Bavarian AI Chair for Mathematical Foundations of Artificial Intelligence
print


Breadcrumb Navigation


Content

Preprints

2025

  • Sustainable AI: Mathematical Foundations of Spiking Neural Networks. A. Fono, M. Singh, E. Araya, P. Petersen, H. Boche, G. Kutyniok. (arXiv:2503.02013v1)

2024

  • H. Boche, V. Fojtik, A. Fono, G. Kutyniok. Computability of Classification and Deep Learning: From Theoretical Limits to Practical Feasibility through Quantization (arXiv:2408.06212)

2023

  • S. Kolek, A. Chattopadhyay, K. Chan, H. Andrade-Loarca, G. Kutyniok, R. Vidal. Learning Interpretable Queries for Explainable Image Classification with Information Pursuit. (arXiv:2312.11548)
  • M. Singh, A. Fono, G. Kutyniok. Expressivity of Spiking Neural Networks (arXiv:2308.08218)
  • H. Andrade-Loarca, J. Hege, A. Bacho, G. Kutyniok. PoissonNet: Resolution-Agnostic 3D Shape Reconstruction using Fourier Neural Operators (arXiv:2308.01766)
  • A. Bacho, H. Boche, G. Kutyniok. Reliable AI: Does the Next Generation Require
    Quantum Computing? (arXiv:2307.01301v1)
  • Hung-Hsu Chou, Johannes Maly, Claudio Mayrink Verdun. Non-negative Least Squares via Overparametrization (arXiv:2207.08437)

Downloads