeomaterial. For a further
analysis, the both components have to be analyzed separditel three-dimensional images
are obtained via full-field optical coherence microscopigufe 8 shows the decomposition
results. For technical details, we refer to [39].

Fig. 7 Image separation: (a) Noisy input image (curves+pointg)Separated image (curves). (c) Sep-
arated image (points).

@ (b) ©

Fig. 8 Image separation of an FF-OCT image of polymer compositesl filith glass fibers: (a) Origi-
nal image (b) Lines/Fibers (c) Points/Defects. (cf. [39])

6.2 Image/Video Inpainting

Inpainting is the process of reconstructing lost or detated parts of images and videos.
The term ‘inpainting’ first appeared in [7], but earlier wask disocclusions was done, e.g.,
in [9,57]. In this respect also interpolation, approxiroatiand extrapolation problems may
be viewed as inpainting problems. Inpainting is a very &cfield of research which was
tackled by various approaches. For a nice overview, we tefi9].
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(b)

Fig. 9 Image inpainting: (a) Original imagé12 x 512). (b) Corrupted image with 80% missing pixels.
(c) Inpainted image.

(b)

Fig. 10 Video inpainting: (a) Original frame of 8192 x 192 x 192) video sequence. (b) Corrupted
frame with 80% missing pixels. (c) Inpainted frame.

The mathematically precise problem can be formulated émAsl Given an image domain
Qo ={1,...,m} x {1,...,n}, the inpainting regio) C € is the subset where the pixel
valuesf (i, j), (i, j) € € are unknown. The (noiseless) inpainting problem considiading
a functionu on © from dataf given on) = \Q such that: is a suitable extension gfto
Q. With (¢,),ca a shearlet system, the shearlet based model reads as follows

argmin || ((u,¥x))reallr  Subjectto ulg = fla.

Again, the backbone of this approach comes from the theocpmipressed sensing.

In [28, 43], a shearlet based inpainting scheme has beeretiedly analyzed. Figures 9
and 10 show inpainting results for an image and, using 3Dr&#teaa video. For more
extensive test results as well as comparisons with othes-efathe-art methods we refer to
[51].
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6.3 Sparse Sampling of Fourier Data

One major problem of imaging procedures in clinical reseanrd health care such as Mag-
netic Resonance Imaging (MRI) or X-ray Computed Tomographsay CT) is the very slow
data acquisition. In those applications, the data acduisfirocess can also be modeled by
taking Fourier measurements. One main challenge is theréfosignificantly reduce the
number of Fourier samples without degrading the qualityntdge reconstruction by devel-
oping novel sampling and reconstruction schemes. Fontlésonsider

arg min [|((u,¥x))aealls ~ subjectto [[PoFu— flls <o

where (v, )yca IS a shearlet systen) is a set of sampling points in Fourier domai® is
the corresponding sampling operatbris the Fourier operator, andis the noise level.

One major task is to design a sampling Qetvhich allows a successful image reconstruc-
tion using only a few number of Fourier samples. Figure 1Mshilve reconstructed image
by a shearlet-based sparse sampling scheme using%@rnipurier coefficients of the original
image. A detailed description and a theoretical analysikisfshearlet-based sparse sampling
scheme using methods from compressed sensing can be fol48].in

(b)

Fig. 11 Fourier Sampling: (a) Original imag&12 x 512). (b) Fourier mask for the subsampling
operatorP,, containing5% sampling points in Fourier domain. (c) Reconstructed image

6.4 Image Segmentation

Segmentation is a fundamental task in image processingwytays a role in many prepro-

cessing steps. Recently, convex relaxation methods fagemaulti-labeling were addressed
by several authors [5,53,54,59,63] using a total variaggularizer. For texture segmentation
containing coherent curves, shearlet regularization sidesuperior results [40].

More precisely, to segment a given color image= (f(i,7));;2; € R"™" into L seg-
ments, we assign a codebook- (¢1,. .., cr) to the image which contains the central colors
¢k, k=1,..., L of the segments (this codebook can be updated during tleivesegmen-
tation process). For each pixgl j) we are searching for the probabilitis(, j) such that

f(i,7) liesin segmenk. In other wordsp(i, j) = (p1(4,7), - -.,pL(Z, 7)) is in the probability
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simplex

L
A:{TFERL:ZWk =1, m,...,7 > 0}.
k=1
Thenf (i, j) is assigned to those segment with the highest probabils,L:= (s (i, j)); ;2
= (|| f @, 45) — ck||§);’fj’zl. We then findpy, &k = 1, ..., L as the solution of

L

argminz ((sk, Pr) + al|((Pr, ¥a))aeallr)  subjectto p(i,j) € A V(i)
P k=1

with a suitable regularization parameter- 0. Figure 12 shows an example of a segmented
image using the described method. For details, we referGp [4

Fig. 12 Image segmentation: (a) Noisy image of a clown-surgeon ({igf§egmented image with four
segments.
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