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Çağkan Yapar† Fabian Jaensch† Ron Levie‡ Gitta Kutyniok∗§¶ Giuseppe Caire†

†Technical University of Berlin, ‡Technion – Israel Institute of Technology
∗Ludwig Maximilian University of Munich, §University of Tromsø

¶Munich Center for Machine Learning (MCML)

ABSTRACT

In dense urban environments, Global Navigation Satellite
Systems do not provide good accuracy due to the low prob-
ability of line-of-sight (LOS) between the user equipment
(UE) to be located and the satellites due to the presence of
obstacles such as buildings. As a result, it is necessary to
resort to other technologies that can operate reliably under
non-line-of-sight (NLOS) conditions. To promote research
in the reviving field of radio map-based wireless localization,
we have launched the MLSP 2023 Urban Wireless Localiza-
tion Competition. In this short overview paper, we describe
the urban wireless localization problem, the provided datasets
and baseline methods, the challenge task, and the challenge
evaluation methodology. Finally, we present the results of the
challenge.

Index Terms— challenge, deep learning, radio map, re-
ceived signal strength (RSS), time of arrival (ToA), wireless
localization.

1. INTRODUCTION

Localization of a User Equipment (UE), has many important
applications such as in autonomous driving [1], proof of wit-
ness presence [2],5G networks [3], emergency 911 services
[4], or intelligent transportation systems [5].

In dense urban environments, line-of-sight links between
the UE to be located and the satellites are very often non-
existent, which greatly degrades the positioning accuracy of
Global Navigation Satellite Systems (GNSS) [6]. In addition,
handheld devices suffer from very high battery consump-
tion to detect the low power satellite signals. Therefore,
other technologies should be used for reliable positioning
in urban environments. Due to their ubiquity, cellular and
WiFi networks are considered as strong candidates, where the
measured characteristics of the beacon signals from multiple
transmitters (Tx) of the wireless system are used for local-
ization, e.g. Time of Arrival (ToA) [7], Time Difference of
Arrival (TDoA), Angle of Arrival (AoA) and Received Signal
Strength (RSS) [8].

1.1. Ranging vs Fingerprint (Radio Map)-Based Methods

In environments with many obstacles, distance estimates
based on signal characteristics such as RSS, ToA, or other
forms of channel state information are considered to be inac-
curate, and thus methods for high accuracy should not rely on
such intermediate distance (range) estimates.

The alternative is to avoid such inappropriate modeling
assumptions and directly use the databases of radio signal
signatures assigned to locations in the environment map.
These so-called fingerprint-based methods match RSS or
other channel state information with known measurements
from a database and estimate the location based on similarity.
Standard approaches include 𝑘-nearest neighbors (kNN) [9].

1.2. Measurement Campaigns vs Propagation Prediction

Fingerprinting traditionally refers to obtaining such radio
signature databases (radio maps) through measurement cam-
paigns. However, measurement campaigns are very labor-
intensive and expensive endeavors. Moreover, the dense
sampling required for high-precision localization is simply
not feasible. Therefore, the use of deterministic simula-
tions based on accurate propagation models such as ray
tracing (which is based on high-frequency approximation
of Maxwell’s equations) is considered to be a more feasible
and accurate approach than measurement campaigns to build
the fingerprint databases. The drawback of such conventional
accurate computational propagation prediction methods is
their high computational complexity, which makes them un-
suitable for real-time applications, such as the current task of
interest, the wireless localization problem. Recently, many
researchers, including the authors [10] of the current paper,
have presented deep learning-based pathloss map estimation
algorithms, which can estimate pathloss radio maps with high
accuracy, but much faster than a conventional high-precision
simulation. Based on this new possibility of accurate and
fast pathloss radio map estimation, we have revisited the RSS
fingerprint-based localization problem in [11, 12, 13, 14].
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Fig. 1: Examples of pathloss and ToA radio maps from RadioLocSeer and RadioToASeer datasets. 5 simulated radio maps with
different Tx positions for two city maps are shown. Tx positions are marked with a red plus sign. Rows 1, 3: Pathloss radio
maps. Rows 2, 4: Corresponding ToA radio maps.

2. DATASETS
2.1. Training Datasets

The localization radio map datasets that we provided for the
competition, namely the RadioLocSeer and the RadioToASeer
datasets were first presented in our recent paper about our
deep learning and pathloss-based localization method Lo-
cUNet [13], and are available at [15]. More details about
them can be found in [16].

These datasets feature 99 different urban city maps of size
256𝑚 × 256𝑚, which were fetched from OpenStreetMap [17]
from the city maps of Ankara, Berlin, Glasgow, Ljubljana,
London, and Tel Aviv. On each of these city maps, 80 dif-
ferent street level (1.5m) Tx locations were considered, with
their positions being restricted to lie inside the central square
of size 150m×150m, separated by at least 20 m from each
other. The wireless propagation software Winprop from Al-
tair [18] was used for the simulations for a dense grid of size

1𝑚2 at the same height of 1.5m, amounting to a total of 7920
radio map simulations, and under various simulation models.

2.1.1. RadioLocSeer Dataset

The dataset contains pathloss radio map simulations based on
the Intelligent Ray Tracing (IRT) [19] and the Dominant Path
Model (DPM). High accuracy of these method were proven
by field measurements in several cities, see e.g. [20], [21] or
[22] and the references therein.

In this competition, we focused only on one type of sim-
ulation, DPM, for simplicity, which we describe in Sec. 2.1.3
shortly. See our previous work [13, 12] for the consideration
of different simulation models/radio map estimation methods
and environment maps to emulate the potential mismatch of
radio map estimation and real life measurements.

The results of the pathloss simulations are provided
as 8-bit .png image files, which were obtained by post-



processing of the simulation results by first converting the
pathloss values PL to pixel values between 0 and 1 by
𝑝 = max{ PL−PL,thr

PL,max−PL,thr
, 0}, where PL,max=-47 dB denotes the

maximal pathloss in all radio maps in the dataset and PL,thr=-
127 dB is the pathloss threshold, below which the RSS is
assumed to be not large enough for successful detection
[10, 16].

2.1.2. RadioToASeer Dataset

This dataset contains the ToA radio map counterparts of
the RadioTLocSeer Dataset, i.e. the ToA of the dominant
paths (in ns), to allow for comparisons between RSS and
ToA ranging-based methods in realistic urban scenarios. This
dataset is provided in .mat format. The file can be directly
read, or if necessary after conversion to the desired file format.
Similar to the procedure applied to the pathloss simulations,
ToA radio maps in .png format can also be generated.

In Fig. 1 we show examples of two city maps and pathloss
and ToA radio maps of 5 Tx different Tx deployments. Here,
to obtain ToA radio maps as 8-bit .png images, we first em-
ployed the scaling of simulated ToA values T, to pixel values
between 0 and 1 by 𝑡 = T

Tmax
, where Tmax denotes the maxi-

mum ToA in all the dataset.
Note that due to the property of dominant paths being the

shortest free space path, we argued in [13, 16] that evaluat-
ing ToA-based localization algorithms using RadioToASeer
yields (quasi-)upper bounds for their performances in real de-
ployment.

2.1.3. Dominant Path Model (DPM) [21]

DPM is based on the assumption that the dominant (i.e. the
one subject to least attenuation) propagation path from Tx to
UE must arrive via convex corners of the obstacles to UE,
and thus only diffractions are taken into account, which is
equivalent to finding the shortest free space path to each point.

The pathloss values are then calculated based on the spec-
ifications (e.g. the length of the path, angles of diffractions)
of the found dominant path for each point on the grid.

2.2. Test Dataset
For the fair evaluation of the participants’ methods, we pre-
pared a test dataset which was not published before. 84 city
maps of size 256×256 were obtained from OpenStreetMap
[17] in Istanbul, and again 80 different Tx positions per map
were considered, amounting to 6720 pathloss and ToA sim-
ulations. The same simulation parameters were used as for
RadioLocSeer and RadioToASeer. We dubbed this new test
dataset LocRSSToATest, as it is a bundle of both pathloss and
ToA radio maps. An example pathloss and the associated ToA
radio maps from the dataset are shown in Fig. 2.

3. THE COMPETITION TASK

The task of the challenge was to estimate the location of UE
by using either or both the RSS and the ToA measurements

(a) Pathloss radio map (b) ToA radio map

Fig. 2: An example pathloss and the corresponding ToA radio map
from LocRSSToATest Dataset. Tx positions are marked with a red
plus sign.

from several anchor (i.e. stationary) Tx and estimations of
pathloss and ToA radio maps for each such Tx. Notice that
assuming constant transmit power, the RSS radio map esti-
mations can be obtained from pathloss radio maps through
the relation (in dB scale), PUE = PL +PTx, where PTx and PUE
denote the transmit power and the RSS, respectively.

The accuracy of the radio map estimates depends on the
availability of detailed and reliable knowledge of the prop-
agation environment, i.e. the shape and material of the ob-
jects (such as buildings or vegetation) in the propagation en-
vironment. Even if such information is available, the pres-
ence of moving objects in the environment, such as cars and
pedestrians, leads to an inevitable discrepancy between the
estimates and the real measurements. Therefore, participants
were asked to develop methods that are robust to realistic in-
accuracies in their radio map estimates. For simplicity, we
proposed to model the mismatch between the available and
real RSS and ToA information by additive Gaussian noise
terms, see also [23, 14, 13].

4. EVALUATION METHODOLOGY

The accuracy of the submitted methods were evaluated by the
root mean square error (RMSE), between the estimated and
the true UE locations, given by

RMSE =

√︄
1
|T |

∑︁
𝑘∈T

| |u𝑘 − ũ𝑘 | |22,

where ũ𝑘 := (𝑥𝑘 , �̃�𝑘) and u𝑘 := (𝑥𝑘 , 𝑦𝑘) denote the location
estimate and the true location of the 𝑘th instance of a test
dataset T .

5. BASELINE METHODS

5.1. Probabilistic Formulation of the Localization Prob-
lem
In the following, we provide a simple yet very important for-
mulation of the localization problem [14], which provides



Real radio
maps

BS1

BS2

BS5

Radio map
 estimations

Inputs

LocUNet
Pathloss

 measurements

+ true location
x estimated loc.

Fig. 3: A visual summary of the baseline method - LocUNet [13]- with 5 anchor Txs. The UE located at the coordinate indicated
with green plus sign measures the true RSS values from each Tx (base station/BS). Together with the radio map estimates, the
measured values (represented with images of the same size as radio map estimates, with each pixel having the value of the
measurement) constitute the inputs of the LocUNet. The location estimate (orange cross) is found by taking the center of mass
of the heatmap indicated in gray level.

performance upper bounds under specific settings, and hence
can serve as an ultimate benchmark for localization methods.
For ease of exposition, we consider localization based only on
one type of radio signal signature (e.g. RSS or ToA), but the
formulation straightforwardly translates into multi-signature
settings.

Let us consider a finite set D of possible UE locations in
the two-dimensional plane. The localization task is then to
estimate the position 𝑦0 ∈ D of an UE measuring a wireless
signal signature r = (𝑟1, . . . , 𝑟𝑁 ) ∈ R𝑁

≥0 obtained from 𝑁

anchor transmitters Tx1, . . . ,Tx𝑁 , which can be formulated
as a minimum mean square error (MMSE) problem ,

�̂�0 (r) = argmin 𝑓 ∈𝐿2 (R𝑁≥0 ,D)
E
[
∥𝑦0 − 𝑓 (r)∥2

2
]
, (1)

which is solved by the posterior mean estimator (PME)

�̂�0 (r) = E [𝑦0 | r] =
∑︁
𝑦0∈D

𝑦0 𝑝(𝑦0 | r), (2)

where, with the usual abuse of notation, 𝑝 denotes the prob-
ability density functions (pdf) of different variables. If the
prior distribution of the location 𝑦0 and the distribution of the
true signal signature conditioned on the location 𝑝(r | 𝑦0) are
known, the PME can be calculated using Bayes’ theorem,

�̂�0 (r) =
∑︁
𝑦0∈D

𝑦0
𝑝(r | 𝑦0) 𝑝(𝑦0)∑
𝑦∈D 𝑝(r | 𝑦) 𝑝(𝑦) . (3)

In our localization setting based on radio maps (finger-
prints), we have the estimated (previously stored) signal sig-
nature values c(𝑦) = (𝑐1 (𝑦), . . . , 𝑐𝑁 (𝑦)) ∈ R𝑁

≥0 available for

each location 𝑦 ∈ D and all 𝑁 Tx. The true radio signature
r ∈ R𝑁

≥0 measured by the UE is assumed to show a certain
mismatch z = (𝑧1, . . . , 𝑧𝑁 ) = r − c(𝑦0) to the estimated sig-
nature values. Note that in the probabilistic formulation in
(3), the problem then reduces to estimating the prior distribu-
tion 𝑝(𝑦0) and the distribution of the mismatch conditioned
on the location, 𝑝(z | 𝑦0). In the case of the mismatch due
to i.i.d. zero-mean Gaussian additive error with variance 𝜎2,
the PME with the knowledge of the correct variance 𝜎2 and
the correct prior distribution 𝑝(𝑦0) gives the best possible es-
timate in terms of mean square error, and equivalently, root
mean square error (RMSE). Equation (3) rewritten for the
observed difference between the estimated and the measured
signal signature z in this case reads

�̂�0 (z) =
∑︁
𝑦0∈D

𝑦0
exp(− ∥z∥2

2 /2𝜎2) 𝑝(𝑦0)∑
𝑦∈D exp(−∥z∥2

2/2𝜎2) 𝑝(𝑦)
. (4)

5.2. LocUNet
Our recently presented LocUNet [12, 13, 14] takes pathloss
radio map estimations and the measured RSS values from
a set of 𝑁 transmitters and returns a location estimation,
see. Fig. 3 for a visualized summary of it. The first part
of LocUNet is a UNet variant [24], returning a heatmap/a-
posteriori distribution, followed by a final regression layer of
center of mass operation that gives location estimates in terms
of the coordinates. Its state-of-the-art performance in several
settings with respect to RSS and ToA ranging-based methods
were shown through numerical simulations for realistic urban
scenarios and its code was set publicly available 1.

1https://GitHub.com/CagkanYapar/LocUNet

https://GitHub.com/CagkanYapar/LocUNet


Table 1: Comparison of the accuracies of LocUNet and the proba-
bilistic method in a Gaussian additive noise scenario.

Test metric: MAE RMSE MAE RMSE
# Tx: 3 Tx 5 Tx
PME 20.91 30.11 10.55 16.43

LocUNet 21.17 30.41 11.28 17.63

In Table 1, we present the localization results of LocUNet
and the presented probabilistic method, where we considered
a scenario of presence Gaussian additive noise in RSS mea-
surements, and where a UE is always located inside the 164×
164 middle window measuring positive RSS from a random
set of 𝑁 = 3, 5 Tx. Assuming a (postulated, mismatched)
prior of uniform distribution over all locations inside the 164×
164 centered window that has positive RSS values on at least
𝑁 out of the 80 available Tx for a city map, the probabilistic
method is employed by using (4). The variance of the Gaus-
sian noise was chosen as 𝜎2 = 6.4 dB2. Note that LocUNet
is oblivious to any prior information, yet it demonstrates very
close performance.

5.3. ToA Ranging-Based Methods

In our LocUNet paper [13], we have provided comparisons
with state-of-the-art ToA ranging-based algorithms using the
RadioToASeer Dataset. The implementation of these methods
were also set publicly available in the GitHub repository 1.

6. SHORT DESCRIPTION OF LOCSWINUNET

The only method that took part in the competition was Loc-
SwinUNet [25], which is an adaptation of Swin transformer-
based [26] SwinUnet [27] to the localization task. More
specifically, a SwinUnet is extended by a final trainable
regression layer that returns location coordinate estimates.
Similar to LocUNet, LocSwinUNet can use both pathloss and
ToA radio maps due to its ability to take different numbers of
input image features. The results are shown in Table 2.

7. CHALLENGE RESULTS

The authors of the submitted method considered three differ-
ent scenarios, which we describe below. Numerical exper-
iments were performed considering different input features,
namely pathloss and ToA radio maps, and city maps.

Scenario 1 (clean measurements, noisy radio maps):
The pathloss radio maps are made noisy by adding a Gaussian
noise ∼ N(0, 𝜎2

𝑝) with 𝜎𝑝 = 10 dB. Similarly, the ToA are
also contaminated by am additive Gaussian noise ∼ N(0, 𝜎2

𝑡 )
with 𝜎𝑡 = 20 m. The Rx/Tx association setting provided in
RadioLocSeer [13] was adopted. Scenario 2 (clean mea-
surements, noisy radio maps, new test set): The trained
model in Scenario 1 is evaluated on the evaluation dataset
LocRSSToATest with a different Rx/Tx association setting
than before. Scenario 3 (noisy measurements, noisy radio

Table 2: RMSE performance of the submitted method [25].

Scenario RSS+ToA+City RSS+ToA RSS ToA
#1 2.048 1.925 5.896 2.879
#2 4.398 3.361 8.148 4.296
#3 10.14 N/A N/A N/A

maps, new test set): This scenario represents the more re-
alistic case of the presence of inaccuracies in the RSS and
ToA measurements (cf. Sec. 3). The deviations of RSS
and ToA measurements are modelled by additive zero-mean
Gaussian noise terms, with standard deviations of 𝜎𝑝 = 10
dB and 𝜎𝑡 = 10 m. LocSwinUNet was trained over such noisy
training dataset and then evaluated on the new test dataset
LocRSSToATest. Due to time constraints of the competition,
not all input feature combinations could be examined.

8. CONCLUSIONS AND DISCUSSIONS

The results show the importance of using both pathloss and
ToA radio maps and measurements as input features of the
proposed neural network. Unfortunately, due to the time con-
straints of the competition, the authors were not able to pro-
vide comparisons with baselines, making it difficult to assess
the performance of the proposed method relative to the state-
of-the-art. We hope that this will be addressed in future work.
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