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Compressed sensing is a novel research area, which waduo#d in 2006, and since then
has already become a key concept in various areas of appiiftematics, computer science,
and electrical engineering. It surprisingly predicts thigh-dimensional signals, which allow
a sparse representation by a suitable basis or, more ggnarime, can be recovered from
what was previously considered highly incomplete lineaasueements by using efficient
algorithms. This article shall serve as an introduction nd a survey about compressed
sensing.
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1 Introduction

The area of compressed sensing was initiated in 2006 by taingibreaking papers, namely
[18] by Donoho and [11] by Candes, Romberg, and Tao. Nowsdafter only 6 years,
an abundance of theoretical aspects of compressed semsiegored in more than 1000
articles. Moreover, this methodology is to date extengiwgilized by applied mathemati-
cians, computer scientists, and engineers for a varietppliGations in astronomy, biology,
medicine, radar, and seismology, to name a few.

The key idea of compressed sensing is to recover a sparsal $igm very few non-
adaptive, linear measurements by convex optimizationinga& different viewpoint, it con-
cerns the exact recovery of a high-dimensional sparse veftay a dimension reduction step.
From a yet another standpoint, we can regard the problemraputing a sparse coefficient
vector for a signal with respect to an overcomplete systefime fhieoretical foundation of
compressed sensing has links with and also explores mdtgids from various other fields
such as, for example, applied harmonic analysis, framayhgeometric functional analysis,
numerical linear algebra, optimization theory, and randoatrix theory.

It is interesting to notice that this development — the peabbf sparse recovery — can in
fact be traced back to earlier papers from the 90s such agfiater the prominent papers
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2 G. Kutyniok: Compressed Sensing

by Donoho and Huo [21] and Donoho and Elad [19]. When the presly mentioned two
fundamental papers introducing compressed sensing wdlesiped, the term ‘compressed
sensing’ was initially utilized for random sensing matsgcsince those allow for a minimal
number of non-adaptive, linear measurements. Nowadaytminology ‘compressed sens-
ing’ is more and more often used interchangeably with ‘spagsovery’ in general, which is
a viewpoint we will also take in this survey paper.

1.1 The Compressed Sensing Problem

To state the problem mathematically precisely, let now (z;)?, € R™ be our signal of
interest. As prior information, we either assume thatself is sparse i.e., it has very few
non-zero coefficients in the sense that

lzllo :== #{i : z; # 0}

is small, or that there exists an orthonormal basis or a ftamsuch thatz = ®c with ¢
being sparse. For this, we lét be the matrix with the elements of the orthonormal basis
or the frame as column vectors. In fact, a frame typicallywjes more flexibility than an
orthonormal basis due to its redundancy and hence leadsptowad sparsifying properties,
hence in this setting customarily frames are more often eyagl than orthonormal bases.
Sometimes the notion of sparsity is weakened, which we for-adefore we will make this
precise in Section 2 — will refer to approximately sparsd-urther, letd be anm x n matrix,
which is typically calledsensing matrixor measurement matrixt hroughout we will always
assume thatn < n and thatA does not possess any zero columns, even if not explicitly
mentioned.

Then theCompressed Sensing Probleran be formulated as follows: Recoverfrom
knowledge of

y = Az,
or recover from knowledge of
y = Adec.

In both cases, we face an underdetermined linear systemuatieqs with sparsity as prior
information about the vector to be recovered — wendbhowever know the support, since
then the solution could be trivially obtained.

This leads us to the following questions:

e What are suitable signal and sparsity models?
e How, when, and with how much accuracy can the signal be dlgoitally recovered?
e What are suitable sensing matrices?

In this section, we will discuss these questions briefly tiddowp intuition for the subsequent
sections.

1 Recall that aframe for a Hilbert space} is a system(y;)icr in H, for which there exisframe bounds
0 < A< B <oosuchthatd||z|3 < >,c; [z, ¢:)|? < Bllz||3 for all z € 7. Atight frameallows A = B. If

A = B =1 can be choser{y;);c s forms aParseval frameFor further information, we refer to [12].
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1.2 Sparsity: A Reasonable Assumption?

As a first consideration, one might question whether spaisindeed a reasonable assump-
tion. Due to the complexity of real data certainly only a higtiz answer is possible.

If a natural image is taken, it is well known that waveletsitgfly provide sparse approx-
imations. This is illustrated in Figure 1, which shows a wateecomposition [50] of an
exemplary image. It can clearly be seen that most coefficiareg small in absolute value,
indicated by a darker color.

(b)

Fig. 1 (a) Mathematics building of TU Berlin (Photo by TU-Pressée); (b) Wavelet decomposition

Depending on the signal, a variety of representation systehich can be used to provide
sparse approximations is available and is constantly edgzann fact, it was recently shown
that wavelet systems do not provide optimally sparse apprations in a regularity setting
which appears to be suitable for most natural images, butakiel system of shearlets does
[46,47]. Hence, assuming some prior knowledge of the signhk sensed or compressed,
typically suitable, well-analyzed representation systeme already at hand. If this is not the
case, more data sensitive methods such as dictionary nggafgorithms (see, for instance,
[2]), in which a suitable representation system is compided given set of test signals, are
available.

Depending on the application at hand, ofteis already sparse itself. Think, for instance,
of digital communication, when a cell phone network witlantennas aneh users needs to
be modelled. Or consider genomics, when in a test studyenes shall be analyzed with
patients taking part in the study. In the first scenario, ¥ew of the users have an ongoing
call at a specific time; in the second scenario, very few ofjérees are actually active. Thus,
x being sparse itself is also a very natural assumption.

In the compressed sensing literature, most results indexohee that: itself is sparse, and
the problemy = Az is considered. Very few articles study the problem of incogting a
sparsifying orthonormal basis or frame; we mention spetlfid9, 61]. In this paper, we
will also assume throughout thatis already a sparse vector. It should be emphasized that
‘exact’ sparsity is often too restricting or unnatural, amebkened sparsity notions need to be
taken into account. On the other hand, sometimes — such lasheitree structure of wavelet
coefficients — some structural information on the non-zeefficients is known, which leads
to diverse structured sparsity models. Section 2 provides/arview of such models.
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4 G. Kutyniok: Compressed Sensing

1.3 Recovery Algorithms: Optimization Theory and More
Letx now be a sparse vector. It is quite intuitive to recavéom knowledge of; by solving

(Po) min ||z||o subject toy = Ax.

Due to the unavoidable combinatorial search, this algariith however NP-hard [53]. The
main idea of Chen, Donoho, and Saunders in the fundamental pa4] was to substitute
the/y ‘norm’ by the closest convex norm, which is thenorm. This leads to the following
minimization problem, which they coindghsis Pursuit

(Py) min [|z]|; subject toy = Az.

Due to the shape of thg ball, /; minimization indeed promotes sparsity. For an illustnatio
of this fact, we refer the reader to Figure 2, in whighminimization is compared té, mini-
mization. We would also like to draw the reader’s attentmthie small numerical example in
Figure 3, in which a partial Fourier matrix is chosen as messent matrix.

min ||z|]1 s.t.y = Az

\/ min ||z|]2 s.t.y = Ax

N {z:y= Az}

/

N\ Z

7N/

Fig. 2 ¢; minimization versug, minimization

The general question of whefy'= ¢,’ holds is key to compressed sensing. Both necessary
and sufficient conditions have been provided, which not alglgend on the sparsity of the
original vectorz, but also on the incoherence of the sensing matixvhich will be made
precise in Section 3.

Since for very large data sets minimization is often not feasible even when the solvers
are adapted to the particular structure of compressedmsgpsdblems, various other types of
recovery algorithms were suggested. These can be rougbdyated into convex optimiza-
tion, greedy, and combinatorial algorithms (cf. Sectiore®ch one having its own advantages
and disadvantages.

1.4 Sensing Matrices: How Much Freedom is Allowed?

As already mentioned, sensing matrices are required fhgatrtain incoherence conditions
such as, for instance, a small so-called mutual coherericge bre allowed to choose the
sensing matrix freely, the best choice are random matriges as Gaussian iid matrices,
uniform random ortho-projectors, or Bernoulli matricesg $or instance [11].
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Fig. 3 (@) Original signalf with random sample points (indicated by circles); (b) Therkar transform
f; (c) Perfect recovery of by ¢; minimization; (d) Recovery of by £ minimization

It is still an open question (cf. Section 4 for more detail$)ether deterministic matrices
can be carefully constructed to have similar properties wgispect to compressed sensing
problems. At the moment, different approaches towardsptoblem are being taken such
as structured random matrices by, for instance, Rauhut &t i8] or [60]. Moreover, most
applications do not allow for a free choice of the sensingrixaind enforce a particularly
structured matrix. Exemplary situations are the applicatf data separation, in which the
sensing matrix has to consist of two or more orthonormal basdrames [32, Chapter 11],
or high resolution radar, for which the sensing matrix hasear a particular time-frequency
structure [38].

1.5 Compressed Sensing: Quo Vadis?

At present, a comprehensive core theory seems establisicegtdor some few deep ques-
tions such as the construction of deterministic sensingicest exhibiting properties similar
to random matrices.

One current main direction of research which can be idedtifigh already various ex-
isting results is the incorporation of additional spargitgperties typically coinedtructured
sparsity see Section 2 for references. Another main direction isetttension or transfer
of the Compressed Sensing Problem to other settings suctatisx completionsee for in-
stance [10]. Moreover, we are currently witnessing thaugdifin of compressed sensing ideas
to variousapplication areassuch as radar analysis, medical imaging, distributed signma
cessing, and data quantization, to name a few; see [32] fowvarview. These applications

Copyright line will be provided by the publisher



6 G. Kutyniok: Compressed Sensing

pose intriguing challenges to the area due to the consdrdiny require, which in turn initi-
ates novel theoretical problems. Finally, we observe thattd the need of, in particular, fast
sparse recovery algorithms, there is a trend to more clas®perate wittmathematicians
from other research areagor example from optimization theory, numerical lineagethra, or
random matrix theory.

As three examples of recently initiated research direstiore would like to mention the
following. First, while the theory of compressed sensingufgses on digital data, it is desirable
to develop a similar theory for theontinuum settingTwo promising approaches were so far
suggested by Eldar et al. (cf. [52]) and Adcock et al. (cf).[Becond, in contrast to Basis
Pursuit, which minimizes thé, norm of the synthesis coefficients, several approaches such
as recovery of missing data minimize thenorm of the analysis coefficients — as opposed to
minimizing the/; norm of the synthesis coefficients —, see Subsections ént.3.2.2. The
relation between these two minimization problems is fanmfrioeing clear, and the recently
introduced notion ofo-sparsity{54] is an interesting approach to shed light onto this peobl
Third, the utilization offrames as a sparsifying systémthe context of compressed sensing
has become a topic of increased interest, and we refer toited paper [9].

The reader might also want to consult the extensive webgdspeice.edu/cs con-
taining most published papers in the area of compressedhgesisbdivided into different
topics. We would also like to draw the reader’s attentiorh®riecent books [29] and [32] as
well as the survey article [7].

1.6 Ouitline

In Section 2, we start by discussing different sparsity nedeluding structured sparsity
and sparsifying dictionaries. The next section, Sectiois 8pncerned with presenting both
necessary and sufficient conditions for exact recoveryguéirminimization as a recovery
strategy. The delicateness of designing sensing matsdég ifocus of Section 4. In Section
5, other algorithmic approaches to sparse recovery aremexs. Finally, applications such
as data separation are discussed in Section 6.

2 Signal Models

Sparsity is the prior information assumed of the vector werid to efficiently sense or whose
dimension we intend to reduce, depending on which viewpemtake. We will start by
recalling some classical notions of sparsity. Since appbas typically impose a certain
structure on the significant coefficients, various striedusparsity models were introduced
which we will subsequently present. Finally, we will dissusow to ensure sparsity through
an appropriate orthonormal basis or frame.

2.1 Sparsity

The most basic notion of sparsity states that a vector hassttnmon-zero coefficients. This
is measured by thé, ‘norm’, which for simplicity we will throughout refer to as morm
although it is well-known thaft - ||o does not constitute a mathematical norm.

Definition 2.1 A vectorz = (x;)!"_, € R" is calledk-sparseif

lzllo = #{i: 2 # 0} < k.
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The set of allk-sparse vectors is denoted By,.

We wish to emphasize thaty is a highly non-linear set. Letting € R"™ be ak-sparse
signal, it belongs to the linear subspace consisting ofedtars with the same support set.
Hence the set, is the union of all subspaces of vectors with supposatisfying|A| < k.

From an application point of view, the situation/etparse vectors is however unrealistic,
wherefore various weaker versions were suggested. In Hosving definition we present one
possibility but do by no means claim this to be the most apjatgpone. It might though be
very natural, since it analyzes the decay rate ofttherror of the besk-term approximation
of a vector.

Definition 2.2 Let1 < p < oo andr > 0. A vectorz = (z;), € R" is called
p-compressible with constant and rater, if

or(x)p == ~mizn le—2Z|, <C-k~" foranyk e {1,...,n}.
TE2LE

2.2 Structured Sparsity

Typically, the non-zero or significant coefficients do nasarin arbitrary patterns but are
rather highly structured. Think of the coefficients of a waveecomposition which exhibit a
tree structure, see also Figure 1. To take these considlesatito account, structured sparsity
models were introduced. A first idea might be to identify thestered set of significant
coefficients [22]. An application of this notion will be disgsed in Section 6.

In the following definition as well as in the sequel, for soneetorz = (z;), € R™ and

some subset C {1,...,n}, the expressiom, = will denote the vector ifR™ defined by
r; . 1 EA, -
(1Aa:)i{ 0 : idA i1=1,...,n.
Moreover,A° will denote the complement of the s&tin {1,...,n}.

Definition 2.3 Let A C {1,...,n} andé > 0. A vectorz = (z;)I_, € R" is then called
o-relatively sparse with respect tb, if

Hl/\cx |1 S 0.

The notion ofk-sparsity can also be regarded from a more general viewpeimt¢h simul-
taneously imposes additional structure. ket R™ be ak-sparse signal. Then it belongs to
the linear subspace consisting of all vectors with the samppart set. Hence the s} is the
union of all subspaces of vectors with suppbsatisfying|A| < k. Thus, a natural extension
of this concept is the following definition, initially intctuced in [49].

Definition 2.4 A vectorz € R™ is said tobelong to a union of subspacekthere exists a
family of subspaceé/V;)}, in R™ such that

N
S U Wj.
j=1
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8 G. Kutyniok: Compressed Sensing

At about the same time, the notionfolsion frame sparsityas introduced in [6]. Fusion
frames are a set of subspaces having frame-like propahEgby allowing for stability con-
siderations. A family of subspacésV;)_, in R" is afusion framewith boundsA and B,
if

N
Allzll3 <> 1Pw, (@)1 < B3 forallz € R™,
j=1

where Py, denotes the orthogonal projection onto the subspa&gesee also [13] and [12,
Chapter 13]. Fusion frame theory extends classical frareerthby allowing the analy-
sis of signals through projections onto arbitrary dimenalsubspaces as opposed to one-
dimensional subspaces in frame theory, hence serving slsoredel for distributed process-
ing, cf. [62]. The notion of fusion frame sparsity then pries a more structured approach
than mere membership in a union of subspaces.

Applications such as manifold learning assume that theasigmder consideration lives on
a general manifold, thereby forcing us to leave the worldreddr subspaces. In such cases,
the signal class is often modeled as a non-likedimensional manifold\ in R™, i.e.,

zeM={f(0):0€c0}

with © being ak-dimensional parameter space. Such signals are then eoedidsparse in
the manifold modelsee [65]. For a survey chapter about this topic, the intedesader is
referred to [32, Chapter 7].

We wish to finally mention that applications such as matrimptetion require generaliza-
tions of vector sparsity by considering, for instance, lamk matrix models. This is however
beyond the scope of this survey paper, and we refer to [32hfe details.

2.3 Sparsifying Dictionaries and Dictionary Learning

If the vector itself does not exhibit sparsity, we are reedito sparsify it by choosing an
appropriate representation system — in this field typicediineddictionary. This problem
can be attacked in two ways, either non-adaptively or adelpti

If certain characteristics of the signal are known, a dicdiy can be chosen from the vast
class of already very well explored representation sysgerok as the Fourier basis, wavelets,
or shearlets, to name a few. The achieved sparsity mighteoptimal, but various mathe-
matical properties of these systems are known and fastiagsdtransforms are available.

Improved sparsity can be achieved by choosing the dictjoadaptive to the signals at
hand. For this, a test set of signals is required, based oohvéhdictionary is learnt. This
process is customarily termelittionary learning The most well-known and widely used al-
gorithm is the K-SVD algorithm introduced by Aharon, EladdaBruckstein in [2]. However,
from a mathematician’s point of view, this approach beaspvwoblems which will hopefully
be both solved in the near future. First, almost no convergeasults for such algorithms
are known. And, second, the learnt dictionaries do not ehity mathematically exploitable
structure, which makes not only an analysis very hard but ptevents the design of fast
associated transforms.
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3 Conditions for Sparse Recovery

After having introduced various sparsity notions, in tléase signal models, we next consider
which conditions we need to impose on the sparsity of tharmlgyector and on the sensing
matrix for exact recovery. For the sparse recovery methedyill focus on¢; minimization
similar to most published results and refer to Section 5 @wthier algorithmic approaches.
In the sequel of the present section, several incoherenwtitams for sensing matrices will
be introduced. Section 4 then discusses examples of maftitfdling those. Finally, we
mention that most results can be slightly modified to incoap®mmeasurements affected by
additive noise, i.e., iff = Az + v with [|v2 < e.

3.1 Uniqueness Conditions for Minimization Problems

We start by presenting conditions for uniqueness of theisoisito the minimization problems
(Pp) and (P1) which we introduced in Subsection 1.3.

3.1.1 Uniqueness offy)

The correct condition on the sensing matrix is phrased imsesf the so-called spark, whose
definition we first recall. This notion was introduced in [E31d verbally fuses the notions of
‘sparse’ and ‘rank’.

Definition 3.1 Let A be anm x n matrix. Then thesparkof A denoted by spark() is the
minimal number of linearly dependent columnsAf

Itis useful to reformulate this notion in terms of the nulbsp ofA, which we will through-
out denote byV'(A), and state its range. The proof is obvious. For the definition,, we
refer to Definition 2.1.

Lemma 3.2 Let A be anm x n matrix. Then
sparKA) = min{k : N(A) Ny # {0}}

andspark@) € [2,m + 1].
This notion enables us to derive an equivalent condition wique solvability of ¢%).
Since the proof is short, we state it for clarity purposes.

Theorem 3.3( [19]) Let A be anm x n matrix, and letk € N. Then the following
conditions are equivalent.

(i) If asolutionz of (1) satisfies|z||o < k, then this is the unique solution.

(i) k& < spark@)/2.

Proof. (i) = (ii). We argue by contradiction. If (i) does not hold, by Lema 3.2, there exists
someh € N(A), h # 0 such thaf|h|o < 2k. Thus, there exist andz satisfyingh = z — &
and||z|lo, |Z||o < k, butAxz = Az, a contradiction to (i).

(i) = (i). Let x andz satisfyy = Az = Az and||z|o, |Z]|o < k. Thusz — & € N(A)
and||x — z|jo < 2k < spark@). By Lemma 3.2, it follows that — z = 0, which implies
(i). O
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10 G. Kutyniok: Compressed Sensing

3.1.2 Uniqueness ofP;)

Due to the underdeterminednessbénd hence the ill-posedness of the recovery problem, in
the analysis of uniqueness of the minimization problé®), the null space ofl also plays a
particular role. The related so-called null space propérst introduced in [15], is defined as
follows.

Definition 3.4 Let A be anm x n matrix. ThenA has thenull space property (NSP) of
orderk, if, for all h € N/(A) \ {0} and for all index setf\| < k,

I1ahlly < 517l

An equivalent condition for the existence of a unique spaddetion of (P;) can now be
stated in terms of the null space property. For the proof,eferto [15].

Theorem 3.5( [15]) Let A be anm x n matrix, and letk € N. Then the following
conditions are equivalent.

(i) If asolutionz of (P;) satisfies|z||o < k, then this is the unique solution.
(ii) A satisfies the null space property of order

It should be emphasized that [15] studies the Compressegirggroblem in a much more
general way by analyzing quite general encoding-decodiategjies.

3.2 Sufficient Conditions

The core of compressed sensing is to determine whgen="/¢;’, i.e., when the solutions of
(Py) and (7,) coincide. The most well-known sufficient conditions foistio hold true are
phrased in terms of mutual coherence and of the restrictedas’y property.

3.2.1 Mutual Coherence
The mutual coherence of a matrix, initially introduced ii]2measures the smallest angle
between each pair of its columns.

Definition 3.6 Let A = (a;)_, be anm x n matrix. Then itsmutual coherencg(A) is
defined as

1w(A) = max 7| {ai, ;)] )
i# [|adll2llall2
The maximal mutual coherence of a matrix certainly equailghe case when two columns
are linearly dependent. The lower bound presented in thé nesklt, also known as the
Welch boundis more interesting. It can be shown that it is attained byalted optimal
Grassmannian framd$3], see also Section 4.

Lemma 3.7 Let A be anm x n matrix. Then we have

M(A)E[ non }

m(n—1)
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Let us mention that different variants of mutual coherendstgein particular, theBabel
function[19], thecumulative coherence functig®4], thestructuredp-Babel functior{4], the
fusion coherencps], andcluster coherencf?2]. The notion of cluster coherence will in fact
be later discussed in Section 6 for a particular application

Imposing a bound on the sparsity of the original vector byrtheual coherence of the
sensing matrix, the following result can be shown; its przanf be found in [19].

Theorem 3.8([19, 30]) Let A be anm x n matrix, and letx € R™ \ {0} be a solution of
(Pp) satisfying

lzllo < 5(1+ p(A)7).

Thenz is the unique solution offfy) and (Py).

3.2.2 Restricted Isometry Property

We next discuss the restricted isometry property, injtitroduced in [11]. It measures the
degree to which each submatrix consistingkofolumn vectors of4 is close to being an

isometry. Notice that this notion automatically ensurebiity, as will become evident in the
next theorem.

Definition 3.9 Let A be anm x n matrix. ThenA has theRestricted Isometry Property
(RIP) of orderk, if there exists &, € (0, 1) such that

(1= d)ll=ll3 < [[Az]3 < (1 +6p)||2]3 forallz € .

Several variations of this notion were introduced durirg st years, of which examples
are thefusion RIP[6] and theD-RIP [9].

Although also for mutual coherence, error estimates foovery from noisy data are
known, in the setting of the RIP those are very natural. In, fidwe error can be phrased
in terms of the begt-term approximation (cf. Definition 2.2) as follows.

Theorem 3.10( [8,15]) Let A be anm x n matrix which satisfies the RIP of ord2k with
dor < V2 — 1. Letz € R™, and leti be a solution of the associateffy() problem. Then

. or (7)1
_ < C -
o~ @l < C- ( s )
for some constant’ dependent onyy,.

The best known RIP condition for sparse recovery By)(states that ;) recovers all
k-sparse vectors provided the measurement matsatisfies)s;, < 0.473, see [34].

3.3 Necessary Conditions

Meaningful necessary conditions fdy‘'= ¢;’ in the sense of ) = (P;) are significantly
harder to achieve. An interesting string of research wamted by Donoho and Tanner with
the two papers [25, 26]. The main idea is to derive equivatentitions utilizing the theory
of convex polytopes. For this, 161" be defined by

C"={zeR": ||z <1}. (1)

A condition equivalent to/y = ¢;’ can then be formulated in terms of properties of a partic-
ular related polytope. For the relevant notions from pgigttheory, we refer to [37].
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12 G. Kutyniok: Compressed Sensing

Theorem 3.11( [25, 26]) Let C™ be defined as iil), let A be anm x n matrix, and let
the polytopeP be defined by? = AC™ C R™. Then the following conditions are equivalent.

(i) The number ok-faces ofP equals the number df-faces ofC™.

(i) (Po) = (P1).
The geometric intuition behind this result is the fact thethumber of-faces ofP equals
the number of indexing sets C {1,...,n} with [A|] = & such that vectors satisfying

supp = A can be recovered vidX).

Extending these techniques, Donoho and Tanner were alsdapiovide highly accurate
analytical descriptions of the occurring phase transitidren considering the area of exact
recovery dependent on the ratio of the number of equatiotietaumber of unknowns/m
versus the ratio of the number of nonzeros to the number dditensk/n. The interested
reader is referred to [27] for further details.

4 Sensing Matrices

Ideally, we aim for a matrix which has high spark, low mutuaherence, and a small RIP
constant. As our discussion in this section will show, thesmerties are often quite difficult
to achieve, and even computing, for instance, the RIP cohst@omputationally intractable
in general (see [59]).

In the sequel, after presenting some general relationsdagtwhe introduced notions of
spark, NSP, mutual coherence, and RIP, we will discuss soiéci constructions for, in
particular, mutual coherence and RIP.

4.1 Relations between Spark, NSP, Mutual Coherence, and RIP

Before discussing different approaches to construct arsgnsatrix, we first present several
known relations between the introduced notions spark, NRjal coherence, and RIP. This
allows to easily compute or at least estimate other measifiesensing matrix is designed
for a particular measure. For the proofs of the differenesteents, we refer to [32, Chapter
1].

Lemma 4.1 Let A be anm x n matrix with normalized columns.

(i) We have

sparKA4) > 1+ ﬁ

(i) A satisfies the RIP of orddrwith &, = ku(A) forall k < u(A)~t.
(iif) Suppose satisfies the RIP of ordék with do, < V2-1.1If

26 k
VIou

1— (14 v/2)das n’
then A satisfies the NSP of ordék.
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4.2 Spark and Mutual Coherence

Let us now provide some exemplary classes of sensing mstsite advantageous spark and
mutual coherence properties.

The first observation one can make (see also [15]) is that ann Vandermonde matrix
A satisfies

sparKA) = m + 1.

One serious drawback though is the fact that these matrieesniie badly conditioned as
n — od.

Turning to the weaker notion of mutual coherence, of paldicinterest — compare Sub-
section 6.1 — are sensing matrices composed of two orthaldrases or frames f@&™. If
the two orthonormal bases, and ®,, say, are chosen to be mutually unbiased such as the
Fourier and the Dirac basis (the standard basis), then

Dq|P !
p([@1]P2]) = T
which is the optimal bound on mutual coherence for such tgfes x 2m sensing matrix.
Other constructions are known forxm? matricesA generated from the Alltop sequence [38]
or by using Grassmannian frames [63], in which cases thenaptower bound is attained:

A) = —.
1(A) N
The number of measurements required for recovery bfsparse signal can then be deter-
mined to ben = O(k? logn).

4.3 RIP

We begin by discussing some deterministic constructiomsaifices satisfying the RIP. The
first noteworthy construction was presented by DeVore agdiresm > k2, see [17]. A very
recent, highly sophisticated approach [5] by Bourgain etsaill requiresm > k2~ with
some small constant. Hence up to now deterministic constructions require eglargwhich

is typically not feasible for applications, since it scalgmdratically ink.

The construction of random sensing matrices satisfyingi®Ppossibility to circumvent
this problem. Such constructions are closely linked to #madus Johnson-Lindenstrauss
Lemma, which is extensively utilized in numerical lineagetbra, machine learning, and other
areas requiring dimension reduction.

Theorem 4.2(Johnson-Lindenstrauss Lemma [41gte € (0,1), letzy,...,z, € R™,
and letm = O(s~?logp) be a positive integer. Then there exists a Lipschitz thafiR™ —
R™ such that

(L=e)llwi—z;ll3 < If (@) — f(z)]3 < (L+e)|lai—ayll; foralli,je{1,...,p}.

The key requirement for a matrix to satisfy the Johnson-emeirauss Lemma with high
probability is the following concentration inequality fan arbitrarily fixedr € R™:

P((1—2)l2ll3 < | Az]3 < (1 + o)l|of3) < 1— 207", 2)
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with the entries oA being generated by a certain probability distribution. Télation of RIP
to the Johnson-Lindenstrauss Lemma is established in tloevfog result. We also mention
that recently even a converse of the following theorem wasegat in [43].

Theorem 4.3( [3]) Letd € (0,1). If the probability distribution generating the: x n
matricesA satisfies the concentration inequalit®) with ¢ = §, then there exist constants
c1, ¢2 such that, with probabilityc 1 — 2e—<28"™ | A satisfies the RIP of ordér with § for all
k < c16?°m/log(n/k).

This observation was then used in [3] to prove that GaussidBarnoullirandom matrices
satisfy the RIP of ordek with ¢ provided thatn > 6~2klog(n/k). Up to a constant, lower
bounds for Gelfand widths of;-balls [35] show that this dependence bandn is indeed
optimal.

5 Recovery Algorithms

In this section, we will provide a brief overview of the diféat types of algorithms typically
used for sparse recovery. Convex optimization algoritrensiire very few measurements but
are computationally more complex. On the other extreme@rginatorial algorithms, which
are very fast — often sublinear — but require many measurentiesit are sometimes difficult
to obtain. Greedy algorithms are in some sense a good congedretween those extremes
concerning computational complexity and the required nemold measurements.

5.1 Convex Optimization

In Subsection 1.3, we already stated the convex optimizgtioblem
min ||z][; subjecttoy = Az

most commonly used. If the measurements are affected by,naisonic constraint is re-
quired; i.e., the minimization problem needs to be changed t

min ||z||; subjectto || Az —y||3 < e,
T

for a carefully chosen > 0. For a particular regularization parameier- 0, this problem is
equivalent to the unconstrained version given by

min g | Az — y[|3 + Al

Developed convex optimization algorithms specificallytdd to the compressed sensing
setting include interior-point methods [11], projectecdjent methods [33], and iterative
thresholding [16]. The reader might also be interested &rklthe webpagesww-stat.
stanford.edu/ ~candes/llmagic  andsparselab.stanford.edu for available
code. It is worth pointing out that the intense researchgoeréd in this area has slightly
diminished the computational disadvantage of convex dpétion algorithms for compressed
sensing as compared to greedy type algorithms.
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5.2 Greedy Algorithms

Greedy algorithms iteratively approximate the coefficseantd the support of the original sig-
nal. They have the advantage of being very fast and easy teingmt. Often the theoretical
performance guarantees are very similar to, for instaficeinimization results.

The most well-known greedy approaclighogonal Matching Pursujwhich is described
in Figure 4. OMP was introduced in [57] as an improved suaresiMatching Pursuif51].

Input:
e Matrix A = (a;)_, € R™*™ and vectorr € R"™.
e Error threshold.

Algorithm:
1) Setk = 0.
2) Set the initial solution:® = 0.
3) Setthe initial residual® = y — A2 = y.
4) Set the initial suppo$® = supp z® = 0.

5) Repeat
6) Setk =k + 1.
7) Choose such thamin,. ||ca;, — 77| < min,. ||ca; — r*~1||2 for all i.
8) Sets* = S¥1 U {ip}.
9) Computer® = argmin,|| Az — y||» subject tosupp 2 = S*.
10) Compute* =y — Ax*.

11) until |52 < e.

Output:
e Approximate solution:*.

Fig. 4 Orthogonal Matching Pursuit (OMP): Approximation of théugimn of (P)

Interestingly, a theorem similar to Theorem 3.8 can be prdee OMP.

Theorem 5.1( [20, 64]) Let A be anm x n matrix, and letx € R™ \ {0} be a solution of
(P) satisfying

lllo < 5(1+ p(A)~).

Then OMP with error threshold = 0 recoverse.

Other prominent examples of greedy algorithms are Stage@idP (StOMP) [28], Regu-
larized OMP (ROMP) [56], and Compressive Sampling MP (CoBa85]. For a survey of
these methods, we wish to refer to [32, Chapter 8].

An intriguing, very recently developed class of algorithm®rthogonal Matching Pursuit
with Replacement (OMPR) [40], which not only includes mastative (hard)-thresholding
algorithms as special cases, but this approach also pehmaitightest known analysis in terms
of RIP conditions. By extending OMPR using locality sensithashing (OMPR-Hash), this
also leads to the first provably sub-linear algorithm forrspaecovery, see [40]. Another
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recent development is message passing algorithms for @ssgl sensing pioneered in [23];
a survey on those can be found in [32, Chapter 9].

5.3 Combinatorial Algorithms

These methods apply group testing to highly structured sesygd the original signal, but are
far less used in compressed sensing as opposed to convewagitbn and greedy algorithms.
From the various types of algorithms, we mention the HHS yitif86] and a sub-linear
Fourier transform [39].

6 Applications

We now turn to some applications of compressed sensing. Twlwose we will discuss in
more detail, namely data separation and recovery of misiatey

6.1 Data Separation

The data separation problem can be stated in the following Wwet x = z; + x5 € R™.
Assuming we are just given, how can we extract; andxzs, from it? At first glance, this
seems to be impossible, since there are two unknowns for @tuend

6.1.1 An Orthonormal Basis Approach

The first approach to apply compressed sensing techniquessst®in choosing appropriate
orthonormal base®; and ®, for R™ such that the coefficient vectoﬁ{:ci (i = 1,2) are
sparse. This leads to the following underdetermined lisgatem of equations:

C
.I:[(I)1|(I)2]|: ! :|
C2
Compressed sensing now suggests to solve
C1
C2

If the sparse vectofd] 1, ®1z5]7 can be recovered, the data separation problem can be
solved by computing

xr1 = @1(@?1‘1) and 2o = @2(@51‘2)

min
C1,C2

subjecttar = [ B | P | { 21 } . (3)
2

1

Obviously, separation can only be achieved provided tratcttmponents; andz. are in
some sense morphologically distinct. Notice that this propis indeed encoded in the prob-
lem if one requires incoherence of the mafrik; | ®; |.

In fact, this type of problem can be regarded as the birth ofr@ssed sensing, since the
fundamental paper [21] by Donoho and Huo analyzed a paaticldta separation problem,
namely the separation of sinusoids and spikes. In thimgetti consists ofn samples of a
continuum domain signal which is a superposition of sindsoi

n—1
1 oy
r = (\/ﬁ E CLweQTert/n
0<t<n—1

w=0
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Letting @, be the Fourier basis, the coefficient vector

T _ _ - _ (1 2miwt/n
(I)l xr1 = C1, Where<I>1 = [QDL()| . |801,n71] with Plw = (ﬁ(i )()gtgnfl R

is sparse. The vectar, consists ofn samples of a continuum domain signal which is a
superposition of spikes, i.e., has few non-zero coeffisiefhus, lettingb, denote the Dirac
basis (standard basis), the coefficient vector

(I)gl‘g = T2 = Cg

is also sparse. Since the mutual coherence of the mjatix @, | can be computed to b%
Theorem 3.8 implies the following result.

Theorem 6.1( [21,30]) Letxy, x5 and @, 5 be defined as in the previous paragraph,
and assume that®{ 1 [|o + [|®Z z2[lo < 3(1+ v/n). Then

M

6.1.2 A Frame Approach

(I){xl o .
oTzy | = argmin, .,

subjecttar = [ B | @ ] { “ } .
1 C2

Now assume that we cannot find sparsifying orthonormal biaseBarseval framésp, and
d, — notice that this situation is much more likely due to theaadageous redundancy of a
frame. In this case, the minimization problem we stated )rfg8es the following problem:
We are merely interested in the separatios x; + x5. However, for each such separation,
due to the redundancy of the frames the minimization protdearches through infinitely
many coefficientsc;, co]? satisfyingr; = ®;¢;, i = 1,2. Thus it computes not only much
more than necessary — in fact, it even computes the spamffitient sequence of with re-
spectto the dictionary®, | 2] — but this also causes numerical instabilities if the redurogt
of the frames is too high.

To avoid this problem, we place tlie norm on theanalysis rather than theynthesiside
as already mentioned in Subsection 1.5. Utilizing the faat®, and®, are Parseval frames,
i.e., thatd; @7 = I (i = 1,2), we can write

rT=x1+Ty = (I)l(q)?l'l) -+ (I)Q(q)gl'g)

This particular choice of coefficients — which are in framedty language termeanalysis
coefficients- leads to the minimization problem

mlp H(I){i'lnl + ||@gf2||1 subject tar = 1 + Zo. (4)
T1,T2

Interestingly, the associated recovery results emplaycsired sparsity, wherefore we will
also briefly present those. First, the notion of relativersipa(cf. Definition 2.3) is adapted
to this situation.

2 Recall thatd is a Parseval frame, pdT = I.
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Definition 6.2 Let ®; and®, be Parseval frames f@®" with indexing set1,..., N1}
and{1,..., No}, respectively, let\, C {1,...,N;},7=1,2,andletd > 0. Then the vectors
x1 andz, are calledi-relatively sparse inb; and ®, with respect ta\; and Ao, if

[1a¢®T @11 + | Lag®] 221 < 6.

Second, the notion of mutual coherence is adapted to stactgparsity as already dis-
cussed in Subsection 3.2.1. This leads to the following digfimof cluster coherence.

Definition 6.3 Let ®; = (¢1;)Y; and®; = (¢2;)}?, be Parseval frames f&", respec-
tively, and letA; C {1,..., N1}. Then thecluster coherencg.(A, ®1; 2) of &, and P
with respect ta\; is defined by

fe(Ar, @15 P2) = max, Z [(e14, p25)|-

7j=1,..., 2i€A1
The performance of the minimization problem (4) can then ih&\eed as follows. It
should be emphasized that the clusters of significant cgafti\; andAs are a mere analysis
tool; the algorithm does not take those into account. Furtimice that the choice of those
sets is highly delicate in its impact on the separation eggémFor the proof of the result, we
refer to [22].

Theorem 6.4([22]) Letx = z1 +x2 € R™, let®; and®, be Parseval frames faR™ with
indexing setq1,..., Ny} and{1,..., N2}, respectively, and let; C {1,...,N;},i =1,2.
Further, suppose that; andxzs are o-relatively sparse inb; and ®, with respect to\; and
A, and let[z7, x5]7 be a solution of the minimization proble@). Then

28
27 = z1ll2 + ll23 — 222 < 7— 2

wherep,. = max{p.(A1, P1; P2), pe(Ag, Po; P1)}.

Let us finally mention that data separation via compressesisg has been applied, for
instance, in imaging sciences for the separation of poimd-curvelike objects, a problem ap-
pearing in several areas such as in astronomical imaging séarating stars from filaments
and in neurobiological imaging when separating spines fiemdrites. Figure 5 illustrates a
numerical result from [48] using wavelets (see [50]) andslats (see [46,47]) as sparsifying
frames. A theoretical foundation for separation of poimtd @urvelike objects by; mini-
mization is developed in [22]. When considering threshaddis separation method for such
features, even stronger theoretical results could be prioM@5]. Moreover, a first analysis of
separation of cartoon and texture — very commonly presemdtiral images — was performed
in [44].

For more details on data separation using compressed gaashmiques, we refer to [32,
Chapter 11].

6.2 Recovery of Missing Data

The problem of recovery of missing data can be formulatedloas. Letr = xx + x) €
W @ W+, whereW is a subspace &”. We assume only i is known to us, and we aim to
recoverz. Again, this seems unfeasible unless we have additionairimdtion.
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Fig. 5 Separation of a neurobiological image using wavelets apdrigts [48]

6.2.1 An Orthonormal Basis Approach

We now assume that — althougtis not known to us — we at least know that it is sparsified by
an orthonormal basi®, say. LettingP,, andP,,,. denote the orthogonal projections oo
andW-+, respectively, we are led to solve the underdeterminedenob

PW(I)C = wa

for the sparse solution As in the case of data separation, from a compressed sevising
point it is suggestive to solve

min ||c||; subject toPy,®c = Pyyx. (5)
c

The original vectorr can then be recovered via = ®c¢. The solution of the inpainting
problem — a terminology used for recovery of missing datamaging science — was first
considered in [31].

Application of Theorem 3.8 provides a sufficient conditiam missing data recovery to
succeed.

Theorem 6.5([19]) Letz € R™, letW be a subspace @™, and let® be an orthonormal
basis forR™. If |27 z|lo < (1 + u(Py®)~'), then

&'z = argmin,||c||; subject toPy, ®c = Pyyz.

6.2.2 A Frame Approach

As before, we now assume that the sparsifying systeima redundant Parseval frame. The
adapted version to (5), which places thenorm on the analysis side, reads

min || 97|, subject toPy@ = Py, (6)

Employing relative sparsity and cluster coherence, anr emalysis can be derived in a
similar way as before. For the proof, the reader might wabitsult [42].
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Theorem 6.6( [42]) Letz € R”, let & be a Parseval frame foR™ with indexing set
{1,...,N},andletA C {1,..., N}. Further, suppose that is J-relatively sparse irb with
respect ta\, and letz* be a solution of the minimization probldi®). Then

20
[ = zflo <
1- 2/~Lc

wherep. = uc(A, Py @; ®).

6.3 Further Applications

Other applications of compressed sensing include codidgirsformation theory, machine
learning, hyperspectral imaging, geophysical data aiglgemputational biology, remote
sensing, radar analysis, robotics and control, A/D conerrsand many more. Since an
elaborate discussion of all those topics would go beyondtiope of this survey paper, we
refer the interested readerdsp.rice.edu/cs
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