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1 Introduction

The 21st century is typically referred to as the century ¢hdaAnd indeed, today
we face a deluge of data even already in daily life arisingifrfor instance, wire-

less communications or medical imaging procedures, whegtno be acquired,
analyzed, transmitted, and stored. These tasks pose \‘ergsting challenges to
mathematicians such as developing efficient methodoldgietracting key fea-

tures from data or to derive optimality results concernialgi@vable compression
rates.

The area ofipplied harmonic analysjsvhose origin dates back to the 18th cen-
tury and the introduction of the Fourier transform, pronsdtes following general
approach. Given a class of dagain a Hilbert space, the data is decomposed
according to

C 2 X — ({(X,0i))ier,

where(¢i)ic is a carefully designed representation system. One keyisotiat
this decompositiomow allows access to governing featuresxoffor instance,
the location and direction of edges of an imageight be encoded in the set
of indicesi € | of those coefficientsx, ¢;) which are large in absolute value. In
general, one might say that the associated coefficiéri$;) )ic| shall present the
data in a form convenient for analysis and processing tasks.

A yet different set of applications such as, for instanceERDIvers requireffi-
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cient expansionsf somex € ( in terms of a representation systédn)ic; by

x:Zcqui.

The representation system is ideally chosen such that tetictent sequence
(G)iel has fast decay in modulus, which is sometimes today coirsgheserep-
resentation. Certainly, ifp;)ic; constitutes an orthonormal basis, the coefficients
¢ have to be chosen 4$x, ¢;))ic|. In contrast to this, a redundant system allows
for optimizing the sparsity of the sequence. One furtherigsye arising from nu-
merical algorithms —which obviously require an approximaby finite sums —is
the question which decay rate of the error of bégerm approximation is achiev-
able. Already on an intuitive level, this shows the relatiorihe decomposition
problem, since if the governing features are contained énldinge coefficients,
very few terms should already lead to high approximatioegat

Applied harmonic analysis poses certain desiderata totbiee of representation
systems for decompositions and expansions. First, typicalltiscale systems
are chosen to allow different levels of resolution. Secdhdse representation
systems are usually designed according to their partitiéfoarier domain. And,

third, for both the decomposition and the expansion fasbrialyns should be

available.

One prominent example aveavelet systemshich are nowadays used in a vari-
ety of both theoretical and practical applications sucH@snstance, in optimal
schemes for solving elliptic PDEs [4] or in the compressitandard JPEG2000
[16]. However, multivariate functions are typically gomed by anisotropic — in
the sense of directional — features such as singularitiésveer dimensional em-
bedded manifolds, which wavelets as isotropic systemsataefficiently encode.
Because of this reason, various novel anisotropic reptasen systems such as
curvelets[3] and shearletg[13] have been suggested, which even has initiated
the new research area géometric multiscale analysig-or many of those sys-
tems, optimally sparse approximations have been provea particular function
class inL?(R?) called cartoon-like functions which serves as a model focfu
tions governed by anisotropic features. Very recently,reege framework called
parabolic moleculebas been proposed in [9], which includes all those systems as
special cases and, for the first time, provides a higher lgeeipoint on and deep
insight into representation systems providing optimatigrse approximations of
most types of multivariate functions.

This article shall serve as an introduction to and a surveyibgeometric multi-
scale analysis and, in particular, the novel theory of paliainolecules. For this,
we will first give an introduction into wavelet systems (Sewct2). After a discus-
sion about the appearance of anisotropic features in raukite versus univariate
functions in Section 3, we will introduce shearlet syste@action 4) followed
by an introduction of curvelet systems (Section 5). Secfias then devoted to
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the theory of parabolic molecules. Finally, an outlook taanfework coineah-
moleculeg8], which covers to some extent even wavelets and ridgi¢tand a
framework calleduniversal shearletf/], which provides a significantly improved
flexibility in scaling, is given.

2 Wavelets

We start our endeavour with introducing and discussing \eéseA wavelet sys-
tem consists of one or a few generating functions to whichregand translation
operators are applied. To introduce a wavelet systernd@?), let us first take a
look at the one-dimensional situation.

Definition 2.1. Let @, € L?(R). Then the associateslavelet system ford(R)
is defined to be

{Om:=@(-—m):me Z} U{Pjm:=22@(2 - —m): j>0,me Z}.

It should be noted thap andy can be constructed so that the associated wavelet
system forms an orthonormal basis f6(R) [16], and one then refers tpas the
scaling functiorand aswavelet As it is typical in applied harmonic analysis,
this system is designed to partition Fourier domain in ai@algr way. Figure 1
shows how usually the essential support of the elements iavelet system tile

the Fourier domain into different frequency bands.

':DO,m

Figure 1: The partition of Fourier domain induced by a waivejstem forL?(R).

A wavelet system fok?(R?) can now be derived by a tensor product construction,
leading to the following system.

Definition 2.2. Let @, € L?(R). Then the associatedavelet system ford(R?)
is defined by

{dY(x—m) :mez?}u{2lpV(2lx—m):j>0me7z?%i=1,23},

Wherecp V(X = ox)0x2), WP (x) = exa)b(x), W (x) = Y(xe)@(xz), and
B (x) = W) xo)-



Figure 2: The partition of Fourier domain induced by a waveystem fol?(R?).

The tiling of Fourier domain now takes the form as displayeé&igure 2, which
the reader might want to compare with Figure 1.

One should point out that, on the application side, such 2i2elea systems are
used in the new compression standard JPEG2000. On the nwtbainside,
wavelet systems are proven to highly efficiently approxenatfunctions which
are smooth except for finitely many point singularities.

3 Anisotropy versus Isotropy

In contrast to univariate functions, multivariate funasocause the additional
problem that they do not only exhibit point singularitiest blso curvilinear sin-

gularities. And in fact, most multivariate functions appe@ in applications are

governed by such structures, which can be given either@ttplsuch as edges in
images or implicitly such as shock fronts in transport eigunat

A suitable model for such functions, called the model of @antlike functions,
was introduced in [6] in 2001.

Definition 3.1. The set ofcartoon-like function&?(R?) is defined by
T2(R?) = {f € L2(R?): f = fo+ f1-Xa),

whereB c [0, 1] with 0B a closedC2-curve with bounded curvature arigl f, €
C3([0,172).

An illustration is shown in Figure 3.

Based on this model situation, the following result now deg a benchmark
concerning the maximally achievable approximation rater the notion of a
frame as an extension of orthonormal bases, we refer toddetti

4



Figure 3: lllustration of a cartoon-like function.

Theorem 3.1([6]). Let (Y )rcn be a frame for B(R?). Then the optimal asymp-
totic approximation error of fc¢ E?(R?) is

If—flZ=N"? asN—o, wherefi= 5 o
AEAN

is the (non-linear) best N-term approximation.

As might be expected, since wavelets are isotropic objaststd the isotropic
scaling matrix, they are only able to deliver a significastifpoptimal approxima-
tion rate of

|f—fn][5=< N1 asN— o.

The intuitive reason for this failure is illustrated in Frgu.
//’—~ —— 1
. =
/ /7
’ (
\
\ \

Figure 4: Approximation of a curve by isotropic and anisptcabjects.

This raises not only the question of whether there eaas$otropicrepresentation

systemg W, )aca Which meet this benchmark, but also whether they can be ohose

to be ‘conveniently’ defined. More precisely, the new aregeafmetric multiscale
analysiswhich arose from this question seeks to introduce repratentsystems
which satisfy the following list of desiderata.

(D1) The system should be generated by one or few generatimugidns.
(D2) The benchmark from Theorem 3.1 should be met.



(D3) The system should allow for compactly supported anafyzlements.
(D4) The continuum and digital realm should be treated unify.
(D5) The associated transform should admit a fast impleatiemt.

Item (D3) ensures high spatial localization, whereas itBd) @llows for faithful
implementation of the continuum domain theory.

An abundance of approaches have been suggested with thabprabost well-
known ones being curvelets [3], contourlets [5], and sle¢aflLl1]. We now con-
tinue by introducing shearlets, which are by now the onlyesysactually satisfy-
ing the previously stated list of desiderata.

4 Shearlets

To accomodate (D1), shearlets are as wavelets based orevegeherating func-
tions to which scaling and translation operators are agp#nce these are how-
ever anisotropic systems, a third operation is requireactivbhanges their orien-
tation.

As scaling parabolic scalings chosen — the reason being discussed in Section 6
—which is defined by

210 -~ 2i/2

To change the orientation via rotation would prevent (D#i¢e rotation does not
leave the digital griZ2 invariant. Henceshearing given by

1 k
S(:<O 1)7 k€Z7

is selected, and this selection indeed ensures (D4). Byubkm framework of
affine systemsvhich consists of systems of the form

{|detM|Y?2g(M - —m) : M € GC GlLp, me Z2}, e L?(R?),

the translation operation is already ‘built-in’.

Since shearing does not provide a resolution of the direstas uniform as rota-
tion, we require two separate systems to handle the moredmially and the more
vertically aligned directions. More precisely, we aim fquatition of Fourier do-

main as illustrated in Figure 5.

This leads to the following definition, in this form first stdtin [14]. It should
be noted before that the translation part is made more fiekiplthe introduction
of the matricesM; and M. in order to also enable finer sampling. We further
remark that those systems are sometimes also referredtmasadapteghearlet
systems.
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Figure 5: The partition of Fourier domain induced by a shetaystem.

Definition 4.1. For@, g, { € L?(R?) andc = (c1,¢;) € (R, )?, theshearlet system
SH(o,y, ; c) is defined by

SH(@, W, 1;¢) = D(@;c1) UW(W;¢) UP(;0),
where
O(@ic1) = {@m=@(- —c1m) : me Z?},
W(Y;0) = {Wjm= 27 W(SAy - ~Mcm) 1 | > 0,[K < [21/2], me 72},
P(0;0) = {§j)m= 24 (ST Ay - —Niem) : | > 0,|K < [21/2], me 72},

with
_(c1 O ~ (Ccp O
Mc = (O Cz) and Mq= (0 Cl)'
A first large class of functions considered as generatorsti@$ollowing class

of band-limited functions, i.e., functions whose Fouriemisform is compactly
supported.

Example 4.1. Classical shearletare functionsp € L?(R?) of the form

B(E) = B(E1, &) = Da (&) P2(2),

where; € L?(R) is a discrete wavelet in the sense that it satisfies the déscre
Calderon condition, given by

EZ|¢'1(2_]E)|2 =1 fora.efeR,
i€

with §J; € C*(R) and supfiy C [—3, —15] U [, 3], andy, € L2(R) is a ‘bump
function’ in the sense that

1

> |P2(E+Kk)[2=1 fora.ele[-1,1], (4.1)
k==1



satisfying(), € C*(R) and sup C [—1,1].

One might now ask whether there exist generators so thastgue@ted shearlet
system constitutes an orthonormal basislf6(R). However, no constructions
of shearlet orthonormal bases are known to date due to thundedcy coming
from the shear component. But a variety of shearlet systemswehich still have
superior stability properties in the sense of frames. Foséhreaders not familiar
with this functional analytic concept, let us briefly rectde basics from frame
theory.

Definition 4.2. A sequencéd;)ic is aframe for I_Z(Rz), if there exist constants
0 < A< B < o such that

Alf)3 < ZKf,gi)Iz <B|f|z forall feL*R?).
le

A andB are called thdower andupper frame boundrespectively. IfA =B is
possible,(gi)iel is called atight frame. In caséA =B =1, it is referred to as a
Parseval frame

A frame (g;)ic; for L2(R?) allows the analysis of elements if(R?) through
application of theanalysis operatogiven by

T:L2(R?) = £2(1), T(f)=((f,q0))iar-

The associateftame operator S&=T*T f = ¥, (f,0)gi in turn gives rise to the
reconstruction formula

f= Z<f,gi>srlgi forall f € L2(R?).
le

Coming back to the situation of shearlets, it was then shawipll], that
SH(o,W,[; (1,1)) with suitableg, with Y, D being classical shearletd (with
interchanged variables), and with small modifications ef boundary elements
forms a Parseval frame far?(RR?).

To however accommodate (D3), we require compactly suppgeeerators. This
forces us to give up on optimal stability, i.e., on a Parsénaahe. But the fol-
lowing result shows that one still has a certain degree tilgiaby being able to
control the frame bounds.

Theorem 4.1([12]). Fora >y>3,q>q >0andqg>r >0, let
[B(€1,82)| < C-min{1,|q€|"} - min{1,[g&| ¥} - min{L,|r&z| ¥},

and
;w(sT Ay i&)[?>C >0,
Js



and similar for ). Then there exists a sampling constagt such that
SH(@, g, I; ¢) is a frame for 12(R?) for all ¢ < ¢y with

¢ ?Cy(a,y.q,q,r,c) CA<SB< ¢ %Cy(a,Y,0,4,1,C),
where explicit formulas for Ga,y,q,d',r,c) and G(a,y,q,q,r,C) exist.

Our original goal was though to meet the benchmark from Tér@08.1. This
is the content of the next theorem, which shows that also {P2gtisfied by
shearlets. In fact, it meets it up to a log-factor, wherefoeeincluded the ‘(al-
most)’. However, if one regards a log-factor as negligibiés is indeed the opti-
mal achievable rate.

Theorem 4.2([14]). Lety € L?(R?) (similar for s) be compactly supported such
that, fora > 5,y> 4, he L1Y(R),

Suppose SHp, P, Ii;c) forms a frame for B(R?). Then it provides (almost) op-
timally sparse approximations of cartoon-like functions £2(R?) in the sense
that

If—fnI3 <C-N72-(logN)® asN— o,

where { is the N-term approximation consisting of the N largest sle¢@oeffi-
cients.

To provide some intuition, let us give a heuristic argumehtol shows why the
rateN—2 can be achieved. Due to the form faf, we obtain

1
If=flz< 5> ({f.omD, (4.2)
2<% nZN 1))

where (on )y is the shearlet frame with lower frame bouAdand (|(f,0n)|)n)
denotes thenth largest shearlet coefficient. To estimate these cosfftijeve
have to distinguish three cases which are illustrated imrf€i@g. In the cases of
Figure 6(a)+(b), the coefficients are negligible, mainlgdugse of the assumed
(directional) vanishing moment conditions. In the case iguFe 6(c), we can
estimate .

[(f.on)| < [[flle]loglls <C-274.

Thus, we know that there exist’2 of such coefficients — recall that each shearlet
has a length of 21/2 — and we have an estimate for each of those. This allows us
to complete (4.2) by

1 C 3 C
If—fnE< <Y ((fonhi <= Y (n73)?< Z-N"2,
2= p g holin =50 2 (M =R
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Figure 6: Positions of different shearlets with respectdisaontinuity curve of a
cartoon-like function.

thereby finishing the argument.

Finally, also (D5) is satisfied by shearlets. In fastw. Shear Lab. or g pro-
vides an extensive software package for the 2D and 3D shéantsform based
on compactly supported shearlets with accompanying patiobic [15].

5 Curvelets

The system of curvelets predates shearlets, and was dlygim@oduced based
on ridgelets [2], which are systems of certain ridge funtito optimally sparsely
approximate ridge-like singularities. The nowadays zeii curvelet system, also
called second generation curvelets, was introduced ir48Jtypical for the area
of applied harmonic analysis, they are designed to pantf&ourier domain in a
particular way, which in this case is illustrated in FigureAs can be seen, it pro-

W
s

Figure 7: The partition of Fourier domain induced by a cuevel/stem.

vides a perfect resolution of the different directions imizast to the approximate
one provided by shearlets. This however comes with the disdadge that there
does not exist a faithful implementation of curvelets, vilhace because of this fact
a purely continuum domain theory. It should though be emipbkdghat curvelets

were the first system shown to deliver (almost) optimallyrspapproximations

of cartoon-like functions [3], which can justifiably be aalla breakthrough.

The definition of curvelets is as follows.
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Definition 5.1. Let W € C*(R) be a wavelet with sugV) C (3,2), andV €
C*(R) be a ‘bump function’ (cf. (4.1)) with sugp') C (—1,1). Then thecurvelet

SySten(y(j7g7k))(L&k)e/\o, where

]

A0 = {(j,z,k) e7t: j>0 =21 ... ,2le} (5.1)
is defined in polar coordinates by
¥(j.00)(r,w) =273/ (271r) v (2l/2 )

and
Yi.ek () = Y(5.00) (R (- =X(j.ek))

with 8(j ) = T//21/2 andXj sy = Ro,,Az-imfor j > jo, £ = 0,...,20/2 _1,
andme Z2.

It was shown in [3] that this system constitutes a Parseaahér forL?(R?) pro-
vided that appropriate functions to address the low frequeart are included.

The following result from 2004 is the first result providinggpresentation system
which (almost) meets the benchmark from Theorem 3.1.

Theorem 5.1([3]). The curvelet system provides (almost) optimally sparse ap-
proximations of cartoon-like functionsd £%(R?) in the sense that

If—fn]l3 <C-N72-(logN)® as N— o,

where { is the N-term approximation consisting of the N largest elat coeffi-
cients.

6 Parabolic Molecules

As can be seen from Sections 4 and 5, curvelets differ sigmitiz from shear-
lets, since they do not form affine systems, they are basedtatian rather than
shearing causing problems with faithful implementatiarsj no compactly sup-
ported version is available causing problems with highiaplicalization. But
there are also striking similarities, since both systeriradgat) optimally sparsify
cartoon-like functions. Thus the sparsity properties aofelets and shearlets are
similar, and even more, the results for the band-limitedieer of both systems
are proven with resembling proofs [3, 10]. This observataises the question
whether there exists a general framework for such direatiepstems and what
the fundamental concept behind sparse approximationtsasally is.

The properties we require of a general framework are to calveystems known
to provide optimally sparse approximations of cartoom-liknctions, to enable
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an easy transfer of (sparsity) results between systemHBoto acategorization of
systems with respect to sparsity behaviors, and to alsorterglesnough to allow
constructions of novel systems.

The common bracket between, in particular, curvelets aedrits isparabolic
scaling This is due to the fact that parabolic scaling is perfeatiggeted to th€?
regularity of the discontinuity curve employed in the cartdike model as can
be seen heuristically. For this, I6E(x2),x2),%2 € | be a parametrization of the
singularity curve in Figure 8 and, by noting tHat0) = E’(0) = 0, consider the

20

2w

Figure 8: Anisotropic function approximating a curvilimesngularity.

approximation by the Taylor series

1
E(x2) ~ éKX%.

For a fixed length 2 let 2w be the width of the smallest rectangle centered at
(0,0) containing the entire edge curize(cf. Figure 8). Then, sincE(¢) =w, we
obtain

K 2
W =/
2 )

which can be interpreted asidth ~ lengti?’, which in turn is parabolic scaling.

After agreeing on the type of scaling, a general framewodkires a common
parameter space, which will be chosen as

P:=R, x T x R?,
where(s, 0,x) € P describes scale®2orientationd, and locatiorx.

Definition 6.1. A parametrizatioris a pair(A,®5), whereA is a discrete index
set andd, is a mapping

O - N — P,
MUA = (90,60%).
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We notice that for now, no properties of the ntag are required.
Since curvelets are very adapted to the parameter spacesséblgoassociated
parametrization can be easily derived as follows.

Example 6.1. The canonical parametrizatiof/A®, ®°) with A being the index
set associated with curvelets from (5.1) is defined by

(DO(LE,I() = (S}\,e)\,X)\> = (J?EZ_U/ZJTL Rfe)\AZ*S)\k)'

The key idea of the definition of parabolic molecules fromyiich now follows
is to define maximally flexible systems based on parabolitregaotation, and
translation with parameter spaBevhich allow a different generating function for
each index. Decay and smoothness properties of thosedas@re then governed
by the parameterfL,M,N;,N;), whereL measures spatial localizatioM the
number of directional (almost) vanishing moments, AN, smoothness.

Definition 6.2. Let (A,®,) be a parametrization. Theimy ))ca is asystem of

parabolic molecules of ordeiL, M, N1, Np) € (Z, U {eo}) x Z2, if, for all A € A,
rn)\(X) = 238)\/4a()\) (AZS)\ Re)\ (X_X)\>) s CD/\()\) = (S)\v e)\,X)\),

such that, for al|B| <L,

M
0Pa (®)| < min (1,279 + [&a] +2792eal) (€)™ (€207,

where(x) := (14 x%)1/2,

This framework can be shown to, in particular, include palabframes [17],
curvelets [3], band-limited shearlets [10], frame decosifans [1], and com-
pactly supported shearlets [12].

Heading towards a general result which poses conditionshenparameters
(L,M,N1,Np) for a system of parabolic molecules to deliver (almost) roptly
sparse approximations of cartoon-like functions, we fitatesa result which ana-
lyzes the decay of the cross-Gramian of two systems of pacabolecules. This
will allow us to transfer the optimal sparse approximatiesult from curvelets to
other systems of parabolic molecules. For this decay résoltgh, we require a
distance function between two indices from the common patanspace.

Definition 6.3. Let (A, ®x) and(f\,d);\) be parametrizations. Fare A andp e
A\, we define théndex distancdy

O\ ) = (@A), PR (W) =205 7% (1420 d ()
where

d(A, 1) = [6x — B + P — x>+ |((cog(8,),Sin(6r)) " % — X
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We remark thad is nothing else than the Hart Smith’s phase space metric on
T x R? (cf. [17]). Using the index distance, we can next state tiselteon the
decay of the cross-Gramian of two systems of parabolic nutdsc

Theorem 6.1([9]). Let N> 0, and let(my)xen, (Pu)yeci be systems of parabolic
molecules of ordefL, M, Nz, Ny) with

L > 2N, M>3N—§r, N12N+Z, Nz > 2N.

Then, for allA € A and pe A,

(M ) | S @)~

As already mentioned, this result will be key to transfer (aknost) optimal

sparse approximation result from curvelets to variousroglistems of parabolic
molecules. This is however only possible provided that grametrization of this
other system is in some sense ‘consistent’ with the (caayrparametrization of
curvelets introduced in Example 6.1.

Definition 6.4. A parametrizatior{/\, ®,) is k-admissibleif

sup Z w(}\,u)*k <o and supz co()\,u)*k < 0,
AEA PERD AENO EN

As expected, the curvelet parametrization is, for instanoasistent with itself
for all k > 2, as was shown in [9].

The next main result now reveals a very large class of reptagen systems
parametrized as systems of parabolic molecules which allige (almost) opti-
mally sparse approximations of cartoon-like functionsinifact proves that this
class consists of all frames of parabolic molecules whosanpetrization is con-
sistent with the canonical one and whose associated pagestietM, N, N,) are
sufficiently large.

Theorem 6.2 ([9]). Let (my))en be a system of parabolic molecules of order
(L,M,Nz,N2) such that

(i) (mM)ren constitutes a frame ford(R?),
(ii) Ais k-admissible for all k> 2,
(iii) it holds that
5 3
L>6, M >9_Z’ N123+Z, Ny > 6.
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Then, for anye > 0 and for any fc E2(R?), (my)ycn Satisfies
If—fnll5<C-N"2" asN— oo,

It should be emphasized that this result does not only peoaitligher level view
of the properties which are required of systems to deliviendgat) optimal sparse
approximations of cartoon-like functions, but it also altothe construction of a
variety of novel systems which automatically exhibit suppr@ximation proper-
ties.

7 ..0-Molecules?

Finally, the question arises whether it might be possiblextend the framework
of parabolic molecules to include wavelets; maybe everelitg. In fact, very
recently a much more elaborate framework coioeaholeculesvas introduced in
[8], the key idea being to incorporate a parameter|0, 1] to measure the amount
of anisotropy by considering the scaling matrix

a o0
Aoua:(o a(] )7 a>0

In this setting,a = 1 corresponds to the scaling associated with Waveteis,%
to curvelets or shearlets, and= 0 to ridgelets. In [8] in the spirit of parabolic
molecules, an elaborate framework is introduced which thidgows to derive
sparse approximation results for large classes of systdmasgby on a higher
level linking approximation properties to structural peoies.

A yet different extension, which should also be mentionedsarcalleduniversal
shearlets introduced in [7]. Those systems allow a different scalnatrix for
each scalg with aj € [%, 1], and are specifically designed to parametrize a path
from wavelets to shearlets. They were introduced for th@@se of analyzing
the ability of wavelets versus shearlets for compressesdisgiased inpainting
algorithms. Still it can be envisioned that the idea of vagyscaling could be
incorporated in the framework of-moleculesallowing even more flexibility.
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