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1 Introduction

The 21st century is typically referred to as the century of data. And indeed, today
we face a deluge of data even already in daily life arising from, for instance, wire-
less communications or medical imaging procedures, which need to be acquired,
analyzed, transmitted, and stored. These tasks pose very interesting challenges to
mathematicians such as developing efficient methodologiesfor extracting key fea-
tures from data or to derive optimality results concerning achievable compression
rates.

The area ofapplied harmonic analysis, whose origin dates back to the 18th cen-
tury and the introduction of the Fourier transform, promotes the following general
approach. Given a class of dataC in a Hilbert space, the data is decomposed
according to

C ∋ x−→ (〈x,ϕi〉)i∈I ,

where(ϕi)i∈I is a carefully designed representation system. One key ideais that
this decompositionnow allows access to governing features ofx. For instance,
the location and direction of edges of an imagex might be encoded in the set
of indicesi ∈ I of those coefficients〈x,ϕi〉 which are large in absolute value. In
general, one might say that the associated coefficients(〈x,ϕi〉)i∈I shall present the
data in a form convenient for analysis and processing tasks.

A yet different set of applications such as, for instance, PDE solvers requireeffi-
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cient expansionsof somex∈ C in terms of a representation system(ϕi)i∈I by

x= ∑
i∈I

ciϕi .

The representation system is ideally chosen such that the coefficient sequence
(ci)i∈I has fast decay in modulus, which is sometimes today coined asparserep-
resentation. Certainly, if(ϕi)i∈I constitutes an orthonormal basis, the coefficients
ci have to be chosen as(〈x,ϕi〉)i∈I . In contrast to this, a redundant system allows
for optimizing the sparsity of the sequence. One further keyissue arising from nu-
merical algorithms – which obviously require an approximation by finite sums – is
the question which decay rate of the error of bestN-term approximation is achiev-
able. Already on an intuitive level, this shows the relationto the decomposition
problem, since if the governing features are contained in the large coefficients,
very few terms should already lead to high approximation rates.

Applied harmonic analysis poses certain desiderata to the choice of representation
systems for decompositions and expansions. First, typically multiscale systems
are chosen to allow different levels of resolution. Second,these representation
systems are usually designed according to their partition of Fourier domain. And,
third, for both the decomposition and the expansion fast algorithms should be
available.

One prominent example arewavelet systemswhich are nowadays used in a vari-
ety of both theoretical and practical applications such as,for instance, in optimal
schemes for solving elliptic PDEs [4] or in the compression standard JPEG2000
[16]. However, multivariate functions are typically governed by anisotropic – in
the sense of directional – features such as singularities onlower dimensional em-
bedded manifolds, which wavelets as isotropic systems cannot efficiently encode.
Because of this reason, various novel anisotropic representation systems such as
curvelets[3] and shearlets[13] have been suggested, which even has initiated
the new research area ofgeometric multiscale analysis. For many of those sys-
tems, optimally sparse approximations have been proven fora particular function
class inL2(R2) called cartoon-like functions which serves as a model for func-
tions governed by anisotropic features. Very recently, a general framework called
parabolic moleculeshas been proposed in [9], which includes all those systems as
special cases and, for the first time, provides a higher levelviewpoint on and deep
insight into representation systems providing optimally sparse approximations of
most types of multivariate functions.

This article shall serve as an introduction to and a survey about geometric multi-
scale analysis and, in particular, the novel theory of parabolic molecules. For this,
we will first give an introduction into wavelet systems (Section 2). After a discus-
sion about the appearance of anisotropic features in multivariate versus univariate
functions in Section 3, we will introduce shearlet systems (Section 4) followed
by an introduction of curvelet systems (Section 5). Section6 is then devoted to
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the theory of parabolic molecules. Finally, an outlook to a framework coinedα-
molecules[8], which covers to some extent even wavelets and ridgelets[2], and a
framework calleduniversal shearlets[7], which provides a significantly improved
flexibility in scaling, is given.

2 Wavelets

We start our endeavour with introducing and discussing wavelets. A wavelet sys-
tem consists of one or a few generating functions to which scaling and translation
operators are applied. To introduce a wavelet system forL2(R2), let us first take a
look at the one-dimensional situation.

Definition 2.1. Let φ,ψ ∈ L2(R). Then the associatedwavelet system for L2(R)
is defined to be

{φm := φ(·−m) : m∈ Z}∪{ψ j ,m := 2 j/2 ψ(2 j ·−m) : j ≥ 0,m∈ Z}.

It should be noted thatφ andψ can be constructed so that the associated wavelet
system forms an orthonormal basis forL2(R) [16], and one then refers toφ as the
scaling functionandψ aswavelet. As it is typical in applied harmonic analysis,
this system is designed to partition Fourier domain in a particular way. Figure 1
shows how usually the essential support of the elements in a wavelet system tile
the Fourier domain into different frequency bands.

φ̂m

ψ̂0,m

ψ̂1,m

Figure 1: The partition of Fourier domain induced by a wavelet system forL2(R).

A wavelet system forL2(R2) can now be derived by a tensor product construction,
leading to the following system.

Definition 2.2. Let φ,ψ ∈ L2(R). Then the associatedwavelet system for L2(R2)
is defined by

{φ(1)(x−m) : m∈ Z
2}∪{2 jψ(i)(2 jx−m) : j ≥ 0,m∈ Z

2, i = 1,2,3},

where φ(1)(x) = φ(x1)φ(x2), ψ(1)(x) = φ(x1)ψ(x2), ψ(2)(x) = ψ(x1)φ(x2), and
ψ(3)(x) = ψ(x1)ψ(x2).
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Figure 2: The partition of Fourier domain induced by a wavelet system forL2(R2).

The tiling of Fourier domain now takes the form as displayed in Figure 2, which
the reader might want to compare with Figure 1.

One should point out that, on the application side, such 2D wavelet systems are
used in the new compression standard JPEG2000. On the mathematical side,
wavelet systems are proven to highly efficiently approximate L2-functions which
are smooth except for finitely many point singularities.

3 Anisotropy versus Isotropy

In contrast to univariate functions, multivariate functions cause the additional
problem that they do not only exhibit point singularities, but also curvilinear sin-
gularities. And in fact, most multivariate functions appearing in applications are
governed by such structures, which can be given either explicitly such as edges in
images or implicitly such as shock fronts in transport equations.

A suitable model for such functions, called the model of cartoon-like functions,
was introduced in [6] in 2001.

Definition 3.1. The set ofcartoon-like functionsE2(R2) is defined by

E
2(R2) = { f ∈ L2(R2) : f = f0+ f1 ·χB},

whereB⊂ [0,1]2 with ∂B a closedC2-curve with bounded curvature andf0, f1 ∈
C2

0([0,1]
2).

An illustration is shown in Figure 3.

Based on this model situation, the following result now provides a benchmark
concerning the maximally achievable approximation rate. For the notion of a
frame as an extension of orthonormal bases, we refer to Section 4.
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Figure 3: Illustration of a cartoon-like function.

Theorem 3.1([6]). Let (ψλ)λ∈Λ be a frame for L2(R2). Then the optimal asymp-
totic approximation error of f∈ E2(R2) is

‖ f − fN‖
2
2 ≍ N−2 as N→ ∞, where fN = ∑

λ∈ΛN

cλψλ

is the (non-linear) best N-term approximation.

As might be expected, since wavelets are isotropic objects due to the isotropic
scaling matrix, they are only able to deliver a significantlysuboptimal approxima-
tion rate of

‖ f − fN‖
2
2 ≍ N−1 asN → ∞.

The intuitive reason for this failure is illustrated in Figure 4.

Figure 4: Approximation of a curve by isotropic and anisotropic objects.

This raises not only the question of whether there existanisotropicrepresentation
systems(ψλ)λ∈Λ which meet this benchmark, but also whether they can be chosen
to be ‘conveniently’ defined. More precisely, the new area ofgeometric multiscale
analysiswhich arose from this question seeks to introduce representation systems
which satisfy the following list of desiderata.

(D1) The system should be generated by one or few generating functions.
(D2) The benchmark from Theorem 3.1 should be met.
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(D3) The system should allow for compactly supported analyzing elements.
(D4) The continuum and digital realm should be treated uniformly.
(D5) The associated transform should admit a fast implementation.

Item (D3) ensures high spatial localization, whereas item (D4) allows for faithful
implementation of the continuum domain theory.

An abundance of approaches have been suggested with the probably most well-
known ones being curvelets [3], contourlets [5], and shearlets [11]. We now con-
tinue by introducing shearlets, which are by now the only system actually satisfy-
ing the previously stated list of desiderata.

4 Shearlets

To accomodate (D1), shearlets are as wavelets based on very few generating func-
tions to which scaling and translation operators are applied. Since these are how-
ever anisotropic systems, a third operation is required which changes their orien-
tation.

As scaling,parabolic scalingis chosen – the reason being discussed in Section 6
– which is defined by

A2 j =

(

2 j 0
0 2j/2

)

and Ã2 j =

(

2 j/2 0
0 2j

)

.

To change the orientation via rotation would prevent (D4), since rotation does not
leave the digital gridZ2 invariant. Henceshearing, given by

Sk =

(

1 k
0 1

)

, k∈ Z,

is selected, and this selection indeed ensures (D4). By using the framework of
affine systems, which consists of systems of the form

{|detM|1/2ψ(M · −m) : M ∈ G⊆ GL2, m∈ Z
2}, ψ ∈ L2(R2),

the translation operation is already ‘built-in’.

Since shearing does not provide a resolution of the directions as uniform as rota-
tion, we require two separate systems to handle the more horizontally and the more
vertically aligned directions. More precisely, we aim for apartition of Fourier do-
main as illustrated in Figure 5.

This leads to the following definition, in this form first stated in [14]. It should
be noted before that the translation part is made more flexible by the introduction
of the matricesMc and M̃c in order to also enable finer sampling. We further
remark that those systems are sometimes also referred to ascone-adaptedshearlet
systems.
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Figure 5: The partition of Fourier domain induced by a shearlet system.

Definition 4.1. Forφ,ψ, ψ̃∈ L2(R2) andc= (c1,c2)∈ (R+)
2, theshearlet system

SH(φ,ψ, ψ̃;c) is defined by

SH(φ,ψ, ψ̃;c) = Φ(φ;c1)∪Ψ(ψ;c)∪ Ψ̃(ψ̃;c),

where

Φ(φ;c1) := {φm = φ(·−c1m) : m∈ Z
2},

Ψ(ψ;c) := {ψ j ,k,m = 2
3
4 jψ(SkA2 j ·−Mcm) : j ≥ 0, |k| ≤ ⌈2 j/2⌉,m∈ Z

2},

Ψ̃(ψ̃;c) := {ψ̃ j ,k,m = 2
3
4 j ψ̃(ST

k Ã2 j ·−M̃cm) : j ≥ 0, |k| ≤ ⌈2 j/2⌉,m∈ Z
2},

with

Mc =

(

c1 0
0 c2

)

and M̃c =

(

c2 0
0 c1

)

.

A first large class of functions considered as generators wasthe following class
of band-limited functions, i.e., functions whose Fourier transform is compactly
supported.

Example 4.1.Classical shearletsare functionsψ ∈ L2(R2) of the form

ψ̂(ξ) = ψ̂(ξ1,ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1
),

whereψ1 ∈ L2(R) is a discrete wavelet in the sense that it satisfies the discrete
Calderón condition, given by

∑
j∈Z

|ψ̂1(2
− jξ)|2 = 1 for a.e.ξ ∈ R,

with ψ̂1 ∈ C∞(R) and supp̂ψ1 ⊆ [−1
2,−

1
16]∪ [ 1

16,
1
2], andψ2 ∈ L2(R) is a ‘bump

function’ in the sense that
1

∑
k=−1

|ψ̂2(ξ+k)|2 = 1 for a.e.ξ ∈ [−1,1], (4.1)
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satisfyingψ̂2 ∈C∞(R) and supp̂ψ2 ⊆ [−1,1].

One might now ask whether there exist generators so that the associated shearlet
system constitutes an orthonormal basis forL2(R). However, no constructions
of shearlet orthonormal bases are known to date due to the redundancy coming
from the shear component. But a variety of shearlet systems exist which still have
superior stability properties in the sense of frames. For those readers not familiar
with this functional analytic concept, let us briefly recallthe basics from frame
theory.

Definition 4.2. A sequence(gi)i∈I is a frame for L2(R2), if there exist constants
0< A≤ B< ∞ such that

A‖ f‖2
2 ≤ ∑

i∈I
|〈 f ,gi〉|

2 ≤ B‖ f‖2
2 for all f ∈ L2(R2).

A andB are called thelower andupper frame bound, respectively. IfA = B is
possible,(gi)i∈I is called atight frame. In caseA = B = 1, it is referred to as a
Parseval frame.

A frame (gi)i∈I for L2(R2) allows the analysis of elements inL2(R2) through
application of theanalysis operatorgiven by

T : L2(R2)→ ℓ2(I), T( f ) = (〈 f ,gi〉)i∈I .

The associatedframe operator S f= T∗T f = ∑i∈I〈 f ,gi〉gi in turn gives rise to the
reconstruction formula

f = ∑
i∈I

〈 f ,gi〉S
−1gi for all f ∈ L2(R2).

Coming back to the situation of shearlets, it was then shown in [11], that
SH(φ,ψ, ψ̃;(1,1)) with suitableφ, with ψ, ψ̃ being classical shearlets (ψ̃ with
interchanged variables), and with small modifications of the boundary elements
forms a Parseval frame forL2(R2).

To however accommodate (D3), we require compactly supported generators. This
forces us to give up on optimal stability, i.e., on a Parsevalframe. But the fol-
lowing result shows that one still has a certain degree of stability by being able to
control the frame bounds.

Theorem 4.1([12]). For α > γ > 3, q> q′ > 0 and q> r > 0, let

|ψ̂(ξ1,ξ2)| ≤C ·min{1, |qξ1|
α} ·min{1, |q′ξ1|

−γ} ·min{1, |rξ2|
−γ},

and
∑
j ,k

|ψ̂(ST
−kA2− j ξ)|2 ≥C′ > 0,
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and similar for ψ̃. Then there exists a sampling constant c0 such that
SH(φ,ψ, ψ̃;c) is a frame for L2(R2) for all c ≤ c0 with

c−2C1(α,γ,q,q′, r,c)≤ A≤ B≤ c−2C2(α,γ,q,q′, r,c),

where explicit formulas for C1(α,γ,q,q′, r,c) and C2(α,γ,q,q′, r,c) exist.

Our original goal was though to meet the benchmark from Theorem 3.1. This
is the content of the next theorem, which shows that also (D2)is satisfied by
shearlets. In fact, it meets it up to a log-factor, whereforewe included the ‘(al-
most)’. However, if one regards a log-factor as negligible,this is indeed the opti-
mal achievable rate.

Theorem 4.2([14]). Letψ ∈ L2(R2) (similar for ψ̃) be compactly supported such
that, forα > 5, γ ≥ 4, h∈ L1(R),

(i) |ψ̂(ξ)| ≤C ·min{1, |ξ1|
α} ·min{1, |ξ1|

−γ} ·min{1, |ξ2|
−γ},

(ii)
∣

∣

∣

∂
∂ξ2

ψ̂(ξ)
∣

∣

∣
≤ |h(ξ1)| ·

(

1+ |ξ2|
|ξ1|

)−γ
.

Suppose SH(φ,ψ, ψ̃;c) forms a frame for L2(R2). Then it provides (almost) op-
timally sparse approximations of cartoon-like functions f∈ E2(R2) in the sense
that

‖ f − fN‖
2
2 ≤C ·N−2 · (logN)3 as N→ ∞,

where fN is the N-term approximation consisting of the N largest shearlet coeffi-
cients.

To provide some intuition, let us give a heuristic argument which shows why the
rateN−2 can be achieved. Due to the form offN, we obtain

‖ f − fN‖
2
2 ≤

1
A
· ∑

n>N
(|〈 f ,ση〉|)

2
(n), (4.2)

where(ση)η is the shearlet frame with lower frame boundA and (|〈 f ,ση〉|)(n)
denotes thenth largest shearlet coefficient. To estimate these coefficients, we
have to distinguish three cases which are illustrated in Figure 6. In the cases of
Figure 6(a)+(b), the coefficients are negligible, mainly because of the assumed
(directional) vanishing moment conditions. In the case of Figure 6(c), we can
estimate

|〈 f ,ση〉| ≤ ‖ f‖∞‖ση‖1 ≤C ·2−
3
4 j .

Thus, we know that there exist 2j/2 of such coefficients – recall that each shearlet
has a length of 2− j/2 – and we have an estimate for each of those. This allows us
to complete (4.2) by

‖ f − fN‖
2
2 ≤

1
A
· ∑

n>N
(|〈 f ,ση〉|)

2
(n) ≤

C
A
· ∑

n>N
(n−

3
2)2 ≤

C
A
·N−2,
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(a) (b) (c)

Figure 6: Positions of different shearlets with respect to adiscontinuity curve of a
cartoon-like function.

thereby finishing the argument.

Finally, also (D5) is satisfied by shearlets. In fact,www.ShearLab.org pro-
vides an extensive software package for the 2D and 3D shearlet transform based
on compactly supported shearlets with accompanying publication [15].

5 Curvelets

The system of curvelets predates shearlets, and was originally introduced based
on ridgelets [2], which are systems of certain ridge functions to optimally sparsely
approximate ridge-like singularities. The nowadays utilized curvelet system, also
called second generation curvelets, was introduced in [3].As typical for the area
of applied harmonic analysis, they are designed to partition Fourier domain in a
particular way, which in this case is illustrated in Figure 7. As can be seen, it pro-

Figure 7: The partition of Fourier domain induced by a curvelet system.

vides a perfect resolution of the different directions in contrast to the approximate
one provided by shearlets. This however comes with the disadvantage that there
does not exist a faithful implementation of curvelets, which are because of this fact
a purely continuum domain theory. It should though be emphasized that curvelets
were the first system shown to deliver (almost) optimally sparse approximations
of cartoon-like functions [3], which can justifiably be called a breakthrough.

The definition of curvelets is as follows.
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Definition 5.1. Let W ∈ C∞(R) be a wavelet with supp(W) ⊆
(

1
2,2

)

, andV ∈
C∞(R) be a ‘bump function’ (cf. (4.1)) with supp(V)⊆ (−1,1). Then thecurvelet
system(γ( j ,ℓ,k))( j ,ℓ,k)∈Λ0, where

Λ0 :=
{

( j, ℓ,k) ∈ Z
4 : j ≥ 0, ℓ=−2⌊

j
2⌋−1, · · · ,2⌊

j
2⌋−1

}

(5.1)

is defined in polar coordinates by

γ̂( j ,0,0)(r,ω) := 2−3 j/4W
(

2− j r
)

V(2⌊ j/2⌋ω)

and
γ( j ,ℓ,k)(·) := γ( j ,0,0)(Rθ( j,ℓ)

(·−x( j ,ℓ,k)))

with θ( j ,ℓ) = πℓ/2 j/2 andx( j ,ℓ,k) = Rθ( j,ℓ)
A2− j m for j ≥ j0, ℓ = 0, . . . ,2⌊ j/2⌋−1,

andm∈ Z
2.

It was shown in [3] that this system constitutes a Parseval frame forL2(R2) pro-
vided that appropriate functions to address the low frequency part are included.

The following result from 2004 is the first result providing arepresentation system
which (almost) meets the benchmark from Theorem 3.1.

Theorem 5.1([3]). The curvelet system provides (almost) optimally sparse ap-
proximations of cartoon-like functions f∈ E2(R2) in the sense that

‖ f − fN‖
2
2 ≤C ·N−2 · (logN)3 as N→ ∞,

where fN is the N-term approximation consisting of the N largest curvelet coeffi-
cients.

6 Parabolic Molecules

As can be seen from Sections 4 and 5, curvelets differ significantly from shear-
lets, since they do not form affine systems, they are based on rotation rather than
shearing causing problems with faithful implementations,and no compactly sup-
ported version is available causing problems with high spatial localization. But
there are also striking similarities, since both systems (almost) optimally sparsify
cartoon-like functions. Thus the sparsity properties of curvelets and shearlets are
similar, and even more, the results for the band-limited version of both systems
are proven with resembling proofs [3, 10]. This observationraises the question
whether there exists a general framework for such directional systems and what
the fundamental concept behind sparse approximation results really is.

The properties we require of a general framework are to coverall systems known
to provide optimally sparse approximations of cartoon-like functions, to enable
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an easy transfer of (sparsity) results between systems, to allow a categorization of
systems with respect to sparsity behaviors, and to also be general enough to allow
constructions of novel systems.

The common bracket between, in particular, curvelets and shearlets isparabolic
scaling. This is due to the fact that parabolic scaling is perfectly adapted to theC2

regularity of the discontinuity curve employed in the cartoon-like model as can
be seen heuristically. For this, let(E(x2),x2),x2 ∈ I be a parametrization of the
singularity curve in Figure 8 and, by noting thatE(0) = E′(0) = 0, consider the

2w

2ℓ

(0,0)

Figure 8: Anisotropic function approximating a curvilinear singularity.

approximation by the Taylor series

E(x2)≈
1
2

κx2
2.

For a fixed length 2ℓ, let 2w be the width of the smallest rectangle centered at
(0,0) containing the entire edge curveE (cf. Figure 8). Then, sinceE(ℓ) = w, we
obtain

w≈
κ
2
ℓ2,

which can be interpreted as‘width ≈ length2’ , which in turn is parabolic scaling.

After agreeing on the type of scaling, a general framework requires a common
parameter space, which will be chosen as

P := R+×T×R
2,

where(s,θ,x) ∈ P describes scale 2s, orientationθ, and locationx.

Definition 6.1. A parametrizationis a pair(Λ,ΦΛ), whereΛ is a discrete index
set andΦΛ is a mapping

ΦΛ :

{

Λ → P,
λ 7→ (sλ,θλ,xλ) .
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We notice that for now, no properties of the mapΦΛ are required.

Since curvelets are very adapted to the parameter space, a possible associated
parametrization can be easily derived as follows.

Example 6.1. The canonical parametrization(Λ0,Φ0) with Λ0 being the index
set associated with curvelets from (5.1) is defined by

Φ0( j, ℓ,k) = (sλ,θλ,xλ) = ( j, ℓ2−⌊ j/2⌋π,R−θλA2−sλ k).

The key idea of the definition of parabolic molecules from [9]which now follows
is to define maximally flexible systems based on parabolic scaling, rotation, and
translation with parameter spaceP which allow a different generating function for
each index. Decay and smoothness properties of those functions are then governed
by the parameters(L,M,N1,N2), whereL measures spatial localization,M the
number of directional (almost) vanishing moments, andN1,N2 smoothness.

Definition 6.2. Let (Λ,ΦΛ) be a parametrization. Then(mλ)λ∈Λ is a system of
parabolic molecules of order(L,M,N1,N2) ∈ (Z+∪{∞})×Z

3
+, if, for all λ ∈ Λ,

mλ(x) = 23sλ/4a(λ)
(

A2sλ Rθλ (x−xλ)
)

, ΦΛ(λ) = (sλ,θλ,xλ),

such that, for all|β| ≤ L,
∣

∣

∣
∂βâ(λ)(ξ)

∣

∣

∣
. min

(

1,2−sλ + |ξ1|+2−sλ/2|ξ2|
)M

〈|ξ|〉−N1 〈ξ2〉
−N2,

where〈x〉 := (1+x2)1/2.

This framework can be shown to, in particular, include parabolic frames [17],
curvelets [3], band-limited shearlets [10], frame decompositions [1], and com-
pactly supported shearlets [12].

Heading towards a general result which poses conditions on the parameters
(L,M,N1,N2) for a system of parabolic molecules to deliver (almost) optimally
sparse approximations of cartoon-like functions, we first state a result which ana-
lyzes the decay of the cross-Gramian of two systems of parabolic molecules. This
will allow us to transfer the optimal sparse approximation result from curvelets to
other systems of parabolic molecules. For this decay resultthough, we require a
distance function between two indices from the common parameter space.

Definition 6.3. Let (Λ,ΦΛ) and(Λ̃,ΦΛ̃) be parametrizations. Forλ ∈ Λ andµ∈
Λ̃, we define theindex distanceby

ω(λ,µ) := ω(ΦΛ(λ),ΦΛ̃(µ)) := 2|sλ−sµ|
(

1+2min(sλ,sµ)d(λ,µ)
)

,

where

d(λ,µ) := |θλ −θµ|
2+ |xλ −xµ|

2+ |〈(cos(θλ),sin(θλ))
⊤ ,xλ −xµ〉|.
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We remark thatd is nothing else than the Hart Smith’s phase space metric on
T×R

2 (cf. [17]). Using the index distance, we can next state the result on the
decay of the cross-Gramian of two systems of parabolic molecules.

Theorem 6.1([9]). Let N> 0, and let(mλ)λ∈Λ, (pµ)µ∈Λ̃ be systems of parabolic
molecules of order(L,M,N1,N2) with

L ≥ 2N, M > 3N−
5
4
, N1 ≥ N+

3
4
, N2 ≥ 2N.

Then, for allλ ∈ Λ and µ∈ Λ̃,
∣

∣

〈

mλ, pµ
〉
∣

∣. ω(λ,µ)−N.

As already mentioned, this result will be key to transfer the(almost) optimal
sparse approximation result from curvelets to various other systems of parabolic
molecules. This is however only possible provided that the parametrization of this
other system is in some sense ‘consistent’ with the (canonical) parametrization of
curvelets introduced in Example 6.1.

Definition 6.4. A parametrization(Λ,ΦΛ) is k-admissible, if

sup
λ∈Λ

∑
µ∈Λ0

ω(λ,µ)−k < ∞ and sup
λ∈Λ0

∑
µ∈Λ

ω(λ,µ)−k < ∞.

As expected, the curvelet parametrization is, for instance, consistent with itself
for all k> 2, as was shown in [9].

The next main result now reveals a very large class of representation systems
parametrized as systems of parabolic molecules which all provide (almost) opti-
mally sparse approximations of cartoon-like functions. Itin fact proves that this
class consists of all frames of parabolic molecules whose parametrization is con-
sistent with the canonical one and whose associated parameters(L,M,N1,N2) are
sufficiently large.

Theorem 6.2 ([9]). Let (mλ)λ∈Λ be a system of parabolic molecules of order
(L,M,N1,N2) such that

(i) (mλ)λ∈Λ constitutes a frame for L2(R2),

(ii) Λ is k-admissible for all k> 2,

(iii) it holds that

L ≥ 6, M > 9−
5
4
, N1 ≥ 3+

3
4
, N2 ≥ 6.
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Then, for anyε > 0 and for any f∈ E2(R2), (mλ)λ∈Λ satisfies

‖ f − fN‖
2
2 ≤C ·N−2+ε as N→ ∞,

It should be emphasized that this result does not only provide a higher level view
of the properties which are required of systems to deliver (almost) optimal sparse
approximations of cartoon-like functions, but it also allows the construction of a
variety of novel systems which automatically exhibit such approximation proper-
ties.

7 ...α-Molecules?

Finally, the question arises whether it might be possible toextend the framework
of parabolic molecules to include wavelets; maybe even ridgelets. In fact, very
recently a much more elaborate framework coinedα-moleculeswas introduced in
[8], the key idea being to incorporate a parameterα ∈ [0,1] to measure the amount
of anisotropy by considering the scaling matrix

Aα,a =

(

a 0
0 aα

)

, a> 0.

In this setting,α = 1 corresponds to the scaling associated with wavelets,α = 1
2

to curvelets or shearlets, andα = 0 to ridgelets. In [8] in the spirit of parabolic
molecules, an elaborate framework is introduced which thenallows to derive
sparse approximation results for large classes of systems,thereby on a higher
level linking approximation properties to structural properties.

A yet different extension, which should also be mentioned are so-calleduniversal
shearlets, introduced in [7]. Those systems allow a different scalingmatrix for
each scalej with α j ∈ [12,1], and are specifically designed to parametrize a path
from wavelets to shearlets. They were introduced for the purpose of analyzing
the ability of wavelets versus shearlets for compressed sensing based inpainting
algorithms. Still it can be envisioned that the idea of varying scaling could be
incorporated in the framework ofα-moleculesallowing even more flexibility.
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