
How to realize efficient Spiking Neural Networks?

Adalbert Fono1,4, Holger Boche2, Gitta Kutyniok1,3,4,5

1Ludwig-Maximilians-Universität München 2Technical University of Munich 3University of Tromsø
4Munich Center for Machine Learning (MCML) 5DLR-German Aerospace Center

Abstract

Spiking neural networks (SNNs) have been proposed as an
(energy-)efficient alternative to conventional artificial neural
networks. However, the aspired benefits have not yet been
realized in practice. To gain a better understanding of why
this gap persists, we theoretically study both discrete-time
and continuous-time models of leaky integrate-and-fire neu-
rons. In the discrete-time model, which is a widely used
framework due to its amenability to conventional deep learn-
ing software and hardware approaches, we analyze the im-
pact of explicit recurrent connections on the network size re-
quired to approximate continuously differentiable functions.
We contrast this view by investigating the computational ef-
ficiency of digital systems that simulate spike-based compu-
tations in the continuous-time model. It turns out that even in
well-behaved settings, the computational complexity of this
task may grow super-polynomially in the prescribed accu-
racy. Thereby, we exemplarily highlight the intricacies of re-
alizing potential strengths in the biological context, namely
recurrent connections and computational efficiency, of spike-
based computations on digital systems.

1 Introduction
Artificial neural networks (ANNs) have achieved success in
a wide range of applications. However, implementations of
(large-scale) ANNs often require the allocation of consid-
erable computational resources, which are projected to in-
crease on the current digital computing platforms (Thomp-
son et al. 2021). Spiking neural networks (SNNs) are en-
visioned to be more closely aligned with the structure of
computations in biological neural networks to exploit their
intrinsic benefits, foremost their energy efficiency (Maass
1997; Mehonic et al. 2024; Rathi et al. 2023).

The adoption of spikes—asynchronous, point-like elec-
trical pulses in the biological context—as the means of
communication between neurons represents the key inno-
vation of SNNs (Gerstner et al. 2014). This event-driven
nature distinguishes them from conventional ANNs, which
rely on synchronous information propagation, suited to dig-
ital computing architectures enabling efficient paralleliza-
tion of computations, thereby accelerating processing in

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ANNs (Pandey et al. 2022; Silvano et al. 2023). In con-
trast, SNNs, by design, do not naturally conform to this par-
allelization paradigm; consequently, specialized hardware
platforms (neuromorphic hardware) that align with their in-
trinsic properties are being developed.

The term neuromorphic originally described systems em-
ulating specific aspects of biological neural networks. Now,
it more broadly refers to systems that manifest brain-
inspired properties, including fine-grained parallelism, re-
duced precision computing, and in-memory computing
(Mehonic et al. 2024; Christensen et al. 2022). This resem-
bles biological systems, in which software and hardware
are intertwined: the abstract computational model is inher-
ently embedded in the biological environment. In contrast,
to leverage established methods used to train and operate
ANNs, e.g., stochastic gradient descent with backpropaga-
tion and their optimized software implementations, one ob-
jective has been to adapt SNNs to the structure of these al-
gorithms and to the architecture of (commercially) available
digital neuromorphic hardware (Orchard et al. 2021; Gonza-
lez et al. 2023).

A major step therein has been the reformulation of spik-
ing neuron behavior from continuous-time dynamics gov-
erned by differential equations into sequentially and syn-
chronously operating discrete-time models. This naturally
raises the question of how capable the resulting discrete-time
models are, i.e., to what extent they retain the advantages
of their biological counterparts. Indeed, the discretization
and subsequent digital implementation of SNNs seem to in-
troduce degradations compared to the biological paradigm.
Notably, embedding SNNs into conventional deep learning
pipelines on digital hardware diminishes their potential en-
ergy efficiency, even when executed on digital neuromorphic
platforms (Dampfhoffer et al. 2024).

Is this potential degradation due to insufficient tools or
inevitable in the alignment process of the model to the hard-
ware? We tackle this question from two angles and high-
light in both cases the intricacies when converting SNNs into
discrete-time, digital models. First, we study the impact of
recurrent connections, a key feature in the non-trivial con-
nectivity structure of biological networks (Gerstner et al.
2014; Vidal-Saez, Vilarroya, and Garcia-Ojalvo 2024), in
discrete-time SNNs. Second, we examine the algorithmic
complexity of SNN implementations on digital hardware.

Contributions We analyze the expressive power of SNNs
with discrete-time dynamics, based on the leaky integrate-
and-fire (LIF) neuron model. Here, expressivity refers to the
capacity and efficiency of a model class to represent or ap-
proximate a given class of functions. We establish approxi-
mation rates for continuous functions under suitable regular-
ity conditions by exploiting explicit recurrent connections.
Although this provides further evidence that discrete-time
models can preserve the expressive power of their more gen-
eral continuous-time variants, the consideration of recurrent
connections does not generally benefit the model in our con-
struction.

We offer a complementary perspective by analyzing
the computational efficiency of digital systems that em-
ulate/simulate spike-based computations based on the
continuous-time LIF model. Specifically, we study the com-
putational complexity of approximating the solutions to the
underlying differential equations on digital hardware mod-
eled by Turing machines (Turing 1936). Our main insight
is that even low-complexity input signals can produce high-
complexity solutions in terms of computation steps, thereby
complicating the (energy-)efficient realization of brain-like
computations on digital hardware.

2 Methods
Continuous-time Model We consider a simple model
class of neuronal dynamics still retaining biological plau-
sibility, the Integrate-and-Fire (IF) models (Gerstner et al.
2014). They generally consist of two components: (i) the
time evolution of the potential u(t) of a neuron given a cur-
rent I(t) and (ii) the spike generation mechanism via thresh-
olding operations. In the Leaky IF (LIF) model, a time-
continuous dynamical system describes the evolution of the
potential via a system of linear differential equations,{

τm
du
dt (t) = −(u(t)− urest) + I(t),

τs
dI
dt (t) = −I(t) + Ie(t),

(1)

where τm, τs > 0 are the membrane and synaptic time
constant, respectively, and Ie(t) denotes an external input
current. When u reaches a certain value, the firing thresh-
old ϑ > 0, the neuron emits a spike and subsequently u
is reset to the resting potential urest while the spike trig-
gers postsynaptic currents in downstream neurons. The tem-
poral dynamics in a layered network of spiking neurons
are then typically (mathematically) abstracted by conceiv-
ing spikes as point processes localized in time expressed as
a sum of Dirac delta distributions, the so-called spike train
S(t) =

∑
s δ(t− s), where s iterates over the spike times of

a neuron. Taking into account the network structure and as-
signing weights to the edges, the so-called synapses, yields
the simplified dynamic of the current of neuron i in layer ℓ:
dIℓi
dt

(t) = − 1

τs
Iℓi (t) +

∑
j

W ℓ
i,jS

ℓ−1
j (t) +

∑
j

V ℓ
i,jS

ℓ
j(t),

(2)
where W ℓ is the weight matrix for feedforward connec-
tions and V ℓ is for explicit recurrent connections within each
layer. Note that via the potential, neurons propagate their
state through time, exhibiting implicit recurrence in time.

Discrete-time Model To render the time-varying dynam-
ics compatible with synchronous neural network computa-
tions, the solution of the differential equation is approxi-
mated in discrete time, e.g., using Euler methods. Further-
more, the spike train is represented as a binary sequence,
allowing the spike generation and reset mechanisms to be
incorporated into the framework. This yields the following
model, where w.l.o.g. urest = 0 and ϑ = 1 is assumed.
Definition 1. A recurrent discrete-time SNN (RLIF-SNN)
Φ := ((W ℓ, V ℓ, bℓ, uℓ(0))ℓ∈L, α, β, T) with T ∈ N time
steps (latency), L ∈ N layers with widths (n0, . . . , nL+1) ∈
NL+2 (i.e., with input dimension n0 := nin and output di-
mension nL+1 := nout), weight matrices W ℓ ∈ Rnℓ−1×nℓ

and V ℓ ∈ Rnℓ×nℓ , bias vector bℓ ∈ Rnℓ , decay parameters
α, β ∈ [0, 1], initial potential uℓ(0) ∈ Rnℓ , and initial spike
activations (S0(t))t∈[T] ∈ Rnin×T follows the dynamics
Iℓ(t) = αIℓ(t− 1) +W ℓSℓ−1(t)+V ℓSℓ(t− 1), Iℓ(0)=0,

pℓ(t) = βuℓ(t− 1) + Iℓ(t) + bℓ,

Sℓ(t) = H(pℓ(t)− 1nℓ
), Sℓ(0) = 0,

uℓ(t) = pℓ(t)− Sℓ(t), ∀l ∈ [L], t ∈ [T],

where H denotes the Heaviside step function.
To turn an RLIF-SNNs Φ into a viable computation

model, a task needs to be encoded in the initial spike acti-
vations, and the resulting binary spike activations in the fi-
nal layer need to be converted into the task domain. This
is achieved via coding functions that can be thought of
as additional layers in the network. We employ a com-
mon choice in our static data setting (Eshraghian et al.
2023), which captures a wide range of possible applica-
tions, given by an encoder-decoder pair E : Rnin → Rnin×T

and D : {0, 1}nL×T → Rnout parameterized by a ∈ RT ,
bL+1 ∈ Rnout , and WL+1 ∈ Rnout×nL :{

E(x)(t) = x ∀t ∈ [T],

D
((

S(t)
)
t∈[T]

)
=
∑T

t=1 at(W
L+1S(t) + bL+1).

Definition 2. An RLIF-SNN Φ with encoder E and decoder
D realizes the mapping R(Φ) : Rnin → Rnout given by

R(Φ)(x) = D
((

SL(t)
)
t∈[T]

)
with S0(t) = E(x)(t) = x.

Complexity Theory We next formalize our notion of
computational complexity to analyze the computations un-
derlying LIF neurons. Classical complexity theory exam-
ines the processing steps of Turing machines, which serve
as an abstract model of digital computations, on discrete
sets (Arora and Barak 2009). Extending the natural, dis-
crete domain of digital computers to continuous domains
such as the real numbers requires approximating exact real
quantities by rational numbers; thus, restricting computa-
tions to finitely many discrete values processed sequen-
tially. While discretizing the inputs and parameters of an
analog/continuous-time system to obtain a rational repre-
sentation is typically unproblematic, the resulting solutions
are not necessarily rational. Consequently, it is essential to
explicitly consider the continuous domain when addressing
questions of computational complexity.

To quantify the computational complexity on a contin-
uous domain, the number of iterations to achieve a pre-
scribed approximation accuracy is measured. In this way, the
complexity of operations on real numbers can be system-
atically assessed. Classically, problems of low complexity
are those for which computation time grows at most polyno-
mially with respect to the relevant parameters. Polynomial-
time problems are generally considered tractable in practice,
whereas super-polynomial problems are typically regarded
as infeasible. Thus, computational complexity is central in
evaluating the practical feasibility of implementing a given
problem. Next, we present a formal framework to study the
complexity of simulating continuous-time LIF neurons on
digital hardware (Ko 1991; Weihrauch 2000).
Definition 3. A real number x ∈ R is polynomial-time com-
putable if there exists a Turing machine M : N → Q such
that M converges effectively to x, i.e., for all n ∈ N

|x−M(n)| ≤ 2−n, (3)
and a polynomial p ∈ N[X] such that (3) holds after at most
p(n) computation steps of M .

To formalize the notion of complexity for functions, we
employ oracle Turing machines. These are standard Turing
machines Mγ equipped with an additional oracle γ that can
return the function value γ(·) in a single computational step.
This framework enables a clear separation between the com-
putation of a function’s input and its value.
Definition 4. A function f : [a, b] → R is computable if
there exists an Oracle Turing machine Mγ : N → Q such
that for any oracle γ : N → [a, b] that effectively converges
to x ∈ [a, b] we have for all n ∈ N

|f(x)−Mγ(n)| ≤ 2−n. (4)
If there additionally exists a polynomial p ∈ N[X] such that
(4) holds after at most p(n) computation steps of Mγ for all
n ∈ N, f is polynomial-time computable.
Remark 5. A function f : [a, b] → Rd is (polynomial-time)
computable if its components are (polynomial-time) com-
putable. We write Comp([a, b];Rd) and Pol([a, b];Rd) for
the set of (polynomial-time) computable functions on [a, b].

Equipped with the notion of polynomial-time computable
functions, we can discuss the concept of a complexity
blowup. This phenomenon occurs when input signals of
low complexity give rise to output signals of high complex-
ity under a given operation. Here, low complexity refers to
polynomial-time computability. Thus, if complexity blowup
occurs, the resulting output is no longer polynomial-time
computable, rendering the practical feasibility of such com-
putations questionable. It is important to note that compu-
tation time is measured relative to the desired output accu-
racy. Hence, even in the presence of a complexity blowup,
practical computation may remain feasible if low-accuracy
approximations of the output are sufficient.
Definition 6. An operator T : F := {f | f : [a, b] →
Rd} → F , preserves computability or polynomial-time
computability if T

(
Comp([a, b];Rd)

)
⊆ Comp([a, b];Rd)

or T
(
Pol([a, b];Rd)

)
⊆ Pol([a, b];Rd), respectively. A

computability preserving operator T exhibits complexity
blowup if T

(
Pol([a, b];Rd)

)
⊈ Pol([a, b];Rd).

3 Results
Approximation rates in RLIF-SNN model It is well es-
tablished that discrete-time LIF networks realize Boolean
functions when the coding layers are disregarded. Also con-
sidering conding layers, the model becomes equivalent to
ANNs with Heaviside activation for T = 1, directly inher-
iting universal approximation properties, e.g., with respect
to Boolean and continuous functions (Khalife, Cheng, and
Basu 2024). However, a more detailed analysis of the com-
putational structure of SNNs yields deeper insights. Neglect-
ing explicit recurrent connections in the RLIF-SNN model,
i.e., by setting V ℓ = 0, this model class realizes piecewise
constant functions defined over polyhedral regions. More-
over, approximation rates beyond universal approximation
results have been established for Lipschitz-continuous (and
more generally, uniformly continuous) functions, quantify-
ing the network size required to achieve a certain approxi-
mation accuracy, albeit still in the shallow regime (L = 2)
with low latency (T = 1) (Nguyen et al. 2025).

While understanding the effects of depth and higher la-
tency remains an important direction, we extend previous
analysis by incorporating explicit recurrent connections. Al-
though our findings do not address the role of depth, we
demonstrate that, under certain conditions, the inclusion of
recurrent connections can reduce the number of neurons re-
quired to achieve a given approximation accuracy.
Theorem 7. Let f ∈ C1(C,Rm) be defined on an open hy-
percube C ⊂ Rn such that f has bounded total derivative
df , i.e., M := supx∈C ∥df(x)∥2 < ∞. For all ε > 0,
there exists a RLIF-SNN Φ with L = 2 and T = (K(µ) +
1)Tr(ν) + 2 such that

sup
x∈C

∥R(Φ)(x)− f(x)∥2 ≤ ε,

where

Tr(ν) := max

{
2,

⌈√
n
diam∞(C)

K(µ)

M

ν

⌉}
,

K(µ) := min
ξ,θ>0
ξθ=µ

{⌈√
n

diam∞(C)

2min(ω†(ξ), θ)

⌉}
,

with ν + µ = ε, ω† denoting the generalized inverse of a
modulus of uniform continuity of df with respect to ∥ · ∥2,
and diam∞(C) := supx,y∈C ∥x−y∥∞. Moreover, the width
parameter n = (n1, n2) are given by

n1 = n+ 1,

n2 = K(µ)n(n+ 1) + 3.

Remark 8. One can generalize the statement to functions
defined on compact sets Ω ⊂ Rn under some technical con-
ditions (in particular, if Ω can be embedded into a hypercube
while maintaining the prescribed regularity conditions on a
δ(ε)-tube around Ω), without impacting the order of the ap-
proximation rate; see Appendix A.

Compared to the model without explicit recurrent connec-
tions analyzed in Nguyen et al. (2025), the obtained approx-
imation rates are only partially improved. For certain func-
tions, the rates are in fact worse, suggesting that the inclu-
sion of recurrent connections does not always provide a clear

advantage—although this observation may reflect subopti-
mal aspects of our constructive proof; see Appendix A for
details. Conversely, the reduction in network size comes at
the cost of increased latency, and consequently, a potentially
higher number of spikes. Thus, it remains unclear whether
incorporating recurrent edges enhances performance or en-
ables compact energy-efficient networks, warranting further
investigation, in particular, on dynamic, event-driven tasks.

Complexity Blowup of LIF neuron We consider the dy-
namics of a LIF neuron governed by the system of ordinary
differential equations (ODEs) described in (1). Our objective
is to understand the complexity of emulating these dynamics
on digital hardware by examining the potential occurrence
of complexity blowup in this context. We say that an ODE
exhibits complexity blowup if its solution operator does.

Note that (1) constitutes a system of first-order linear
ODEs with constant coefficients, driven by the input sig-
nal Ie(t) and producing the output signal (u(t), I(t)). Recall
that these dynamics describe a LIF neuron’s behavior only
up to the point where the potential reaches the threshold.
Therefore, it is necessary to simulate the dynamics/compute
the threshold crossing to obtain the first spike time of a LIF
neuron. The actual firing and reset mechanisms, which affect
subsequent dynamics, are not even considered in this simpli-
fied formulation. Nevertheless, it turns out that complexity
blowup can already occur in this reduced setting.
Theorem 9. If P ̸= NP , the LIF model in (1) on [0, 1]
with polynomial-time computable parameters, i.e., coeffi-
cients and initial conditions, exhibits complexity blowup.
Remark 10. The condition P ̸= NP can, in fact, be weak-
ened to #P ̸= FP (noting that equality would also imply
P = NP). The connection to the complexity classes arises
since we show that there exists an input I∗e ∈ Pol([0, 1];R2)
such that T (I∗e) is #P -complete, where T : Ie 7→ (u, I)
denotes the solution operator of (1). Thus, if the widely ac-
cepted conjecture #P ̸= FP holds, it follows that T (I∗e) ̸=
Pol([0, 1];R2). However, the existence proof of I∗e is non-
constructive, i.e., we can neither meaningfully characterize
the properties of I∗e nor identify the subset of inputs with
analogous effects on the solution operator.

This result demonstrates that simulating the dynamics of
a LIF neuron on digital hardware can be computationally
expensive (or even practically infeasible) when accurate de-
termination of spike times is required. In practice, however,
the admissible input signals to networks of LIF neurons are
typically more constrained. Specifically, in the formulation
given in (2), the input signals are simplified to a decay term
and weighted Dirac delta distributions. While this represents
an unrealistic theoretical abstraction of the variety of neu-
rophysiological inputs in biological neurons, it nonetheless
preserves essential features of their dynamics. Assessing the
extent to which this theoretical model retains the advanta-
geous properties of biological systems is therefore an impor-
tant question, but beyond the scope of this work. Within our
complexity framework, we conclude that—in this restricted
setting—the input signals themselves may already possess
high complexity, which renders the question of output com-
plexity less meaningful, or, conversely, by constraining to a

subset of polynomial-time computable input signals, the op-
erator may in fact be polynomial-time computable on this
subset, implying that no complexity blowup occurs.

4 Discussion
Related work Understanding the representational power
of ANNs has been a central concern in deep learning,
which showcased their (universal) capabilities. Similarly, for
SNNs, comparable expressivity results have been introduced
(Maass 1994, 1997; Zhang and Zhou 2022; Singh, Fono, and
Kutyniok 2023; Neuman, Dold, and Petersen 2024). Cru-
cially, they focused on continuous-time models of SNNs,
mostly based on the spike response model (Gerstner and
van Hemmen 1992), combined with specific coding schemes
such as time-to-first-spike coding (Singh, Fono, and Ku-
tyniok 2023; Neuman, Dold, and Petersen 2024) or instanta-
neous rate coding (Zhang and Zhou 2022), in contrast to our
discrete-time perspective, which builds upon the previously
discussed work in Nguyen et al. (2025).

Regarding computational complexity of mathematical op-
erations, Friedman (1984) showed that integration exhibits
complexity blowup under general conditions. Boche and
Pohl (2021) used this result to study complexity blowup in
first-order linear ODEs, which we extend in this work to
(higher-order) systems of linear ODEs.

Conclusion A deeper understanding of the role of recur-
rent connections in RLIF-SNNs requires further investiga-
tion, e.g., through analyses of input partitioning and the im-
pact of depth. From a theoretical perspective, the advantages
of recurrent edges for static data currently appear limited,
and their potential power observed in a biological context
could not yet be (theoretically) realized in the RLIF-SNN
framework. Nonetheless, as with SNNs more broadly, their
true potential may emerge in dynamic, event-driven tasks,
which still lack rigorous theoretical treatment.

A complementary perspective is provided by the observed
complexity blowup in LIF neurons implemented on digital
hardware. This result highlights the need for caution when
attempting to replicate the computational advantages of bio-
logical neural networks on digital platforms. Structural em-
ulation alone may not capture the essential properties of the
biological context. Consequently, despite the proven repre-
sentational power of discrete-time SNNs, their full potential
may only be realized through hardware platforms that more
closely align with their continuous-time nature.

The difficulty to retain potential features—as exemplar-
ily demonstrated via recurrent connections—and the intri-
cacies arising through simulations—as highlighted by com-
plexity blowup—when converting the continuous-time SNN
model into a discrete-time model amenable to digital hard-
ware, motivate the following hypothesis: we need diverse,
multi-dimensional models of neurons beyond the pure fo-
cus on spikes or/and the implementations of continuous-time
SNNs on (analog) neuromorphic hardware may be a crucial
step in capturing the advantages of biological networks. This
claim, similarly expressed, e.g., in Shen et al. (2024), asks
for substantiation in future work.

Acknowledgements
This work of H. Boche was supported in part by the
Federal Ministry for Research, Technology and Space
of Germany (BMFTR) in the programme of ”Sou-
verän.Digital.Vernetzt”, joint project 6G-life, project iden-
tification number 16KISK002. H. Boche was also partially
supported by the project “Next Generation AI Computing
(gAIn)”, funded by the Bavarian Ministry of Science and
the Arts and the Saxon Ministry for Science, Culture, and
Tourism.

G. Kutyniok was supported in part by the Munich Cen-
ter for Machine Learning (BMFTR) as well as the Ger-
man Research Foundation under Grants DFG-SPP-2298,
KU 1446/31-1 and KU 1446/32-1. She also acknowledges
support by the Konrad Zuse School of Excellence in Reli-
able AI (DAAD) and the project ”Next Generation AI Com-
puting (gAIn)”, which is funded by the Bavarian Ministry
of Science and the Arts and the Saxon Ministry for Science,
Culture and Tourism.

References
Arora, S.; and Barak, B. 2009. Computational Complexity:
A Modern Approach. USA: Cambridge University Press, 1st
edition. ISBN 0521424267.
Boche, H.; and Pohl, V. 2021. Complexity Blowup in Sim-
ulating Analog Linear Time-Invariant Systems on Digital
Computers. IEEE Transactions on Signal Processing, 69:
5005–5020.
Christensen, D. V.; Dittmann, R.; Linares-Barranco, B.;
Sebastian, A.; Le Gallo, M.; Redaelli, A.; Slesazeck, S.;
Mikolajick, T.; Spiga, S.; Menzel, S.; Valov, I.; Milano,
G.; Ricciardi, C.; Liang, S.-J.; Miao, F.; Lanza, M.; Quill,
T. J.; Keene, S. T.; Salleo, A.; Grollier, J.; Markovic, D.;
Mizrahi, A.; Yao, P.; Yang, J. J.; Indiveri, G.; Strachan,
J. P.; Datta, S.; Vianello, E.; Valentian, A.; Feldmann, J.; Li,
X.; Pernice, W. H.; Bhaskaran, H.; Furber, S.; Neftci, E.;
Scherr, F.; Maass, W.; Ramaswamy, S.; Tapson, J.; Panda,
P.; Kim, Y.; Tanaka, G.; Thorpe, S.; Bartolozzi, C.; Cleland,
T. A.; Posch, C.; Liu, S.-C.; Panuccio, G.; Mahmud, M.;
Mazumder, A. N.; Hosseini, M.; Mohsenin, T.; Donati, E.;
Tolu, S.; Galeazzi, R.; Christensen, M. E.; Holm, S.; Ielmini,
D.; and Pryds, N. 2022. 2022 Roadmap on Neuromorphic
Computing and Engineering. Neuromorph. Comput. Eng.,
2(2). 022501.
Dampfhoffer, M.; Mesquida, T.; Valentian, A.; and Anghel,
L. 2024. Backpropagation-Based Learning Techniques for
Deep Spiking Neural Networks: A Survey. IEEE Trans-
actions on Neural Networks and Learning Systems, 35(9):
11906–11921.
Eshraghian, J. K.; Ward, M.; Neftci, E. O.; Wang, X.; Lenz,
G.; Dwivedi, G.; Bennamoun, M.; Jeong, D. S.; and Lu,
W. D. 2023. Training Spiking Neural Networks Using
Lessons From Deep Learning. Proceedings of the IEEE,
111(9): 1016–1054.
Friedman, H. 1984. The computational complexity of max-
imization and integration. Advances in Mathematics, 53(1):
80–98.

Gerstner, W.; Kistler, W. M.; Naud, R.; and Paninski, L.
2014. Neuronal Dynamics: From Single Neurons to Net-
works and Models of Cognition. USA: Cambridge Univer-
sity Press.
Gerstner, W.; and van Hemmen, J. L. 1992. Associative
memory in a network of ‘spiking’ neurons. Network: Com-
putation in Neural Systems, 3(2): 139–164.
Gonzalez, H. A.; Huang, J.; Kelber, F.; Nazeer, K. K.;
Langer, T. H.; Liu, C.; Lohrmann, M. A.; Rostami, A.;
Schöne, M.; Vogginger, B.; Wunderlich, T.; Yan, Y.; Akl,
M.; and Mayr, C. 2023. SpiNNaker2: A Large-Scale Neu-
romorphic System for Event-Based and Asynchronous Ma-
chine Learning. In Machine Learning with New Compute
Paradigms.
Khalife, S.; Cheng, H.; and Basu, A. 2024. Neural networks
with linear threshold activations: structure and algorithms.
Mathematical Programming, 206(1): 333–356.
Ko, K.-I. 1991. Complexity theory of real functions. USA:
Birkhauser Boston Inc. ISBN 0817635866.
Maass, W. 1994. On the Computational Complexity of Net-
works of Spiking Neurons. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), volume 7.
Maass, W. 1997. Networks of spiking neurons: The third
generation of neural network models. Neural Networks,
10(9): 1659–1671.
Mehonic, A.; Ielmini, D.; Roy, K.; Mutlu, O.; Kvatinsky,
S.; Serrano-Gotarredona, T.; Linares-Barranco, B.; Spiga,
S.; Savel’ev, S.; Balanov, A. G.; Chawla, N.; Desoli, G.;
Malavena, G.; Monzio Compagnoni, C.; Wang, Z.; Yang,
J. J.; Sarwat, S. G.; Sebastian, A.; Mikolajick, T.; Sle-
sazeck, S.; Noheda, B.; Dieny, B.; Hou, T.-H. A.; Varri, A.;
Brückerhoff-Plückelmann, F.; Pernice, W.; Zhang, X.; Pa-
zos, S.; Lanza, M.; Wiefels, S.; Dittmann, R.; Ng, W. H.;
Buckwell, M.; Cox, H. R. J.; Mannion, D. J.; Kenyon,
A. J.; Lu, Y.; Yang, Y.; Querlioz, D.; Hutin, L.; Vianello, E.;
Chowdhury, S. S.; Mannocci, P.; Cai, Y.; Sun, Z.; Pedretti,
G.; Strachan, J. P.; Strukov, D.; Le Gallo, M.; Ambrogio,
S.; Valov, I.; and Waser, R. 2024. Roadmap to neuromor-
phic computing with emerging technologies. APL Materi-
als, 12(10): 109201.
Neuman, A. M.; Dold, D.; and Petersen, P. C. 2024. Stable
Learning Using Spiking Neural Networks Equipped With
Affine Encoders and Decoders. arXiv:2404.04549.
Nguyen, D. A.; Araya, E.; Fono, A.; and Kutyniok, G. 2025.
Time to Spike? Understanding the Representational Power
of Spiking Neural Networks in Discrete Time. In Forty-
second International Conference on Machine Learning.
Orchard, G.; Frady, E. P.; Rubin, D. B. D.; Sanborn, S.;
Shrestha, S. B.; Sommer, F. T.; and Davies, M. 2021. Ef-
ficient Neuromorphic Signal Processing with Loihi 2. In
2021 IEEE Workshop on Signal Processing Systems (SiPS),
254–259.
Pandey, M.; Fernandez, M.; Gentile, F.; Isayev, O.; Tropsha,
A.; Stern, A. C.; and Cherkasov, A. 2022. The transforma-
tional role of GPU computing and deep learning in drug dis-
covery. Nat. Mach. Intell., 4(3): 211–221.

Pour-El, M. B.; and Richards, J. I. 2017. Computability in
Analysis and Physics. Perspectives in Logic. Cambridge
University Press.
Rathi, N.; Chakraborty, I.; Kosta, A.; Sengupta, A.; Ankit,
A.; Panda, P.; and Roy, K. 2023. Exploring Neuromorphic
Computing Based on Spiking Neural Networks: Algorithms
to Hardware. ACM Comput. Surv., 55(12).
Shen, G.; Zhao, D.; Li, T.; Li, J.; and Zeng, Y. 2024. Are
Conventional SNNs Really Efficient? A Perspective from
Network Quantization. In 2024 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 27528–
27537.
Silvano, C.; Ielmini, D.; Ferrandi, F.; Fiorin, L.; Curzel, S.;
Benini, L.; Conti, F.; Garofalo, A.; Zambelli, C.; Calore, E.;
Schifano, S. F.; Palesi, M.; Ascia, G.; Patti, D.; Perri, S.; Pe-
tra, N.; Caro, D. D.; Lavagno, L.; Urso, T.; Cardellini, V.;
Cardarilli, G. C.; and Birke, R. 2023. A Survey on Deep
Learning Hardware Accelerators for Heterogeneous HPC
Platforms. arXiv:2306.15552.
Singh, M.; Fono, A.; and Kutyniok, G. 2023. Expressiv-
ity of Spiking Neural Networks through the Spike Response
Model. In UniReps: the First Workshop on Unifying Repre-
sentations in Neural Models.
Thompson, N. C.; Greenewald, K.; Lee, K.; and Manso,
G. F. 2021. Deep Learning’s Diminishing Returns: The Cost
of Improvement is Becoming Unsustainable. IEEE Spec-
trum, 58(10): 50–55.
Turing, A. M. 1936. On Computable Numbers, with an Ap-
plication to the Entscheidungs-problem. Proc. Lond. Math.
Soc., s2-42(1): 230–265.
Vidal-Saez, M. S.; Vilarroya, O.; and Garcia-Ojalvo, J. 2024.
Biological computation through recurrence. Biochemical
and Biophysical Research Communications, 728: 150301.
Weihrauch, K. 2000. Computable Analysis: An Introduction.
Texts in Theoretical Computer Science. An EATCS Series.
Springer Berlin Heidelberg. ISBN 9783540668176.
Zhang, S.-Q.; and Zhou, Z.-H. 2022. Theoretically Provable
Spiking Neural Networks. In Advances in Neural Informa-
tion Processing Systems (NeurIPS).

A Proofs
Proof of Theorem 7
Outline The approximation rates of RLIF-SNNs with-
out explicit recurrent connections for Lipschitz-continuous
functions in Nguyen et al. (2025) are derived by a construc-
tive 2-step approach. First, the authors show that continuous
functions can be arbitrarily well-approximated by step func-
tions constant on hypercubes. Second, a 2-layer RLIF-SNN
with V ℓ = 0 is constructed that in the first layer partitions
the input space into hypercubes and the second layer assigns
values to each hypercube.

By introducing explicit recurrent connections, we try to
optimize the construction for continuously differentiable
functions by exploiting the fact that RLIF-SNNs can effi-
ciently approximate linear segments. In particular, we em-
ploy piecewise linear functions to approximate continuously

differentiable functions and then construct an RLIF-SNN
approximating the piecewise linear function.

We prove the following more general result that includes
Theorem 7 as a special case.
Theorem 11. Let f ∈ C(U,Rm), U ⊂ Rn, be such that
f |Uo∈ C1(Uo,Rm) has bounded total derivative df , i.e.,
M := supx∈Uo ∥df |Uo (x)∥2 < ∞. Further, let Ω ⊂ U
be an arbitrary non-empty subset and C ⊂ Rn a half-open
cube such that Ω ⊂ C and (Ω + Bρ,2(0)) ∩ Co ⊂ Uo for a
ρ > 0.

For all ε > 0, there exists a RLIF-SNN Φ with L = 2 and
T = (K(µ) + 1)Tr(ν) + 2 such that

sup
x∈Ω

∥R(Φ)(x)− f(x)∥2 ≤ ε,

where

Tr(ν) := max

{
2,

⌈√
n
diam∞(C)

K(µ)

M

ν

⌉}
,

K := K(µ) := min
ξ,θ>0
ξθ=µ

{⌈√
n

diam∞(C)

2min(ω†(ξ), θ, ρ
2)

⌉}
,

with ν + µ = ε, ω† denoting the generalized inverse of a
modulus of uniform continuity of df |Uo with respect to ∥·∥2,
and diam∞(C) := supx,y∈C ∥x−y∥∞. Moreover, the width
parameter n = (n1, n2) are given by

n1 = n+ 1,

n2 = K(µ)n(n+ 1) + 3.

Remark 12. Let f : C → Rm be defined on a half-open
cube C ⊂ Rn and Ω = C. We can then choose ρ arbitrarily
large, i.e., we can drop ρ

2 from the definition of K, to obtain

K(µ) = min
ξ,θ>0
ξθ=µ

{⌈√
n

diam∞(C)

2min(ω†(ξ), θ)

⌉}
.

Thus, we recovered the statement in Theorem 7.
Remark 13. The obtained approximation rates are not gen-
erally improved in comparison with the ones presented in
Nguyen et al. (2025) for RLIF-SNNs without explicit re-
current connections. A concrete counter example is a si-
nus wave with high frequency and small amplitude: f(x) =
sin(nx)

n with n ∈ N on C = U = [0, 3ϕ) and Ω = [0, 2ϕ].
Hence, although for certain functions the incorporation of
recurrent connections may indeed be beneficial, we could
not show a general improvement with our construction.

Definition and Notation We define the modulus of uni-
form continuity ω : [0,∞] → [0,∞] for a uniformly contin-
uous function f : M → N on metric spaces M,N such that
limx→0 ω(x) = 0 and

dN (f(x), f(y)) ≤ ω(dM (x, y)) ∀x, y ∈ M.

Its generalized inverse of a modulus of uniform continuity
ω† is then given by

ω†(s) = inf{t ∈ [0,∞] | ω(t) > s.

We also write ∥f∥∞,p := supx∈U ∥f(x)∥p for a function
f : U → Rm.

Auxiliary Results We first observe that continuous differ-
entiable functions with a uniform continuous derivative can
be efficiently approximated by piecewise linear functions.

Lemma 14. Let K be defined as in Theorem 11. Let f ∈
C(U,Rm), U ⊂ Rn, be a continuous function such that
f |Uo∈ C1(Uo,Rm) is continuously differentiable with uni-
formly continuous total derivative df |Uo . Further, let Ω ⊂ U
be an arbitrary non-empty subset and C ⊂ Rn a half-open
cube such that Ω ⊂ C and (Ω + Bρ,2(0)) ∩ Co ⊂ Uo for a
ρ > 0.

For every µ > 0, we can decompose C into Kn half-
open subcubes (C(j))j∈[Kn] such that affine linear functions
g(j) : C(j) → Rm exist with ∥d(g(j))∥∞,2 ≤ ∥df |Uo∥∞,2

and ∥(f − g)|Ω∥∞,2 < µ, where g =
∑m

i=1 g
(j)χC(j) .

Proof. The result follows from considering g(j) : C(j) →
Rm defined as

g(j) =

{
x 7→ f(c(j)) + dfc(j)(x− c(j)), C(j) ∩ Ω ̸= ∅
x 7→ 0, C(j) ∩ Ω = ∅ ,

where c(j) is the center of C(j).

Next, we provide an alternative characterization of RLIF-
SNN dynamics that avoids (implicit) recurrence.

Definition 15. Let t ∈ [T], l ∈ [L] and spike train families
σ = (σ[l′])l′∈{0,...,l}, σ′ = (σ′[l′])l′∈{0,...,l} be given, such
that ∀l∈{0,...,l−1}σ

[l′] ∈ {0, 1}nl′×t and σ[l] ∈ {0, 1}nl×t

as well as ∀l′∈∈{0,...,l}σ
′[l′] ∈ {0, 1}nl′×t, i.e. σ, σ′ have to

be chosen such that the terms in the following definitions are
well-defined. We define

I [l](t;σ) := (α[l])ti[l](0)

+

t∑
k=1

(α[l])t−k
(
W [l]σ[l−1](k) + V [l]σ[l](k − 1)

)
,

p[l](t;σ) := (β[l])tu[l](0) +

t∑
k=1

(β[l])t−k
(
I [l](k;σ) + b[l]

)
− ϑ

t−1∑
k=1

(β[l])t−kσ[l](k),

S[l](t;σ) := H(p[l](t;σ)− ϑ1nl
),

u[l](t;σ′) := (β[l])tu[l](0)

+

t∑
k=1

(β[l])t−k
(
I [l](k;σ′) + b[l] − ϑσ′[l](k)

)
.

One verifies by direct computation that the non-recursive
formulas are equivalent to the recursive formulation intro-
duced in Definition 1.

Lemma 16. The non-recursive formulas from Definition
15 are equivalent to the recursive definitions for l ∈
[L], t ∈ [T] assuming previous spikes are equal, i.e.,
∀l′∈{0,...,l−1}σ

[l′] = S[l′], ∀t′∈[t−1]σ
[l](t′) = S[l](t′), and

∀l′∈{0,...,l}σ
′[l′] = S[l′].

Proof of Theorem 11 Let ε, µ, ν > 0 with ε = µ + ν.
By Lemma 14, we can obtain a decomposition of C into
Kn half-open subcubes (C(j))i=1..Kn and linear functions
g(j) : C(j) → Rm, such that ∥d(g(j))∥∞,2 ≤ ∥df∥∞,2 and
∥f − g∥∞,2 < µ for g =

∑m
i=1 g

(j)χC(j) . Next, we will
define an RLIF-SNN Φ such that ∥R(Φ)|C − g∥∞,2 < eta.
First, we fix I [l](0) = 0, α = 0, and β = 1 for all layers.

In our construction, we use the following five phases:

T1 = {1, . . . ,KTr}, T2 = {KTr}, T3 = {KTr + 1},
T4 = {KTr + 2}, T5 = {KTr + 3, . . . , T}.

Note that we will occasionally refer to Ti as numbers for
ease of notation. The high-level idea is that we accumulate
the potential during T1, determine the subregion C(j) of the
input domain during T2, . . . , T4, and compute the position of
the input inside of C(j) during T5. The first layer will only
be active during the first phase T1. It is composed of n + 1
neurons, where the first n neurons convert the input vector
based on its position in C into spike trains. The last neu-
ron, the ‘alarm neuron’, shuts down the first layer after T1

ends. The second layer only accumulates potential without
spikes during T1 \ T2. Then during T2 ∪ T3 ∪ T4, the in-
put x is located in the region C(j) and subsequently during
T4 ∪ T5 the location inside C(j) is encoded through spikes.
For each region C(j), we have n + 1 neurons in the second
layer. Hereby, each of the first n neurons encodes a compo-
nent of the linear part of g(j). They are also used to inform
the n + 1-th neuron of the group if the input x is at least
as big as the base point of C(j). Finally, the n + 1-th neu-
ron deactivates all other neurons of regions with a smaller
base point and encodes the constant part of g(j). The last 3
neurons act as ‘clock neurons’, enabling and disabling the
other neurons in the layer. Hence, explicit recurrent connec-
tions are necessary for our clock and alarm neurons as well
as ‘control’ neurons.

Now we present the construction in more detail, which
leads to the described behaviour. Thereby, to obtain the nor-
malized location of a value in C =

∏n
i=1[xi, yi)i=1 we will

often

oi(z) =
zi − xC

i

yCi − xC
i

, i ∈ N.

First layer: We define the i-th neuron, i = 1, . . . , n, in
the first layer by

w =
1

yCi − xC
i

ei, b = − xC
i

yCi − xC
i

, v = −ea1
, u0 = 0. (i)

The ‘alarm neuron’ of the first layer, with index a1 = +1, is
defined by:

w = 0, b =
1

T2
, v = ea1 , u0 = 0. (a1)

Second layer: For each of the Kn subcubes in C
we define n + 1 neurons in the following way: Let
C(j) =

∏
[xC(j)

, yC
(j)

) be a subcube with position q(j) ∈
{0, . . . ,Kn − 1} in C, i.e.

q
(j)
i = Koi(x

C(j)

) ∀i ∈ [n].

We will write ιj(i) = j(n+1)+i to index the first n neurons
in the layer and ωj = (j+1)(n+1) to index the last neuron
of each group.

The i-th neuron of the first n neurons (of the j-th group),
with index ιj(i) in the second layer, has the parameters

w = ei, b = 0, v = T (ec1 − 2ec2 + r(q(j))),

u0 = −q
(j)
i Tr − T + 1, (ιj(i))

where the ‘switch’ is

r(q) = eωj(q)
−

∑
q′∈{0,...,Kn−1}

q<q′

eωj(q′)

with the index j(q) of the subcube at position q. We further
define the applied variant

rS(q; t) = ⟨r(q), S[2](t)⟩ = S[2]
ωj(q)

(t)−
∑

q′∈{0,...,Kn−1}
q<q′

S[2]
ωj(q′)

(t).

The final neuron of the group, with index ωj in its layer, has
the parameters

w = 0, b = 0, v =
1

n

n∑
i=1

eιj(i) − 2ea2 + r(q(j)),

u0 = 0. (ωj)

We also define the two ‘clock neurons’, with index c1 =
(n+ 1)Kn + 1 and c2 = (n+ 1)Kn + 2 with parameters:

w = 0, b = bci , v = −(T − 1)eci , u0 = 0, (c1, c2)

where bc1 = 1
T2−1 and bc2 = 1

T2
. We further define the

‘alarm neuron’, with index a2 = (j + 1)Kn + 3, by

w = 0, b =
1

T4
, v = ea2

, u0 = 0. (a2)

Output decoder: We set the parameters of the output de-
coder to at = 0, for t ≤ T3 and at = 1 otherwise. We
further fix b[L+1] = 0 and

W
[L+1]
k,ιj(i)

= d(g(j))k((y
C(j)

i − xC(j)

i)
1

Tr
ei)

for k ∈ [m], j ∈ [Kn], and i ∈ [n]. Note that d(g(j)), as total
derivative, represents the linear part of g(j), i.e. g(j)(x) =

d(g(j))(x − xC(j)

) + g(xC(j)

) for all x ∈ C(j). We further
set

W
[L+1]
k,ωj

= gk(x
C(j)

)

for k ∈ [m] and j ∈ [Kn]. We finally define W
[L+1]
k,ci

= 0

for i ∈ {1, 2}.
We will now show that this construction approximates

g well enough, i.e., for any x = S[0](t) ∈ C we have
∥R(Φ)(x) − g(x)∥∞,2 ≤ ν. Note that with the chosen pa-
rameters, the dynamics simplify to

I [l](t) = W [l]S[l−1](t) + V [l]S[l](t− 1)

p[l](t) = u[l](t− 1) + I [l](t) + b[l]

S[l](t) = H(p[l](t)− 1nl
)

u[l](t) = p[l](t)− S[l](t)

and via the non-recursive formula in Lemma 16 we get

p[l](t) = u[l](0) +

t∑
k=1

(
I [l](t) + b[l]

)
−

t−1∑
k=1

S[l](k).

Characterizing the first layer:

• ‘alarm neuron’ a1: One verifies via p
[1]
a1 (t) that S[1]

a1 (t) =
1 ⇐⇒ t ≥ T2

p[1]a1
(t) =

t

T2
+

t∑
k=1

s[1]a1
(k − 1)−

t−1∑
k=1

s[1]a1
(k) =

t

T2

• i-th neuron, i ∈ [n]: We obtain

⌊T2oi(x)⌋ =

⌊
u
[1]
i (0) +

T2∑
t=1

(I
[1]
i (t) + b

[1]
i)

⌋
=

T2∑
t=1

S
[1]
i (t)

and S
[1]
i (t) = 0 for t > T2.

Characterizing the second layer:

• ‘clock neurons’: We have S[2]
c1 (t) = 0 for all t ∈ T\{T2−

1} and S
[2]
c1 (T2 − 1) = 1. Similarly we get S[2]

c1 (t) = 0

for all t ∈ T \ {T2} and S
[2]
c2 (T2) = 1

• ‘alarm neuron’: As for the alarm neuron in the first layer,
we obtain S

[1]
a2 (t) = 1 ⇐⇒ t ≥ T4.

The behavior of the remaining neurons in the second layer
will be tracked throughout the phases.

• Phase 1 (T1): One verifies that S
[2]
ιj(i)

(t) = 0 and

S
[2]
ωj (t) = 0 for all for all i ∈ [n], j ∈ [Kn] and

t ∈ {0, . . . , T2 − 1} by induction over t.

• Phase 2 (T2): As in the first phase, we get S[2]
ωj (T2) = 0.

Similarly, one checks that S[2]
ιj(i)

(T2) = 1 if and only if

xC(j)

i ≤ xi.

• Phase 3 (T3): We have S
[2]
ωj (T3) = 1 if and only if

xC(j)

i ≤ xi for all i ∈ [n]. Moreover, S[2]
ιj(i)

(T3) = 0

for all i ∈ [n] holds as well.

• Phase 4 (T4): Similarly, S[2]
ωj (T4) = 1 if and only if x ∈

C(j) and S
[2]
ιj(i)

(T4) = 0 for all i ∈ [n].

• Phase 5 (T5): On the one hand, S[2]
ωj (t) = 0 for all t >

T4, and, conversely, the neuron ιj(i) captures the position
of x in C(j) regarding the i-th dimension if x ∈ C(j)

and stays inactive otherwise, i.e., for x /∈ C(j) we have
S
[2]
ιj(i)

(t) = 0 for all t > T4 whereas for j such that

x ∈ C(j) we obtain
T∑

t=T4+1

S[2]
ιj(i)

(t) =
⌊
u[2]
ιj(i)

(T4) + I [2]ιj(i)
(T4 + 1) + b[2]ιj(i)

⌋
= −KTroi(x

C(j)

) + ⌊KTroi(x)⌋ .

Overall, we have shown that

• the group of neurons ιj(i) and ωj in the second layer does
not fire, i.e., does not contribute to the output of the net-
work, provided that x /∈ C(j),

• for j such that x ∈ C(j) we get

W
[L+1]
k,ωj

T∑
t=T4

S[2]
ωj
(t) = gk(x

C(j)

),

W
[L+1]
k,ιj(i)

T∑
t=T4

S[2]
ιj(i)

(t) =
(
−KTroi(x

C(j)

) + ⌊KTroi(x)⌋
)
·

(g(j))k(y
C(j)

i − xC(j)

i)
1

Tr
ei.

for all k ∈ [m] by choice of the decoder parameter.
Moreover, again by choice of the decoder parameter, the
neurons c1, c2, a2 do not contribute to the output as well,
so that

R(Φ)k(x) =

T∑
t=T4

(W [L+1]S[2](t))k

= W
[L+1]
k,ωj

T∑
t=T4

S[2]
ωj
(t) +W

[L+1]
k,ιj(i)

T∑
t=T4

S[2]
ιj(i)

(t)

= gk(x
C(j)

) +
∑
i∈[n]

(
d(g(j))k((y

C(j)

i − xC(j)

i)
1

Tr
ei)

)
·

(
−KTroi(x

C(j)

) + ⌊KTroi(x)⌋
)

= gk(x
′)

for

x′ = xC(j)

+
∑
i∈[n]

yC
(j)

i − xC(j)

i

Tr
(⌊KTroi(x)⌋−KTroi(x

C(j)

))ei.

Now, by assumption, we have

Tr =

√
n(yCi − xC

i)

K2ν
∥df∥∞,2 ≥

√
n(yC

(j)

i − xC(j)

i)

2ν
∥d(g(j))∥∞,2

for any i ∈ [n] and hence

ξi :=
1

Tr
(⌊KTroi(x)⌋ −KTroi(x)) ≤

2ν∥d(g(j))∥−1
∞,2√

n(yC
(j)

i − xC(j)

i)
.

Thus, we compute

∥x′ − x∥22 =
∑
i∈[n]

(x′ − xi)
2
=
∑
i∈[n]

ξ2i (y
C(j)

i − xC(j)

i)2

≤ ν2

∥d(g(j))∥2∞,2

and conclude

∥g(x)−R(Φ)k(x)∥2 = ∥g(x)− g(x′)∥2
= ∥d(g(j))(x− x′)∥2
≤ ∥d(g(j))∥∞,2∥x− x′∥2 ≤ ν.

Proof of Theorem 9
Outline We first introduce necessary notation, followed
by some auxiliary results. Subsequently, we present our
main theorem and its proof about complexity blowup in sys-
tems of linear ODEs, and finally apply it to derive our find-
ings about complexity blowup in LIF neurons.

Definition and Notation To complement the definitions
of computable objects in the main section, we employ
the following notation. We write Rc, Cc, and Cm×n

c for
the set of computable real numbers, computable com-
plex numbers, and computable complex matrices, respec-
tively. Analogously, we write Rp, Cp, and Cm×n

p for the
set of polynomial-time computable real numbers, com-
plex numbers, and complex matrices, respectively. In both
cases, (polynomial-time) computability is to be understood
component-wise so that it reduces to the introduced defini-
tion of (polynomial-time) computability of real numbers.

Next, we formalize for clarity the type of ODEs we con-
sider in the remainder.
Definition 17 (Linear Ordinary Differential Equation). A
linear ordinary differential equation of order (m,n) ∈ N2

is of the form
m∑
i=0

aiy
(i) =

n∑
k=0

bkx
(k),

where ai, bj ∈ C, am, bn ̸= 0 are constants, x ∈
Cn+1([0, 1]) is the inhomogeneous generator and y ∈
Cm([0, 1]) is the unknown function. Since am ̸= 0, we may
always assume without loss of generality that am = 1, and
we write Tm,n((ai)

m
i=0, (bk)

n
k=0) : x 7→ y for the solution

operator.
We will express our main result about the complexity

blowup of linear ODEs in terms of the properties of the char-
acteristic polynomials, which we introduce next.
Definition 18 (Characteristic Polynomial). Consider a lin-
ear ODE of order (m,n), i.e. of the form

m∑
i=0

aiy
(i) =

n∑
k=0

bkx
(k).

Then we define the characteristic polynomials Py(X) and
Px(X) of the ODE as

Py(X) =

m∑
i=0

aiX
i ∈ C[X] and

Px(X) =

n∑
k=0

bkX
k ∈ C[X].

To analyze the properties of polynomials, in particular the
previously described characteristic polynomials, we specify
the following notation. We denote by Q | P the divisibility
of a polynomial P ∈ R[X], where R is a ring, by another
polynomial Q ∈ R[X], i.e., P = Q ·R for some polynomial
R ∈ R[X]. Moreover, we write Z(P) for the multi-set of all
roots of P .

We briefly extend our framework to systems of linear
ODEs that essentially couple several scalar ODEs.

Definition 19 (System of linear ODE and its characteristic
polynomial). A d-system of linear ODEs of order (m,n) ∈
N2 is of the form

m∑
i=0

Ai · y(i) =
n∑

j=0

Bj · x(j)

where Ai, Bj ∈ Cd×d are constant, x ∈ Cn+1([0, 1])d is the
inhomogeneous generator and y ∈ Cm([0, 1])d is the un-
known function. We write T d

m,n((Ai)
m
i=0, (Bj)

n
j=0) : x 7→ y

for the solution operator and Py(X), Px(X) for its charac-
teristic polynomials given by

Py(X) =

m∑
i=0

AiX
i ∈ Cd×d[X] and

Px(X) =

n∑
j=0

BjX
j ∈ Cd×d[X].

Finally, we define the notion of a polynomial-time com-
putable ODE based on its parameters, which is the setting
we consider to analyze complexity blowup.
Definition 20. A (system of) linear ODE(s) of order (m,n)
is called polynomial-time computable if all coefficients and
the initial conditions are polynomial-time computable.

Main Result Now, we are ready to state our main result
about complexity blowup in linear ODEs.
Theorem 21. If FP ̸= #P , a polynomial-time computable
linear ODE of order (m,n) exhibits complexity blowup if
and only if Py ∤ Px.

Before proving the theorem in the remainder of this sec-
tion, we describe the extension of the result to systems of
ODEs under some conditions.
Corollary 22. If FP ̸= #P , a polynomial-time computable
d-system of linear ODE of order (1, n)

A1y
′ +A0y =

n∑
j=0

Bjx
(j)

with A1 invertible and for j = 0, . . . , n

[A−1
1 A0, A

−1
1 Bj] := A−1

1 A0A
−1
1 Bj −A−1

1 BjA
−1
1 A0 = 0

exhibits complexity blowup if and only if Px(−A−1
1 A0) ̸= 0.

Proof. Under the given assumptions, the proof is completely
analogous to the single case treated in Theorem 21, in partic-
ular, the step in Proposition 27. Indeed, the given conditions
account for the facts that Cd×d[X], respectively Cd×d

p [X],
are not algebraically closed and commutative, but we still
are able to mirror the single ODE proof strategy.

Auxiliary Results The set Cp is an algebraically closed
field and Rp ⊂ Cp is a subfield (Pour-El and Richards 2017).
Based on this structure, we collect some useful properties
about the complexity of functions and operations employed
in the subsequent analysis (Pour-El and Richards 2017; Ko
1991).

Proposition 23.
• Let A ∈ {R,C}. Then we have{

x+ y | x ∈ Ap, y ∈ AC
p

}
⊆ AC

p and{
x · y | x ∈ A∗

p, y ∈ AC
p

}
⊆ AC

p ,

where A∗
p denotes the set of elements with a (multiplica-

tive) inverse in Ap.
• The set Pol([a, b]) is a Cp-algebra.
• Let f ∈ Pol([a, b]) ∩ Cn+1([a, b]). Then for all i ≤ [n]

we have f (i) ∈ Pol([a, b]).
• Let z ∈ Cp. Then ez· ∈ Pol([0, 1]).
• Let f : [0, 1] → C be #P -complete, let g ∈ Pol([0, 1])

and 0 ̸= z ∈ Cp be polynomial-time computable. Then
the function

h(t) := zf(t) + g(t)

is also #P -complete.

To characterize linear ODEs, we already introduced their
characteristic polynomials in Definition 18. To motivate the
appearance of these characteristic polynomials more for-
mally, consider a linear differential operator of order n with
constant coefficients

D : {f : I → C | f is n-times diff’able} → {f : I → C},

f 7→
n∑

k=0

akf
(k)(x), I ⊂ R, ak ∈ C, n ∈ N.

We write P(I) and Pn(I) for the set of all differential op-
erators with constant coefficients on I and those of order n,
respectively. Now we can associate to each D ∈ Pn(I) a
specific polynomial PD ∈ C[X]:

D =

n∑
k=0

ak
dk

dxk
=⇒ PD(X) =

n∑
k=0

akX
k.

By abuse of notation, we will often write D = PD(d
dx) for

simplicity so that a linear ODE as introduced in Definition
17 can be expressed via its characteristic polynomials as

Py

(
d

dx

)
y = Px

(
d

dx

)
x.

Moreover, one easily verifies the following equalities, which
we will repeatedly apply in the remainder: For P,Q ∈ C[X]
we have

(P +Q)

(
d

dx

)
= P

(
d

dx

)
+Q

(
d

dx

)
and

(P ·Q)

(
d

dx

)
= P

(
d

dx

)
·Q
(

d

dx

)
.

Another tool we need for our analysis is the reduction of
the degree of polynomials. For y ∈ R and a polynomial
P ∈ R[X] over a ring R with

P (X) =

m∑
i=0

aiX
i, ai ∈ R,

we set

Ry[P](X) :=

m−1∑
i=0

bi(y)X
i ∈ R[X], where

bi(y) :=

{
am, if i = m− 1

ai+1 + y · bi+1(y), otherwise
. (5)

In particular, Ry[P](X) is the polynomial obtained through
the polynomial division of P (X) by (X−y) with remainder
term b−1(y) := a0 + y · b0(y), i.e.,

P (X) = (X − y) · Ry[P](X) + b−1(y).

In this setting, we immediately obtain the following charac-
terizations.
Proposition 24. Let F be a field and let P ∈ F [X] be a
polynomial.
• For σ ∈ F , the following are equivalent (with the no-

tation introduced in the previous paragraph): (i) σ ∈
Z(P), (ii) b−1(σ) = 0, (iii) σb0(σ) = −a0.

• For σ ∈ Z(P) we have Z (Rσ[P]) = Z(P) \ {σ}.

Proof of Theorem 21 The proof of Theorem 21 is essen-
tially separated into two steps. The case of linear ODEs of
order (1,1) was previously treated in Boche and Pohl (2021).
However, the proof strategy also extends to linear ODEs of
order (1,n) with some necessary modifications; the main idea
is to rely on the explicit solution formula together with a
well-known result about a #P -complete problem.
Proposition 25. The solution of linear ODE of order (1, n),
i.e. of the form

y′ + a0y =

n∑
k=0

bkx
(k),

is given by

y(t) = e−a0ty(0) +

n∑
j=0

∫ t

0

bje
−a0(t−τ)x(j)(τ)dτ.

Theorem 26 (Friedman (1984)). There exists a smooth
polynomial-time computable function f : [0, 1] → C such
that the function g given by

g(t) =

∫ t

0

f(τ)dτ

is #P -complete.
This allows us to encode a #P -complete problem into the

solution of linear ODEs of order (1, n) and thereby obtain
the following characterization of its complexity.
Proposition 27. For any (1,n)-order polynomial-time com-
putable ODE of the form

y′ + a0y =

n∑
j=0

bjx
(j)

there exists x ∈ C∞([0, 1]) ∩ Pol([0, 1]) such that
T1,n(a0, (bj)nj=0)(x) is #P -complete if and only if
Px(−a0) ̸= 0.

Proof. According to Theorem 26, there exists a function
f̃ ∈ Pol([0, 1]) ∩ C∞([0, 1]) such that

g̃(t) :=

∫ t

0

f̃(τ)dτ

is #P -complete. Set x(t) := e−a0tf̃(t) and observe that
x ∈ Pol([0, 1])∩C∞([0, 1]) as well via Proposition 23. Since
for i ∈ {1, . . . , n} we have

x(i)(t) =

i∑
j=0

(
i

j

)
(−a0)

i−je−a0tf̃ (j)(t)

= e−a0t
n∑

j=0

(
i

j

)
(−a0)

i−j f̃ (j)(t),

it follows that
n∑

i=0

∫ t

0

bie
−a0(t−τ)x(i)(τ) dτ

=

n∑
i=0

∫ t

0

bie
−a0t

n∑
j=0

(
i

j

)
(−a0)

i−j f̃ (j)(τ) dτ

= e−a0t
n∑

j=0

(
n∑

i=0

(
i

j

)
(−a0)

i−jbi

)∫ t

0

f̃ (j)(τ) dτ

= e−a0t
n∑

j=0

λ(j)

∫ t

0

f̃ (j)(τ) dτ

= e−a0t

 n∑
j=1

λ(j)f (j−1)(t) + λ(0)g̃(t)


= e−a0t

n−1∑
j=0

λ(j + 1)f (j)(t) + e−a0tλ(0)g̃(t)

with λ : N → Cp given by

λ(j) :=

n∑
i=0

(
i

j

)
(−a0)

i−jbi.

Thus, by the solution formula in Proposition 25 we obtain
that

T1,n(a0, (bj)nj=0)(x) = e−a0ty(0) +

n∑
i=0

∫ t

0

bie
−a0(t−τ)x(i)(τ) dτ

= e−a0ty(0) + e−a0t
n−1∑
j=0

λ(j + 1)f (j)(t) + e−a0tλ(0)g̃(t).

Noting that Proposition 23 implies that

e−a0tλ(0), e−a0t
n−1∑
j=0

λ(j+1)f (j)(t), e−a0ty(0) ∈ Pol([0, 1])

gives again via Proposition 23 that T1,n(a0, (bj)nj=0)(x) is
#P -complete if

0 ̸= λ(0) =

n∑
i=0

(
i

0

)
(−a0)

i−0bi =

n∑
i=0

bi(−a0)
i = Px(−a0).

Hence, it remains to show that if Px(−a0) = 0, then the so-
lution is always polynomial-time computable. Observe that
by definition, Py is a polynomial of degree one with a sin-
gle root −a0. Therefore, assuming Px(−a0) = 0 implies
that {−a0} = Z(Py) ⊂ Z(Px), which by Lemma 28 is
equivalent to Py | Px. Thus, there exists Q ∈ C[X] with
Px(X) = Py(X)Q(X) so that the ODE can be rewritten as

Py

(
d

dt

)
y = Px

(
d

dt

)
x = (Py ·Q)

(
d

dt

)
x

= Py

(
d

dt

)(
Q

(
d

dt

)
x

)
. (6)

Comparing the left hand and right hand side shows that
yp := Q

(
d
dt

)
x is a particular solution of the ODE, which

is polynomial-time computable by the structural properties
of Pol([0, 1]) given in Proposition 23 for x ∈ Pol([0, 1]) ∩
C∞([0, 1]). Since the general solution of the ODE can be de-
composed into the homogeneous solution yh and a particular
solution yp, we get

T1,n(a0, (bj)nj=0)(x) = yh + yp. (7)

Finally, note that by Proposition 25 the homogeneous solu-
tion is given by yh(t) = e−a0ty(0), i.e., yh is polynomial-
time computable via Proposition 23, and thereby yh + yp ∈
Pol([0, 1]).

The second step in the proof of Theorem 21 is to extend
the first-order result to arbitrary linear ODEs. Thereby, we
rely on a simple observation linking polynomial divisibility
with roots.
Lemma 28. Let F be an algebraically closed field, and let
p, q ∈ F [X] be polynomials. Then we have

p | q ⇐⇒ Z(p) ⊆ Z(q).

Now, the general case follows by exploiting connections
between the roots of the characteristic polynomials and cer-
tain polynomial reduction techniques.
Proposition 29. For any (m,n)-order polynomial-time
computable ODE of the form

m∑
i=0

aiy
(i) =

n∑
j=0

bjx
(j),

there exists x ∈ C∞([0, 1]) ∩ Pol([0, 1]) such that
Tm,n((ai)

m
i=0, (bj)

n
j=0)(x) is #P -hard if and only if

Z(Py) ⊈ Z(Px).

Proof. First, observe that for x ∈ Pol([0, 1]) ∩ C∞([0, 1])
if Py | Px, then the corresponding output of the ODE is
polynomial-time computable by the same argument as in the
proof of Proposition 27, in particular (6) and (7). Hence, by
Lemma 28 we know that Z(Py) ⊂ Z(Px) implies that for
x ∈ Pol([0, 1]) ∩ C∞([0, 1]) the corresponding solution y =
Tm,n((ai)

m
i=0, (bj)

n
j=0)(x) ∈ Pol([0, 1]) is polynomial-time

computable.
Thus, assume that Z(Py) ⊈ Z(Px), i.e., there exists

σ̃ ∈ Z(Py) \ Z(Px). We show that there exists x ∈
C∞([0, 1])∩Pol([0, 1]) such that Tm,n((ai)

m
i=0, (bj)

n
j=0)(x)

is #P -hard by induction on m. The base-case (1, n) was
proven in Proposition 27. Therefore, assume that the claim
holds for all polynomial-time computable ODEs of order
(k, n) with k < m and consider a polynomial-time com-
putable ODE of order (m,n)

m∑
i=0

aiy
(i) =

n∑
j=0

cjx
(j), ai, ci ∈ Cp.

We now make the following observation: If there exist
b1, . . . , bm−1, σ ∈ Cp such that

m∑
i=0

aiy
(i) =

m−1∑
i=0

bi(y
′ − σy)(i), (8)

then ỹ := y′ − σy is a solution of the polynomial-time com-
putable ODE

m−1∑
i=0

biỹ
(i) =

n∑
j=0

cjx
(j). (9)

Hence, by the induction hypothesis we find x ∈ Pol([0, 1])∩
C∞([0, 1]) such that ỹ = Tm−1,n((bi)

m−1
i=0 , (cj)

n
j=0)(x) is

#P -hard (which implies that y is also #P-hard by Propo-
sition 23) provided that Z(P̃y) ⊈ Z(Px) with P̃y(X) :=∑m−1

i=0 biX
i being the characteristic polynomial of the left

hand side corresponding to the modified ODE (9).
It is left to prove the existence of b1, . . . , bm−1, σ with

the given properties and the fact that Z(P̃y) ⊈ Z(Px) (or
equivalently P̃y ∤ Px) holds. Unfolding the condition in (8)
gives

amy(m)+

m−1∑
i=1

aiy
(i) + a0y =

bm−1y
(m) +

m−1∑
i=1

(bi−1 − σbi)y
(i) − σb0y.

Hence, comparing the coefficients yields

am = bm−1, bi−1 = ai + σbi for i = 1, . . . ,m− 1, and
σb0 = −a0.

Recalling the definition of polynomial reduction in (5) and
its properties in Proposition 24, we notice that the condition
is satisfied for P̃y = Rσ(Py) where σ ∈ Z(Py) and addi-
tionally bi, σ ∈ Cp since Cp is an algebraically closed field.
Since |Z(Py)| = deg(Py) = m ≥ 2 we can in particular
choose σ ̸= σ̃ so that again by Proposition 24

Z(P̃y) = Z(Rσ(Py)) = Z(Py) \ {σ},

i.e., σ̃ ∈ Z(P̃y)\Z(Px) or in other words Z(P̃y) ⊈ Z(Px).

Finally, Theorem 21 is now a direct consequence of
Proposition 29.

Proof of Theorem 21. Proposition 29 (together with Lemma
28) characterizes the complexity of the solution of a
polynomial-time computable linear ODE. In particular, there
exists x ∈ Pol([0, 1])∩ C∞([0, 1]) such that the correspond-
ing solution is #P-hard if and only if the characteristic
polynomials of the ODE satisfy Py ∤ Px. Thus, assuming
FP ̸= #P , the solution is not polynomial-time computable,
i.e., the ODE exhibits complexity blowup.

Proof of Theorem 9 Observe that we can rewrite the LIF
model from (1) as

A1y
′ +A0y = B0x,

with

x =

(
0
Ie

)
, y =

(
u
I

)
,

A1 =

(
1 0
0 1

)
, A0 =

(
τ−1
m −τ−1

m

0 τ−1
s

)
,

B0 =

(
τ−1
s 0
0 τ−1

s ,

)
,

where we neglected constants terms (i.e., urest) without loss
of generality. Now, the statement immediately follows from
verifying the conditions in Corollary 22.

