Bavarian AI Chair for Mathematical Foundations of Artificial Intelligence
print


Breadcrumb Navigation


Content

Preprints

2025

  • C. Kneissl, C. Bülte, P. Scholl, G. Kutyniok. Improved probabilistic regression using diffusion models.(arXiv:2510.04583)
  • J. Suarez Cardona, H. Boche, G. Kutyniok. A Variational Framework for the Algorithmic Complexity of PDE Solutions. (arXiv:2510.21290)
  • M. Matveev, V. Fojtik, H. Chou, G. Kutyniok, J. Maly. Conflicting Biases at the Edge of Stability: Norm versus Sharpness Regularization. (arXiv:2505.21423)
  • M. Seleznova, H. Chou, M. Verdun, G. Kutyniok. GradPCA: Leveraging NTK Alignment for Reliable Out-of-Distribution Detection. (arXiv:2505.16017)
  • J. Lee and G. Kutyniok. Expressivity of Deep Neural Networks. (pdf)
  • A. Fono, M. Singh, E. Araya, P. Petersen, H. Boche, G. Kutyniok. Sustainable AI: Mathematical Foundations of Spiking Neural Networks. (arXiv:2503.02013v1)
  • C. Bülte, Y. Sale, T. Löhr, P. Hofman, G. Kutyniok, E. Hüllermeier. An Axiomatic Assessment of Entropy- and Variance-based Uncertainty Quantification in Regression. (arXiv:2504.18433)
  • P. Scholl, A. Dietrich, S. Wolf, J. Lee, A. Schäffer, G. Kutyniok, M. Iskandar. Interpretable Robotic Friction Learning via Symbolic Regression. (arXiv:2505.13186)
  • Z. Shumaylov, P. Zaika, P. Scholl, G. Kutyniok, L. Horesh, C. Schönlieb. When is a System Discoverable from Data? Discovery Requires Chaos. (https://arxiv.org/abs/2511.08860)
  • F. Eichin, Y. Du, P. Mondorf, M. Matveev, B. Plank, M. A. Hedderich. ExPLAIND: Unifying Model, Data, and Training Attribution to Study Model Behavior. (https://arxiv.org/abs/2505.20076)

2024

  • P. Scholl, A. Bacho, H. Boche, G. Kutyniok. Symbolic Recovery of Differential Equations: The Identifiability Problem (arXiv:2210.08342)

2023

  • M. Singh, A. Fono, G. Kutyniok. Expressivity of Spiking Neural Networks (arXiv:2308.08218)
  • H. Andrade-Loarca, J. Hege, A. Bacho, G. Kutyniok. PoissonNet: Resolution-Agnostic 3D Shape Reconstruction using Fourier Neural Operators (arXiv:2308.01766)
  • A. Bacho, H. Boche, G. Kutyniok. Reliable AI: Does the Next Generation Require
    Quantum Computing? (arXiv:2307.01301v1)
  • Hung-Hsu Chou, Johannes Maly, Claudio Mayrink Verdun. Non-negative Least Squares via Overparametrization (arXiv:2207.08437)