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Compressed sensing is a novel research area, which was introduced in 2006, and since then
has already become a key concept in various areas of applied mathematics, computer science,
and electrical engineering. It surprisingly predicts thathigh-dimensional signals, which allow
a sparse representation by a suitable basis or, more generally, a frame, can be recovered from
what was previously considered highly incomplete linear measurements by using efficient
algorithms. This article shall serve as an introduction to and a survey about compressed
sensing.

Copyright line will be provided by the publisher

1 Introduction

The area of compressed sensing was initiated in 2006 by two groundbreaking papers, namely
[18] by Donoho and [11] by Candès, Romberg, and Tao. Nowadays, after only 6 years,
an abundance of theoretical aspects of compressed sensing are explored in more than 1000
articles. Moreover, this methodology is to date extensively utilized by applied mathemati-
cians, computer scientists, and engineers for a variety of applications in astronomy, biology,
medicine, radar, and seismology, to name a few.

The key idea of compressed sensing is to recover a sparse signal from very few non-
adaptive, linear measurements by convex optimization. Taking a different viewpoint, it con-
cerns the exact recovery of a high-dimensional sparse vector after a dimension reduction step.
From a yet another standpoint, we can regard the problem as computing a sparse coefficient
vector for a signal with respect to an overcomplete system. The theoretical foundation of
compressed sensing has links with and also explores methodologies from various other fields
such as, for example, applied harmonic analysis, frame theory, geometric functional analysis,
numerical linear algebra, optimization theory, and randommatrix theory.

It is interesting to notice that this development – the problem of sparse recovery – can in
fact be traced back to earlier papers from the 90s such as [24]and later the prominent papers
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2 G. Kutyniok: Compressed Sensing

by Donoho and Huo [21] and Donoho and Elad [19]. When the previously mentioned two
fundamental papers introducing compressed sensing were published, the term ‘compressed
sensing’ was initially utilized for random sensing matrices, since those allow for a minimal
number of non-adaptive, linear measurements. Nowadays, the terminology ‘compressed sens-
ing’ is more and more often used interchangeably with ‘sparse recovery’ in general, which is
a viewpoint we will also take in this survey paper.

1.1 The Compressed Sensing Problem

To state the problem mathematically precisely, let nowx = (xi)
n
i=1

∈ R
n be our signal of

interest. As prior information, we either assume thatx itself is sparse, i.e., it has very few
non-zero coefficients in the sense that

‖x‖0 := #{i : xi 6= 0}

is small, or that there exists an orthonormal basis or a frame1 Φ such thatx = Φc with c
being sparse. For this, we letΦ be the matrix with the elements of the orthonormal basis
or the frame as column vectors. In fact, a frame typically provides more flexibility than an
orthonormal basis due to its redundancy and hence leads to improved sparsifying properties,
hence in this setting customarily frames are more often employed than orthonormal bases.
Sometimes the notion of sparsity is weakened, which we for now – before we will make this
precise in Section 2 – will refer to asapproximately sparse. Further, letA be anm×n matrix,
which is typically calledsensing matrixor measurement matrix. Throughout we will always
assume thatm < n and thatA does not possess any zero columns, even if not explicitly
mentioned.

Then theCompressed Sensing Problemcan be formulated as follows: Recoverx from
knowledge of

y = Ax,

or recoverc from knowledge of

y = AΦc.

In both cases, we face an underdetermined linear system of equations with sparsity as prior
information about the vector to be recovered – we donot however know the support, since
then the solution could be trivially obtained.

This leads us to the following questions:

• What are suitable signal and sparsity models?
• How, when, and with how much accuracy can the signal be algorithmically recovered?
• What are suitable sensing matrices?

In this section, we will discuss these questions briefly to build up intuition for the subsequent
sections.

1 Recall that aframe for a Hilbert spaceH is a system(ϕi)i∈I in H, for which there existframe bounds
0 < A ≤ B < ∞ such thatA‖x‖2

2
≤

∑
i∈I |〈x, ϕi〉|

2 ≤ B‖x‖2
2

for all x ∈ H. A tight frameallowsA = B. If
A = B = 1 can be chosen,(ϕi)i∈I forms aParseval frame. For further information, we refer to [12].
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1.2 Sparsity: A Reasonable Assumption?

As a first consideration, one might question whether sparsity is indeed a reasonable assump-
tion. Due to the complexity of real data certainly only a heuristic answer is possible.

If a natural image is taken, it is well known that wavelets typically provide sparse approx-
imations. This is illustrated in Figure 1, which shows a wavelet decomposition [50] of an
exemplary image. It can clearly be seen that most coefficients are small in absolute value,
indicated by a darker color.

(a) (b)

Fig. 1 (a) Mathematics building of TU Berlin (Photo by TU-Pressestelle); (b) Wavelet decomposition

Depending on the signal, a variety of representation systems which can be used to provide
sparse approximations is available and is constantly expanded. In fact, it was recently shown
that wavelet systems do not provide optimally sparse approximations in a regularity setting
which appears to be suitable for most natural images, but thenovel system of shearlets does
[46, 47]. Hence, assuming some prior knowledge of the signalto be sensed or compressed,
typically suitable, well-analyzed representation systems are already at hand. If this is not the
case, more data sensitive methods such as dictionary learning algorithms (see, for instance,
[2]), in which a suitable representation system is computedfor a given set of test signals, are
available.

Depending on the application at hand, oftenx is already sparse itself. Think, for instance,
of digital communication, when a cell phone network withn antennas andm users needs to
be modelled. Or consider genomics, when in a test studym genes shall be analyzed withn
patients taking part in the study. In the first scenario, veryfew of the users have an ongoing
call at a specific time; in the second scenario, very few of thegenes are actually active. Thus,
x being sparse itself is also a very natural assumption.

In the compressed sensing literature, most results indeed assume thatx itself is sparse, and
the problemy = Ax is considered. Very few articles study the problem of incorporating a
sparsifying orthonormal basis or frame; we mention specifically [9, 61]. In this paper, we
will also assume throughout thatx is already a sparse vector. It should be emphasized that
‘exact’ sparsity is often too restricting or unnatural, andweakened sparsity notions need to be
taken into account. On the other hand, sometimes – such as with the tree structure of wavelet
coefficients – some structural information on the non-zero coefficients is known, which leads
to diverse structured sparsity models. Section 2 provides an overview of such models.
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4 G. Kutyniok: Compressed Sensing

1.3 Recovery Algorithms: Optimization Theory and More

Letx now be a sparse vector. It is quite intuitive to recoverx from knowledge ofy by solving

(P0) min
x

‖x‖0 subject toy = Ax.

Due to the unavoidable combinatorial search, this algorithm is however NP-hard [53]. The
main idea of Chen, Donoho, and Saunders in the fundamental paper [14] was to substitute
theℓ0 ‘norm’ by the closest convex norm, which is theℓ1 norm. This leads to the following
minimization problem, which they coinedBasis Pursuit:

(P1) min
x

‖x‖1 subject toy = Ax.

Due to the shape of theℓ1 ball, ℓ1 minimization indeed promotes sparsity. For an illustration
of this fact, we refer the reader to Figure 2, in whichℓ1 minimization is compared toℓ2 mini-
mization. We would also like to draw the reader’s attention to the small numerical example in
Figure 3, in which a partial Fourier matrix is chosen as measurement matrix.

{x : y = Ax}

min ‖x‖2 s.t.y = Ax

min ‖x‖1 s.t.y = Ax

Fig. 2 ℓ1 minimization versusℓ2 minimization

The general question of when ‘ℓ0 = ℓ1’ holds is key to compressed sensing. Both necessary
and sufficient conditions have been provided, which not onlydepend on the sparsity of the
original vectorx, but also on the incoherence of the sensing matrixA, which will be made
precise in Section 3.

Since for very large data setsℓ1 minimization is often not feasible even when the solvers
are adapted to the particular structure of compressed sensing problems, various other types of
recovery algorithms were suggested. These can be roughly separated into convex optimiza-
tion, greedy, and combinatorial algorithms (cf. Section 5), each one having its own advantages
and disadvantages.

1.4 Sensing Matrices: How Much Freedom is Allowed?

As already mentioned, sensing matrices are required to satisfy certain incoherence conditions
such as, for instance, a small so-called mutual coherence. If we are allowed to choose the
sensing matrix freely, the best choice are random matrices such as Gaussian iid matrices,
uniform random ortho-projectors, or Bernoulli matrices, see for instance [11].
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Fig. 3 (a) Original signalf with random sample points (indicated by circles); (b) The Fourier transform

f̂ ; (c) Perfect recovery of̂f by ℓ1 minimization; (d) Recovery of̂f by ℓ2 minimization

It is still an open question (cf. Section 4 for more details) whether deterministic matrices
can be carefully constructed to have similar properties with respect to compressed sensing
problems. At the moment, different approaches towards thisproblem are being taken such
as structured random matrices by, for instance, Rauhut et al. in [58] or [60]. Moreover, most
applications do not allow for a free choice of the sensing matrix and enforce a particularly
structured matrix. Exemplary situations are the application of data separation, in which the
sensing matrix has to consist of two or more orthonormal bases or frames [32, Chapter 11],
or high resolution radar, for which the sensing matrix has tobear a particular time-frequency
structure [38].

1.5 Compressed Sensing: Quo Vadis?

At present, a comprehensive core theory seems established except for some few deep ques-
tions such as the construction of deterministic sensing matrices exhibiting properties similar
to random matrices.

One current main direction of research which can be identified with already various ex-
isting results is the incorporation of additional sparsityproperties typically coinedstructured
sparsity, see Section 2 for references. Another main direction is theextension or transfer
of the Compressed Sensing Problem to other settings such asmatrix completion, see for in-
stance [10]. Moreover, we are currently witnessing the diffusion of compressed sensing ideas
to variousapplication areassuch as radar analysis, medical imaging, distributed signal pro-
cessing, and data quantization, to name a few; see [32] for anoverview. These applications
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6 G. Kutyniok: Compressed Sensing

pose intriguing challenges to the area due to the constraints they require, which in turn initi-
ates novel theoretical problems. Finally, we observe that due to the need of, in particular, fast
sparse recovery algorithms, there is a trend to more closelycooperate withmathematicians
from other research areas, for example from optimization theory, numerical linear algebra, or
random matrix theory.

As three examples of recently initiated research directions, we would like to mention the
following. First, while the theory of compressed sensing focusses on digital data, it is desirable
to develop a similar theory for thecontinuum setting. Two promising approaches were so far
suggested by Eldar et al. (cf. [52]) and Adcock et al. (cf. [1]). Second, in contrast to Basis
Pursuit, which minimizes theℓ1 norm of the synthesis coefficients, several approaches such
as recovery of missing data minimize theℓ1 norm of the analysis coefficients – as opposed to
minimizing theℓ1 norm of the synthesis coefficients –, see Subsections 6.1.2 and 6.2.2. The
relation between these two minimization problems is far from being clear, and the recently
introduced notion ofco-sparsity[54] is an interesting approach to shed light onto this problem.
Third, the utilization offrames as a sparsifying systemin the context of compressed sensing
has become a topic of increased interest, and we refer to the initial paper [9].

The reader might also want to consult the extensive webpagedsp.rice.edu/cs con-
taining most published papers in the area of compressed sensing subdivided into different
topics. We would also like to draw the reader’s attention to the recent books [29] and [32] as
well as the survey article [7].

1.6 Outline

In Section 2, we start by discussing different sparsity models including structured sparsity
and sparsifying dictionaries. The next section, Section 3,is concerned with presenting both
necessary and sufficient conditions for exact recovery using ℓ1 minimization as a recovery
strategy. The delicateness of designing sensing matrices is the focus of Section 4. In Section
5, other algorithmic approaches to sparse recovery are presented. Finally, applications such
as data separation are discussed in Section 6.

2 Signal Models

Sparsity is the prior information assumed of the vector we intend to efficiently sense or whose
dimension we intend to reduce, depending on which viewpointwe take. We will start by
recalling some classical notions of sparsity. Since applications typically impose a certain
structure on the significant coefficients, various structured sparsity models were introduced
which we will subsequently present. Finally, we will discuss how to ensure sparsity through
an appropriate orthonormal basis or frame.

2.1 Sparsity

The most basic notion of sparsity states that a vector has at mostk non-zero coefficients. This
is measured by theℓ0 ‘norm’, which for simplicity we will throughout refer to as anorm
although it is well-known that‖ · ‖0 does not constitute a mathematical norm.

Definition 2.1 A vectorx = (xi)
n
i=1

∈ R
n is calledk-sparse, if

‖x‖0 = #{i : xi 6= 0} ≤ k.
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The set of allk-sparse vectors is denoted byΣk.

We wish to emphasize thatΣk is a highly non-linear set. Lettingx ∈ R
n be ak-sparse

signal, it belongs to the linear subspace consisting of all vectors with the same support set.
Hence the setΣk is the union of all subspaces of vectors with supportΛ satisfying|Λ| ≤ k.

From an application point of view, the situation ofk-sparse vectors is however unrealistic,
wherefore various weaker versions were suggested. In the following definition we present one
possibility but do by no means claim this to be the most appropriate one. It might though be
very natural, since it analyzes the decay rate of theℓp error of the bestk-term approximation
of a vector.

Definition 2.2 Let 1 ≤ p < ∞ and r > 0. A vectorx = (xi)
n
i=1

∈ R
n is called

p-compressible with constantC and rater, if

σk(x)p := min
x̃∈Σk

‖x− x̃‖p ≤ C · k−r for anyk ∈ {1, . . . , n}.

2.2 Structured Sparsity

Typically, the non-zero or significant coefficients do not arise in arbitrary patterns but are
rather highly structured. Think of the coefficients of a wavelet decomposition which exhibit a
tree structure, see also Figure 1. To take these considerations into account, structured sparsity
models were introduced. A first idea might be to identify the clustered set of significant
coefficients [22]. An application of this notion will be discussed in Section 6.

In the following definition as well as in the sequel, for some vectorx = (xi)
n
i=1 ∈ R

n and
some subsetΛ ⊂ {1, . . . , n}, the expression1Λx will denote the vector inRn defined by

(1Λx)i =

{

xi : i ∈ Λ,
0 : i 6∈ Λ,

i = 1, . . . , n.

Moreover,Λc will denote the complement of the setΛ in {1, . . . , n}.

Definition 2.3 Let Λ ⊂ {1, . . . , n} andδ > 0. A vectorx = (xi)
n
i=1 ∈ R

n is then called
δ-relatively sparse with respect toΛ, if

‖1Λcx‖1 ≤ δ.

The notion ofk-sparsity can also be regarded from a more general viewpoint, which simul-
taneously imposes additional structure. Letx ∈ R

n be ak-sparse signal. Then it belongs to
the linear subspace consisting of all vectors with the same support set. Hence the setΣk is the
union of all subspaces of vectors with supportΛ satisfying|Λ| ≤ k. Thus, a natural extension
of this concept is the following definition, initially introduced in [49].

Definition 2.4 A vectorx ∈ R
n is said tobelong to a union of subspaces, if there exists a

family of subspaces(Wj)
N
j=1

in R
n such that

x ∈
N
⋃

j=1

Wj .
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8 G. Kutyniok: Compressed Sensing

At about the same time, the notion offusion frame sparsitywas introduced in [6]. Fusion
frames are a set of subspaces having frame-like properties,thereby allowing for stability con-
siderations. A family of subspaces(Wj)

N
j=1 in R

n is a fusion framewith boundsA andB,
if

A‖x‖22 ≤
N
∑

j=1

‖PWj
(x)‖22 ≤ B‖x‖22 for all x ∈ R

n,

wherePWj
denotes the orthogonal projection onto the subspaceWj , see also [13] and [12,

Chapter 13]. Fusion frame theory extends classical frame theory by allowing the analy-
sis of signals through projections onto arbitrary dimensional subspaces as opposed to one-
dimensional subspaces in frame theory, hence serving also as a model for distributed process-
ing, cf. [62]. The notion of fusion frame sparsity then provides a more structured approach
than mere membership in a union of subspaces.

Applications such as manifold learning assume that the signal under consideration lives on
a general manifold, thereby forcing us to leave the world of linear subspaces. In such cases,
the signal class is often modeled as a non-lineark-dimensional manifoldM in R

n, i.e.,

x ∈ M = {f(θ) : θ ∈ Θ}

with Θ being ak-dimensional parameter space. Such signals are then consideredk-sparse in
the manifold model, see [65]. For a survey chapter about this topic, the interested reader is
referred to [32, Chapter 7].

We wish to finally mention that applications such as matrix completion require generaliza-
tions of vector sparsity by considering, for instance, low-rank matrix models. This is however
beyond the scope of this survey paper, and we refer to [32] formore details.

2.3 Sparsifying Dictionaries and Dictionary Learning

If the vector itself does not exhibit sparsity, we are required to sparsify it by choosing an
appropriate representation system – in this field typicallycoineddictionary. This problem
can be attacked in two ways, either non-adaptively or adaptively.

If certain characteristics of the signal are known, a dictionary can be chosen from the vast
class of already very well explored representation systemssuch as the Fourier basis, wavelets,
or shearlets, to name a few. The achieved sparsity might not be optimal, but various mathe-
matical properties of these systems are known and fast associated transforms are available.

Improved sparsity can be achieved by choosing the dictionary adaptive to the signals at
hand. For this, a test set of signals is required, based on which a dictionary is learnt. This
process is customarily termeddictionary learning. The most well-known and widely used al-
gorithm is the K-SVD algorithm introduced by Aharon, Elad, and Bruckstein in [2]. However,
from a mathematician’s point of view, this approach bears two problems which will hopefully
be both solved in the near future. First, almost no convergence results for such algorithms
are known. And, second, the learnt dictionaries do not exhibit any mathematically exploitable
structure, which makes not only an analysis very hard but also prevents the design of fast
associated transforms.
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3 Conditions for Sparse Recovery

After having introduced various sparsity notions, in this sense signal models, we next consider
which conditions we need to impose on the sparsity of the original vector and on the sensing
matrix for exact recovery. For the sparse recovery method, we will focus onℓ1 minimization
similar to most published results and refer to Section 5 for further algorithmic approaches.
In the sequel of the present section, several incoherence conditions for sensing matrices will
be introduced. Section 4 then discusses examples of matrices fulfilling those. Finally, we
mention that most results can be slightly modified to incorporate measurements affected by
additive noise, i.e., ify = Ax+ ν with ‖ν‖2 ≤ ε.

3.1 Uniqueness Conditions for Minimization Problems

We start by presenting conditions for uniqueness of the solutions to the minimization problems
(P0) and (P1) which we introduced in Subsection 1.3.

3.1.1 Uniqueness of (P0)

The correct condition on the sensing matrix is phrased in terms of the so-called spark, whose
definition we first recall. This notion was introduced in [19]and verbally fuses the notions of
‘sparse’ and ‘rank’.

Definition 3.1 LetA be anm× n matrix. Then thesparkof A denoted by spark(A) is the
minimal number of linearly dependent columns ofA.

It is useful to reformulate this notion in terms of the null space ofA, which we will through-
out denote byN (A), and state its range. The proof is obvious. For the definitionof Σk, we
refer to Definition 2.1.

Lemma 3.2 LetA be anm× n matrix. Then

spark(A) = min{k : N (A) ∩ Σk 6= {0}}

andspark(A) ∈ [2,m+ 1].

This notion enables us to derive an equivalent condition on unique solvability of (P0).
Since the proof is short, we state it for clarity purposes.

Theorem 3.3 ( [19]) Let A be anm × n matrix, and letk ∈ N. Then the following
conditions are equivalent.

(i) If a solutionx of (P0) satisfies‖x‖0 ≤ k, then this is the unique solution.

(ii) k < spark(A)/2.

Proof. (i) ⇒ (ii). We argue by contradiction. If (ii) does not hold, by Lemma 3.2, there exists
someh ∈ N (A), h 6= 0 such that‖h‖0 ≤ 2k. Thus, there existx andx̃ satisfyingh = x− x̃
and‖x‖0, ‖x̃‖0 ≤ k, butAx = Ax̃, a contradiction to (i).

(ii) ⇒ (i). Let x andx̃ satisfyy = Ax = Ax̃ and‖x‖0, ‖x̃‖0 ≤ k. Thusx − x̃ ∈ N (A)
and‖x − x̃‖0 ≤ 2k < spark(A). By Lemma 3.2, it follows thatx − x̃ = 0, which implies
(i).
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10 G. Kutyniok: Compressed Sensing

3.1.2 Uniqueness of(P1)

Due to the underdeterminedness ofA and hence the ill-posedness of the recovery problem, in
the analysis of uniqueness of the minimization problem(P1), the null space ofA also plays a
particular role. The related so-called null space property, first introduced in [15], is defined as
follows.

Definition 3.4 Let A be anm × n matrix. ThenA has thenull space property (NSP) of
orderk, if, for all h ∈ N (A) \ {0} and for all index sets|Λ| ≤ k,

‖1Λh‖1 < 1

2
‖h‖1.

An equivalent condition for the existence of a unique sparsesolution of (P1) can now be
stated in terms of the null space property. For the proof, we refer to [15].

Theorem 3.5 ( [15]) Let A be anm × n matrix, and letk ∈ N. Then the following
conditions are equivalent.

(i) If a solutionx of (P1) satisfies‖x‖0 ≤ k, then this is the unique solution.

(ii) A satisfies the null space property of orderk.

It should be emphasized that [15] studies the Compressed Sensing Problem in a much more
general way by analyzing quite general encoding-decoding strategies.

3.2 Sufficient Conditions

The core of compressed sensing is to determine when ‘ℓ0 = ℓ1’, i.e., when the solutions of
(P0) and (P1) coincide. The most well-known sufficient conditions for this to hold true are
phrased in terms of mutual coherence and of the restricted isometry property.

3.2.1 Mutual Coherence

The mutual coherence of a matrix, initially introduced in [21], measures the smallest angle
between each pair of its columns.

Definition 3.6 Let A = (ai)
n
i=1 be anm × n matrix. Then itsmutual coherenceµ(A) is

defined as

µ(A) = max
i6=j

|〈ai, aj〉|
‖ai‖2‖aj‖2

.

The maximal mutual coherence of a matrix certainly equals1 in the case when two columns
are linearly dependent. The lower bound presented in the next result, also known as the
Welch bound, is more interesting. It can be shown that it is attained by so-calledoptimal
Grassmannian frames[63], see also Section 4.

Lemma 3.7 LetA be anm× n matrix. Then we have

µ(A) ∈
[

√

n−m

m(n− 1)
, 1
]

.
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Let us mention that different variants of mutual coherence exist, in particular, theBabel
function[19], thecumulative coherence function[64], thestructuredp-Babel function[4], the
fusion coherence[6], andcluster coherence[22]. The notion of cluster coherence will in fact
be later discussed in Section 6 for a particular application.

Imposing a bound on the sparsity of the original vector by themutual coherence of the
sensing matrix, the following result can be shown; its proofcan be found in [19].

Theorem 3.8( [19,30]) LetA be anm× n matrix, and letx ∈ R
n \ {0} be a solution of

(P0) satisfying

‖x‖0 < 1

2
(1 + µ(A)−1).

Thenx is the unique solution of (P0) and (P1).

3.2.2 Restricted Isometry Property

We next discuss the restricted isometry property, initially introduced in [11]. It measures the
degree to which each submatrix consisting ofk column vectors ofA is close to being an
isometry. Notice that this notion automatically ensures stability, as will become evident in the
next theorem.

Definition 3.9 Let A be anm × n matrix. ThenA has theRestricted Isometry Property
(RIP) of orderk, if there exists aδk ∈ (0, 1) such that

(1 − δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22 for all x ∈ Σk.

Several variations of this notion were introduced during the last years, of which examples
are thefusion RIP[6] and theD-RIP [9].

Although also for mutual coherence, error estimates for recovery from noisy data are
known, in the setting of the RIP those are very natural. In fact, the error can be phrased
in terms of the bestk-term approximation (cf. Definition 2.2) as follows.

Theorem 3.10( [8,15]) LetA be anm×n matrix which satisfies the RIP of order2k with
δ2k <

√
2− 1. Letx ∈ R

n, and letx̂ be a solution of the associated (P1) problem. Then

‖x− x̂‖2 ≤ C ·
(σk(x)1√

k

)

for some constantC dependent onδ2k.

The best known RIP condition for sparse recovery by (P1) states that (P1) recovers all
k-sparse vectors provided the measurement matrixA satisfiesδ2k < 0.473, see [34].

3.3 Necessary Conditions

Meaningful necessary conditions for ‘ℓ0 = ℓ1’ in the sense of (P0) = (P1) are significantly
harder to achieve. An interesting string of research was initiated by Donoho and Tanner with
the two papers [25, 26]. The main idea is to derive equivalentconditions utilizing the theory
of convex polytopes. For this, letCn be defined by

Cn = {x ∈ R
n : ‖x‖1 ≤ 1}. (1)

A condition equivalent to ‘ℓ0 = ℓ1’ can then be formulated in terms of properties of a partic-
ular related polytope. For the relevant notions from polytope theory, we refer to [37].
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12 G. Kutyniok: Compressed Sensing

Theorem 3.11( [25, 26]) LetCn be defined as in(1), letA be anm × n matrix, and let
the polytopeP be defined byP = ACn ⊆ R

m. Then the following conditions are equivalent.

(i) The number ofk-faces ofP equals the number ofk-faces ofCn.

(ii) (P0) = (P1).

The geometric intuition behind this result is the fact that the number ofk-faces ofP equals
the number of indexing setsΛ ⊆ {1, . . . , n} with |Λ| = k such that vectorsx satisfying
suppx = Λ can be recovered via (P1).

Extending these techniques, Donoho and Tanner were also able to provide highly accurate
analytical descriptions of the occurring phase transitionwhen considering the area of exact
recovery dependent on the ratio of the number of equations tothe number of unknownsn/m
versus the ratio of the number of nonzeros to the number of equationsk/n. The interested
reader is referred to [27] for further details.

4 Sensing Matrices

Ideally, we aim for a matrix which has high spark, low mutual coherence, and a small RIP
constant. As our discussion in this section will show, theseproperties are often quite difficult
to achieve, and even computing, for instance, the RIP constant is computationally intractable
in general (see [59]).

In the sequel, after presenting some general relations between the introduced notions of
spark, NSP, mutual coherence, and RIP, we will discuss some explicit constructions for, in
particular, mutual coherence and RIP.

4.1 Relations between Spark, NSP, Mutual Coherence, and RIP

Before discussing different approaches to construct a sensing matrix, we first present several
known relations between the introduced notions spark, NSP,mutual coherence, and RIP. This
allows to easily compute or at least estimate other measures, if a sensing matrix is designed
for a particular measure. For the proofs of the different statements, we refer to [32, Chapter
1].

Lemma 4.1 LetA be anm× n matrix with normalized columns.

(i) We have

spark(A) ≥ 1 +
1

µ(A)
.

(ii) A satisfies the RIP of orderk with δk = kµ(A) for all k < µ(A)−1.

(iii) SupposeA satisfies the RIP of order2k with δ2k <
√
2− 1. If

√
2δ2k

1− (1 +
√
2)δ2k

<

√

k

n
,

thenA satisfies the NSP of order2k.
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4.2 Spark and Mutual Coherence

Let us now provide some exemplary classes of sensing matrices with advantageous spark and
mutual coherence properties.

The first observation one can make (see also [15]) is that anm × n Vandermonde matrix
A satisfies

spark(A) = m+ 1.

One serious drawback though is the fact that these matrices become badly conditioned as
n → ∞.

Turning to the weaker notion of mutual coherence, of particular interest – compare Sub-
section 6.1 – are sensing matrices composed of two orthonormal bases or frames forRm. If
the two orthonormal basesΦ1 andΦ2, say, are chosen to be mutually unbiased such as the
Fourier and the Dirac basis (the standard basis), then

µ([Φ1|Φ2]) =
1√
m
,

which is the optimal bound on mutual coherence for such typesof m × 2m sensing matrix.
Other constructions are known form×m2 matricesA generated from the Alltop sequence [38]
or by using Grassmannian frames [63], in which cases the optimal lower bound is attained:

µ(A) =
1√
m
.

The number of measurements required for recovery of ak-sparse signal can then be deter-
mined to bem = O(k2 logn).

4.3 RIP

We begin by discussing some deterministic constructions ofmatrices satisfying the RIP. The
first noteworthy construction was presented by DeVore and requiresm & k2, see [17]. A very
recent, highly sophisticated approach [5] by Bourgain et al. still requiresm & k2−α with
some small constantα. Hence up to now deterministic constructions require a largem, which
is typically not feasible for applications, since it scalesquadratically ink.

The construction of random sensing matrices satisfying RIPis a possibility to circumvent
this problem. Such constructions are closely linked to the famous Johnson-Lindenstrauss
Lemma, which is extensively utilized in numerical linear algebra, machine learning, and other
areas requiring dimension reduction.

Theorem 4.2(Johnson-Lindenstrauss Lemma [41])Let ε ∈ (0, 1), let x1, . . . , xp ∈ R
n,

and letm = O(ε−2 log p) be a positive integer. Then there exists a Lipschitz mapf : Rn →
R

m such that

(1−ε)‖xi−xj‖22 ≤ ‖f(xi)−f(xj)‖22 ≤ (1+ε)‖xi−xj‖22 for all i, j ∈ {1, . . . , p}.

The key requirement for a matrix to satisfy the Johnson-Lindenstrauss Lemma with high
probability is the following concentration inequality foran arbitrarily fixedx ∈ R

n:

P

(

(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22
)

≤ 1− 2e−c0ε
2m, (2)
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14 G. Kutyniok: Compressed Sensing

with the entries ofA being generated by a certain probability distribution. Therelation of RIP
to the Johnson-Lindenstrauss Lemma is established in the following result. We also mention
that recently even a converse of the following theorem was proved in [43].

Theorem 4.3( [3]) Let δ ∈ (0, 1). If the probability distribution generating them × n
matricesA satisfies the concentration inequality(2) with ε = δ, then there exist constants
c1, c2 such that, with probability≤ 1− 2e−c2δ

2m, A satisfies the RIP of orderk with δ for all
k ≤ c1δ

2m/ log(n/k).

This observation was then used in [3] to prove that Gaussian and Bernoulli random matrices
satisfy the RIP of orderk with δ provided thatm & δ−2k log(n/k). Up to a constant, lower
bounds for Gelfand widths ofℓ1-balls [35] show that this dependence onk andn is indeed
optimal.

5 Recovery Algorithms

In this section, we will provide a brief overview of the different types of algorithms typically
used for sparse recovery. Convex optimization algorithms require very few measurements but
are computationally more complex. On the other extreme are combinatorial algorithms, which
are very fast – often sublinear – but require many measurements that are sometimes difficult
to obtain. Greedy algorithms are in some sense a good compromise between those extremes
concerning computational complexity and the required number of measurements.

5.1 Convex Optimization

In Subsection 1.3, we already stated the convex optimization problem

min
x

‖x‖1 subject toy = Ax

most commonly used. If the measurements are affected by noise, a conic constraint is re-
quired; i.e., the minimization problem needs to be changed to

min
x

‖x‖1 subject to‖Ax− y‖22 ≤ ε,

for a carefully chosenε > 0. For a particular regularization parameterλ > 0, this problem is
equivalent to the unconstrained version given by

min
x

1

2
‖Ax− y‖22 + λ‖x‖1.

Developed convex optimization algorithms specifically adapted to the compressed sensing
setting include interior-point methods [11], projected gradient methods [33], and iterative
thresholding [16]. The reader might also be interested to check the webpageswww-stat.
stanford.edu/ ˜ candes/l1magic andsparselab.stanford.edu for available
code. It is worth pointing out that the intense research performed in this area has slightly
diminished the computational disadvantage of convex optimization algorithms for compressed
sensing as compared to greedy type algorithms.
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5.2 Greedy Algorithms

Greedy algorithms iteratively approximate the coefficients and the support of the original sig-
nal. They have the advantage of being very fast and easy to implement. Often the theoretical
performance guarantees are very similar to, for instance,ℓ1 minimization results.

The most well-known greedy approach isOrthogonal Matching Pursuit, which is described
in Figure 4. OMP was introduced in [57] as an improved successor of Matching Pursuit[51].

Input:
• Matrix A = (ai)

n
i=1

∈ R
m×n and vectorx ∈ R

n.

• Error thresholdε.

Algorithm:
1) Setk = 0.

2) Set the initial solutionx0 = 0.

3) Set the initial residualr0 = y −Ax0 = y.

4) Set the initial supportS0 = suppx0 = ∅.

5) Repeat

6) Setk = k + 1.

7) Choosei0 such thatminc ‖cai0 − rk−1‖2 ≤ minc ‖cai − rk−1‖2 for all i.

8) SetSk = Sk−1 ∪ {i0}.

9) Computexk = argminx‖Ax− y‖2 subject tosuppx = Sk.

10) Computerk = y −Axk.

11) until‖rk‖2 < ε.

Output:
• Approximate solutionxk.

Fig. 4 Orthogonal Matching Pursuit (OMP): Approximation of the solution of (P0)

Interestingly, a theorem similar to Theorem 3.8 can be proven for OMP.

Theorem 5.1( [20,64]) LetA be anm× n matrix, and letx ∈ R
n \ {0} be a solution of

(P0) satisfying

‖x‖0 < 1

2
(1 + µ(A)−1).

Then OMP with error thresholdε = 0 recoversx.

Other prominent examples of greedy algorithms are Stagewise OMP (StOMP) [28], Regu-
larized OMP (ROMP) [56], and Compressive Sampling MP (CoSaMP) [55]. For a survey of
these methods, we wish to refer to [32, Chapter 8].

An intriguing, very recently developed class of algorithmsis Orthogonal Matching Pursuit
with Replacement (OMPR) [40], which not only includes most iterative (hard)-thresholding
algorithms as special cases, but this approach also permitsthe tightest known analysis in terms
of RIP conditions. By extending OMPR using locality sensitive hashing (OMPR-Hash), this
also leads to the first provably sub-linear algorithm for sparse recovery, see [40]. Another
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recent development is message passing algorithms for compressed sensing pioneered in [23];
a survey on those can be found in [32, Chapter 9].

5.3 Combinatorial Algorithms

These methods apply group testing to highly structured samples of the original signal, but are
far less used in compressed sensing as opposed to convex optimization and greedy algorithms.
From the various types of algorithms, we mention the HHS pursuit [36] and a sub-linear
Fourier transform [39].

6 Applications

We now turn to some applications of compressed sensing. Two of those we will discuss in
more detail, namely data separation and recovery of missingdata.

6.1 Data Separation

The data separation problem can be stated in the following way. Let x = x1 + x2 ∈ R
n.

Assuming we are just givenx, how can we extractx1 andx2 from it? At first glance, this
seems to be impossible, since there are two unknowns for one datum.

6.1.1 An Orthonormal Basis Approach

The first approach to apply compressed sensing techniques consists in choosing appropriate
orthonormal basesΦ1 andΦ2 for Rn such that the coefficient vectorsΦT

i xi (i = 1, 2) are
sparse. This leads to the following underdetermined linearsystem of equations:

x = [ Φ1 | Φ2 ]

[

c1
c2

]

.

Compressed sensing now suggests to solve

min
c1,c2

∥

∥

∥

∥

[

c1
c2

]∥

∥

∥

∥

1

subject tox = [ Φ1 | Φ2 ]

[

c1
c2

]

. (3)

If the sparse vector[ΦT
1 x1,Φ

T
2 x2]

T can be recovered, the data separation problem can be
solved by computing

x1 = Φ1(Φ
T
1 x1) and x2 = Φ2(Φ

T
2 x2).

Obviously, separation can only be achieved provided that the componentsx1 andx2 are in
some sense morphologically distinct. Notice that this property is indeed encoded in the prob-
lem if one requires incoherence of the matrix[ Φ1 | Φ2 ].

In fact, this type of problem can be regarded as the birth of compressed sensing, since the
fundamental paper [21] by Donoho and Huo analyzed a particular data separation problem,
namely the separation of sinusoids and spikes. In this setting,x1 consists ofn samples of a
continuum domain signal which is a superposition of sinusoids:

x1 =

(

1√
n

n−1
∑

ω=0

c1,ωe
2πiωt/n

)

0≤t≤n−1
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LettingΦ1 be the Fourier basis, the coefficient vector

ΦT
1 x1 = c1, whereΦ1 = [ϕ1,0 | . . . |ϕ1,n−1 ] with ϕ1,ω =

(

1√
n
e2πiωt/n

)

0≤t≤n−1

,

is sparse. The vectorx2 consists ofn samples of a continuum domain signal which is a
superposition of spikes, i.e., has few non-zero coefficients. Thus, lettingΦ2 denote the Dirac
basis (standard basis), the coefficient vector

ΦT
2 x2 = x2 = c2

is also sparse. Since the mutual coherence of the matrix[ Φ1 |Φ2 ] can be computed to be1√
n

,
Theorem 3.8 implies the following result.

Theorem 6.1( [21, 30]) Let x1, x2 andΦ1,Φ2 be defined as in the previous paragraph,
and assume that‖ΦT

1 x1‖0 + ‖ΦT
2 x2‖0 < 1

2
(1 +

√
n). Then

[

ΦT
1 x1

ΦT
2 x2

]

= argminc1,c2

∥

∥

∥

∥

[

c1
c2

]
∥

∥

∥

∥

1

subject tox = [ Φ1 | Φ2 ]

[

c1
c2

]

.

6.1.2 A Frame Approach

Now assume that we cannot find sparsifying orthonormal basesbut Parseval frames2 Φ1 and
Φ2 – notice that this situation is much more likely due to the advantageous redundancy of a
frame. In this case, the minimization problem we stated in (3) faces the following problem:
We are merely interested in the separationx = x1 + x2. However, for each such separation,
due to the redundancy of the frames the minimization problemsearches through infinitely
many coefficients[c1, c2]T satisfyingxi = Φici, i = 1, 2. Thus it computes not only much
more than necessary – in fact, it even computes the sparsest coefficient sequence ofx with re-
spect to the dictionary[Φ1 |Φ2 ] – but this also causes numerical instabilities if the redundancy
of the frames is too high.

To avoid this problem, we place theℓ1 norm on theanalysis, rather than thesynthesisside
as already mentioned in Subsection 1.5. Utilizing the fact thatΦ1 andΦ2 are Parseval frames,
i.e., thatΦiΦ

T
i = I (i = 1, 2), we can write

x = x1 + x2 = Φ1(Φ
T
1 x1) + Φ2(Φ

T
2 x2).

This particular choice of coefficients – which are in frame theory language termedanalysis
coefficients– leads to the minimization problem

min
x̃1,x̃2

‖ΦT
1 x̃1‖1 + ‖ΦT

2 x̃2‖1 subject tox = x̃1 + x̃2. (4)

Interestingly, the associated recovery results employ structured sparsity, wherefore we will
also briefly present those. First, the notion of relative sparsity (cf. Definition 2.3) is adapted
to this situation.

2 Recall thatΦ is a Parseval frame, ifΦΦT = I.
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Definition 6.2 Let Φ1 andΦ2 be Parseval frames forRn with indexing sets{1, . . . , N1}
and{1, . . . , N2}, respectively, letΛi ⊂ {1, . . . , Ni}, i = 1, 2, and letδ > 0. Then the vectors
x1 andx2 are calledδ-relatively sparse inΦ1 andΦ2 with respect toΛ1 andΛ2, if

‖1Λc
1
ΦT

1 x1‖1 + ‖1Λc
2
ΦT

2 x2‖1 ≤ δ.

Second, the notion of mutual coherence is adapted to structured sparsity as already dis-
cussed in Subsection 3.2.1. This leads to the following definition of cluster coherence.

Definition 6.3 Let Φ1 = (ϕ1i)
N1

i=1
andΦ2 = (ϕ2j)

N2

j=1
be Parseval frames forRn, respec-

tively, and letΛ1 ⊂ {1, . . . , N1}. Then thecluster coherenceµc(Λ1,Φ1; Φ2) of Φ1 andΦ2

with respect toΛ1 is defined by

µc(Λ1,Φ1; Φ2) = max
j=1,...,N2

∑

i∈Λ1

|〈ϕ1i, ϕ2j〉|.

The performance of the minimization problem (4) can then be analyzed as follows. It
should be emphasized that the clusters of significant coefficientsΛ1 andΛ2 are a mere analysis
tool; the algorithm does not take those into account. Further, notice that the choice of those
sets is highly delicate in its impact on the separation estimate. For the proof of the result, we
refer to [22].

Theorem 6.4( [22]) Letx = x1+x2 ∈ R
n, letΦ1 andΦ2 be Parseval frames forRn with

indexing sets{1, . . . , N1} and{1, . . . , N2}, respectively, and letΛi ⊂ {1, . . . , Ni}, i = 1, 2.
Further, suppose thatx1 andx2 are δ-relatively sparse inΦ1 andΦ2 with respect toΛ1 and
Λ2, and let[x⋆

1, x
⋆
2]

T be a solution of the minimization problem(4). Then

‖x⋆
1 − x1‖2 + ‖x⋆

2 − x2‖2 ≤ 2δ

1− 2µc
,

whereµc = max{µc(Λ1,Φ1; Φ2), µc(Λ2,Φ2; Φ1)}.

Let us finally mention that data separation via compressed sensing has been applied, for
instance, in imaging sciences for the separation of point- and curvelike objects, a problem ap-
pearing in several areas such as in astronomical imaging when separating stars from filaments
and in neurobiological imaging when separating spines fromdendrites. Figure 5 illustrates a
numerical result from [48] using wavelets (see [50]) and shearlets (see [46,47]) as sparsifying
frames. A theoretical foundation for separation of point- and curvelike objects byℓ1 mini-
mization is developed in [22]. When considering thresholding as separation method for such
features, even stronger theoretical results could be proven in [45]. Moreover, a first analysis of
separation of cartoon and texture – very commonly present innatural images – was performed
in [44].

For more details on data separation using compressed sensing techniques, we refer to [32,
Chapter 11].

6.2 Recovery of Missing Data

The problem of recovery of missing data can be formulated as follows. Letx = xK + xM ∈
W ⊕W⊥, whereW is a subspace ofRn. We assume onlyxK is known to us, and we aim to
recoverx. Again, this seems unfeasible unless we have additional information.
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+

Fig. 5 Separation of a neurobiological image using wavelets and shearlets [48]

6.2.1 An Orthonormal Basis Approach

We now assume that – althoughx is not known to us – we at least know that it is sparsified by
an orthonormal basisΦ, say. LettingPW andPW⊥ denote the orthogonal projections ontoW
andW⊥, respectively, we are led to solve the underdetermined problem

PWΦc = PWx

for the sparse solutionc. As in the case of data separation, from a compressed sensingview-
point it is suggestive to solve

min
c

‖c‖1 subject toPWΦc = PWx. (5)

The original vectorx can then be recovered viax = Φc. The solution of the inpainting
problem – a terminology used for recovery of missing data in imaging science – was first
considered in [31].

Application of Theorem 3.8 provides a sufficient condition for missing data recovery to
succeed.

Theorem 6.5( [19]) Letx ∈ R
n, letW be a subspace ofRn, and letΦ be an orthonormal

basis forRn. If ‖ΦTx‖0 < 1

2
(1 + µ(PWΦ)−1), then

ΦTx = argminc‖c‖1 subject toPWΦc = PWx.

6.2.2 A Frame Approach

As before, we now assume that the sparsifying systemΦ is a redundant Parseval frame. The
adapted version to (5), which places theℓ1 norm on the analysis side, reads

min
x̃

‖ΦT x̃‖1 subject toPW x̃ = PWx. (6)

Employing relative sparsity and cluster coherence, an error analysis can be derived in a
similar way as before. For the proof, the reader might want toconsult [42].
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20 G. Kutyniok: Compressed Sensing

Theorem 6.6( [42]) Let x ∈ R
n, let Φ be a Parseval frame forRn with indexing set

{1, . . . , N}, and letΛ ⊂ {1, . . . , N}. Further, suppose thatx is δ-relatively sparse inΦ with
respect toΛ, and letx⋆ be a solution of the minimization problem(6). Then

‖x⋆ − x‖2 ≤ 2δ

1− 2µc
,

whereµc = µc(Λ, PW⊥Φ;Φ).

6.3 Further Applications

Other applications of compressed sensing include coding and information theory, machine
learning, hyperspectral imaging, geophysical data analysis, computational biology, remote
sensing, radar analysis, robotics and control, A/D conversion, and many more. Since an
elaborate discussion of all those topics would go beyond thescope of this survey paper, we
refer the interested reader todsp.rice.edu/cs .
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